To see the other types of publications on this topic, follow the link: In situ magneto-optic Kerr effect.

Journal articles on the topic 'In situ magneto-optic Kerr effect'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'In situ magneto-optic Kerr effect.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Poduska, Kristin M., and Sylvie Morin. "Electrochemical cell for in situ magneto-optic Kerr effect measurements." Review of Scientific Instruments 74, no. 11 (November 2003): 4723–27. http://dx.doi.org/10.1063/1.1619583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

BADER, S. D. "MAGNETO-OPTIC CHARACTERIZATIONS OF SUPERLATTICES AND WEDGED SANDWICHES WITH OSCILLATORY INTERLAYER MAGNETIC COUPLING." International Journal of Modern Physics B 07, no. 01n03 (January 1993): 414–18. http://dx.doi.org/10.1142/s0217979293000883.

Full text
Abstract:
Three examples of magnetic coupling across metallic spacer layers are considered. Fe/Nb sputtered superlattices are observed to have as many as five antiferromagnetic oscillations, but a weak magnetoresistive anomaly. Epitaxial trilayers of Fe/Mo/Fe grown on Mo(100) and Co/Cu/Co grown on Cu(100) are observed to have short- and long-period oscillations, respectively. The trilayers are grown with wedged spacer layers and characterized in-situ by means of the magneto-optic Kerr effect.
APA, Harvard, Vancouver, ISO, and other styles
3

Brozyniak, A., G. Mendirek, M. Hohage, A. Navarro-Quezada, and P. Zeppenfeld. "In situ electromagnet with active cooling for real-time magneto-optic Kerr effect spectroscopy." Review of Scientific Instruments 92, no. 2 (February 1, 2021): 025105. http://dx.doi.org/10.1063/5.0039608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nahm, T. U. "MAGNETO-OPTIC PROPERTIES AND OXIDATION/REDUCTION OF ULTRATHIN MAGNETIC FILMS: FE FILMS ON Pt(111)." ASEAN Journal on Science and Technology for Development 24, no. 1&2 (November 15, 2017): 107–17. http://dx.doi.org/10.29037/ajstd.187.

Full text
Abstract:
We have investigated magneto-optic properties of ultrathin Fe films grown on Pt(111) surfaces by using the in situ surface magneto-optic Kerr effect (SMOKE) and X-ray photoelectron spectroscopy (XPS). SMOKE measurements show that the Fe layers are not ferromagnetic when the film is thinner than approximately 4.5 MLs (monolayers), but the in-plane magnetization is present for a 4.1 ML Fe film on Pt(111) annealed at 550 K. Upon post-annealing at 770 K, a 9.2 ML Fe film does not show any Kerr signal, while a 6.3 ML Fe film has the in-plane Kerr signal with increased coercivity. The oxidation and reduction of ultrathin Fe films have also been studied by using XPS. Upon an oxygen exposure of 300 Langmuir at a film temperature of 873 K, the Fe layers were mostly oxidized as Fe3O4. When the Fe films were exposed to the same amount of oxygen at room temperature, a partial oxidation as Fe3O4 was observed for a 3 ML Fe film, while there was no oxidation for a 2 ML Fe film. On heating the 873 K oxidized films, Fe3O4O was reduced to FeO, and even the decomposition was observed. Underlying reasons for these chemical changes of Fe and iron-oxide films are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

QIU, Z. Q., J. PEARSON, and S. D. BADER. "SHORT-PERIOD OSCILLATIONS OF THE MAGNETIC COUPLING OF EPITAXIAL GROWN Fe/Mo/Fe SANDWICHES ON Mo(100)." Modern Physics Letters B 06, no. 14 (June 20, 1992): 839–49. http://dx.doi.org/10.1142/s0217984992001691.

Full text
Abstract:
Epitaxial Fe / Mo / Fe sandwiches grown onto a Mo (100) single crystal were characterized in situ by electron diffraction and the magneto-optic Kerr effect. The intervening Mo layer is wedge shaped to facilitate the study of the magnetic coupling between the two (14-monolayer thick) Fe films as a function of Mo thickness. The exchange coupling between the Fe films across Mo was found to exhibit oscillatory behavior between antiferromagnetic (AF) and ferromagnetic coupling with a periodicity of ~3 ML of Mo . The shape of the hysteresis loop of the AF-coupled samples was calculated from a simple model that reproduces most of the experimental features.
APA, Harvard, Vancouver, ISO, and other styles
6

HASHIM, I., H. S. JOO, and H. A. ATWATER. "STRUCTURAL AND MAGNETIC PROPERTIES OF EPITAXIAL Ni80Fe20 THIN FILMS ON Cu/Si." Surface Review and Letters 02, no. 04 (August 1995): 427–37. http://dx.doi.org/10.1142/s0218625x95000388.

Full text
Abstract:
Single-crystal films of permalloy ( Ni 80 Fe 20) were grown on Cu (001) seed layers oriented epitaxially with Si (001). The microstructural properties were measured using in-situ reflection high-energy electron diffraction, and ex-situ transmission electron microscopy, x-ray diffraction, and atomic force microscopy, whereas the magnetic properties were probed using in-situ magneto-optic Kerr effect and ex-situ vibrating sample magnetometry. Anisotropic magnetoresistance and resistivity for some of the samples were also measured. The coercivity for thinner (≤5 nm) Ni 80 Fe 20 was significantly higher (10–20 Oersteds) than polycrystalline films deposited on SiO 2/ Si , and was also higher than films deposited on lattice-matched Cu x Ni 1–x alloys. These magnetic properties were explained using a theoretical model involving interaction of domain walls with defects such as misfit dislocations and coherent islands, due to the mismatch between Ni 80 Fe 20 and Cu .
APA, Harvard, Vancouver, ISO, and other styles
7

Will, I. G., A. Ding, and Y. B. Xu. "Development of an in situ magnetoelastic magneto-optical Kerr effect magnetometer." Review of Scientific Instruments 83, no. 6 (June 2012): 064707. http://dx.doi.org/10.1063/1.4729572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Suzuki, Y., T. Katayama, and S. Yoshida. "In-situ observation of magneto-optical kerr effect and resistance of Fe island films." Journal of the Magnetics Society of Japan 15, no. 2 (1991): 451–54. http://dx.doi.org/10.3379/jmsjmag.15.451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gastelois, P. L., M. D. Martins, L. H. F. Andrade, V. H. Etgens, and W. A. A. Macedo. "In situ magneto-optical Kerr effect study of uncovered Fe films on ZnSe(001)." Journal of Magnetism and Magnetic Materials 294, no. 2 (July 2005): e105-e109. http://dx.doi.org/10.1016/j.jmmm.2005.03.063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Suzuki, Y., T. Katayama, and S. Yoshida. "In-Situ Observation of Magneto-Optical Kerr Effect and Resistance of Fe Island Films." IEEE Translation Journal on Magnetics in Japan 7, no. 5 (May 1992): 408–12. http://dx.doi.org/10.1109/tjmj.1992.4565406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Siddheswaran, R., Pavol Šutta, Petr Novák, Marie Netrvalová, Aleš Hendrych, and Ondřej Životský. "In-situ X-ray diffraction studies and magneto-optic Kerr effect on RF sputtered thin films of BaTiO3 and Co, Nb co-doped BaTiO3." Ceramics International 42, no. 3 (February 2016): 3882–87. http://dx.doi.org/10.1016/j.ceramint.2015.11.054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kumar, D., P. Gupta, and A. Gupta. "In situ surface magneto-optical Kerr effect (s-MOKE) study of ultrathin soft magnetic FeCuNbSiB alloy films." Materials Research Express 1, no. 4 (October 20, 2014): 046405. http://dx.doi.org/10.1088/2053-1591/1/4/046405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Jeong-Won Lee, Sang-Koog Kim, Jong-Ryul Jeong, Jonggeol Kim, and Sung-Chul Shin. "In situ vectorial magnetization study of ultrathin magnetic films using a surface magneto-optical Kerr effect measurement system." IEEE Transactions on Magnetics 37, no. 4 (July 2001): 2773–75. http://dx.doi.org/10.1109/20.951303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Genuzio, Francesca, Tomasz Giela, Matteo Lucian, Tevfik Onur Menteş, Carlo Alberto Brondin, Giuseppe Cautero, Piotr Mazalski, Stefano Bonetti, Jozef Korecki, and Andrea Locatelli. "A UHV MOKE magnetometer complementing XMCD-PEEM at the Elettra Synchrotron." Journal of Synchrotron Radiation 28, no. 3 (March 30, 2021): 995–1005. http://dx.doi.org/10.1107/s1600577521002885.

Full text
Abstract:
We report on a custom-built UHV-compatible Magneto-Optical Kerr Effect (MOKE) magnetometer for applications in surface and materials sciences, operating in tandem with the PhotoEmission Electron Microscope (PEEM) endstation at the Nanospectroscopy beamline of the Elettra synchrotron. The magnetometer features a liquid-nitrogen-cooled electromagnet that is fully compatible with UHV operation and produces magnetic fields up to about 140 mT at the sample. Longitudinal and polar MOKE measurement geometries are realized. The magneto-optical detection is based on polarization analysis using a photoelastic modulator. The sample manipulation system is fully compatible with that of the PEEM, making it possible to exchange samples with the beamline endstation, where complementary X-ray imaging and spectroscopy techniques are available. The magnetometer performance is illustrated by experiments on cobalt ultra-thin films, demonstrating close to monolayer sensitivity. The advantages of combining in situ growth, X-ray Magnetic Circular Dichroism imaging (XMCD-PEEM) and MOKE magnetometry into a versatile multitechnique facility are highlighted.
APA, Harvard, Vancouver, ISO, and other styles
15

Lee, J. W., J. R. Jeong, D. H. Kim, J. S. Ahn, J. Kim, and S. C. Shin. "Three-configurational surface magneto-optical Kerr effect measurement system for an ultrahigh vacuum in situ study of ultrathin magnetic films." Review of Scientific Instruments 71, no. 10 (2000): 3801. http://dx.doi.org/10.1063/1.1310346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Qiu, Z. Q., and S. D. Bader. "Surface magneto-optic Kerr effect." Review of Scientific Instruments 71, no. 3 (March 2000): 1243–55. http://dx.doi.org/10.1063/1.1150496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kim, Jonggeol, Jeong-Won Lee, Jong-Ryul Jeong, Sang-Koog Kim, and Sung-Chul Shin. "Growth and magnetic properties of ultrathin Co films on Pd(111) investigated by ultrahigh vacuum in situ surface magneto-optical Kerr effect and scanning tunneling microscope." Journal of Applied Physics 89, no. 11 (June 2001): 7147–49. http://dx.doi.org/10.1063/1.1359471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Qiu, Z. Q., and S. D. Bader. "Surface magneto-optic Kerr effect (SMOKE)." Journal of Magnetism and Magnetic Materials 200, no. 1-3 (October 1999): 664–78. http://dx.doi.org/10.1016/s0304-8853(99)00311-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Hwang, Chan-Yong. "Understanding the Surface Magneto-optic Kerr Effect." Journal of the Korean Magnetics Society 21, no. 4 (August 31, 2011): 141–46. http://dx.doi.org/10.4283/jkms.2011.21.4.141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

MAEDA, T., K. TAKEDA, S. SAITO, and T. SOUMURA. "MAGNETO-OPTIC KERR EFFECT IN Fe-Ni ALLOYS." Journal of the Magnetics Society of Japan 15, S_1_MORIS_91 (1991): S1_109–112. http://dx.doi.org/10.3379/jmsjmag.15.s1_109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Wang Li-Cen, Qiu Xiao-Dong, Zhang Zhi-You, and Shi Rui-Ying. "Photon spin splitting in magneto-optic Kerr effect." Acta Physica Sinica 64, no. 17 (2015): 174202. http://dx.doi.org/10.7498/aps.64.174202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Frey, Robert, Maxime Clusel, Adrian Radu, Régis André, and Christos Flytzanis. "Nonlinear magneto-optic Kerr effect in semiconductor microcavities." Solid State Communications 123, no. 1-2 (July 2002): 59–62. http://dx.doi.org/10.1016/s0038-1098(02)00198-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Sassaroli, E., C. A. DiMarzio, Y. He, and S. A. Oliver. "Magneto-optic Kerr effect in a slab waveguide." Journal of Applied Physics 90, no. 12 (December 15, 2001): 6054–60. http://dx.doi.org/10.1063/1.1418006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kabos, P., A. B. Kos, and T. J. Silva. "Vectorial second-harmonic magneto-optic Kerr effect measurements." Journal of Applied Physics 87, no. 9 (May 2000): 5980–82. http://dx.doi.org/10.1063/1.372586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

McAven, Luke F., Hughan J. Ross, Kiminari Shinagawa, and Philip H. Butler. "The Kerr magneto-optic effect in ferromagnetic CrBr3." Journal of Physics B: Atomic, Molecular and Optical Physics 32, no. 3 (January 1, 1999): 563–76. http://dx.doi.org/10.1088/0953-4075/32/3/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Brubaker, Mary E., E. R. Moog, C. H. Sowers, J. Zak, and S. D. Bader. "Transverse magneto-optic Kerr effect in ultrathin films." Journal of Magnetism and Magnetic Materials 103, no. 1-2 (January 1992): L7—L12. http://dx.doi.org/10.1016/0304-8853(92)90227-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lim, S. P., and B. R. Cooper. "Calculation of magneto‐optic Kerr effect in CeSb (abstract)." Journal of Applied Physics 69, no. 8 (April 15, 1991): 4586. http://dx.doi.org/10.1063/1.348318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Tsunashima, S., M. Nakamura, T. Ishida, and S. Uchiyama. "Magneto-optic Kerr effect of amorphous Gd-Fe films." IEEE Transactions on Magnetics 23, no. 5 (September 1987): 3205–7. http://dx.doi.org/10.1109/tmag.1987.1065251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Oliver, Steven A. "Magnetic field measurements using magneto-optic Kerr effect sensors." Optical Engineering 33, no. 11 (November 1, 1994): 3718. http://dx.doi.org/10.1117/12.181938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Daalderop, G. H. O., F. M. Mueller, R. C. Albers, and A. M. Boring. "Theory of the magneto-optic kerr-effect in NiUSn." Journal of Magnetism and Magnetic Materials 74, no. 2 (September 1988): 211–18. http://dx.doi.org/10.1016/0304-8853(88)90070-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Qiu, Z. Q., and S. D. Bader. "Surface Magnetism and Kerr Spectroscopy." MRS Bulletin 20, no. 10 (October 1995): 34–37. http://dx.doi.org/10.1557/s0883769400045322.

Full text
Abstract:
Magneto-optic effects were first discovered in 1845 by Michael Faraday, but these effects continue to make a major impact on the materials community to this day. The need for new magnetic information-storage media has stimulated new approaches and opened new scientific opportunities in the exploration of thin-film and surface magnetism. This article provides background to some of these developments and highlights examples of contemporary issues that provide a focus for the field. In the Faraday effect, the polarization plane of linearly polarized light rotates when a magnetic field is applied in the propagation direction. The analogous phenomenon was subsequently discovered by the Rev. John Kerr in 1877 for light reflected from opaque materials. The works of Faraday and Kerr serve as cornerstones for our present understanding of magneto-optic effects in magnetic materials. Magnetooptics is presently described in the context of either microscopic quantum theory or macroscopic dielectric theory. Microscopically, the coupling between the electric field of the propagating light and the electron spin in a magnetic medium occurs through the spin-orbit interaction. Macroscopically, magneto-optic effects arise from the antisymmetric, off-diagonal elements in the dielectric tensor, as discussed in the next section.Magneto-optic characterizations of surface magnetism began only a decade ago. The first surface magneto-optic Kerr-effect study, better known by its acronym SMOKE, concerned the magnetichysteresis loops for ultrathin Fe films grown epitaxially on Au(100). Since then, SMOKE has emerged as a premier surface-magnetism technique. SMOKE has been applied to various topics in low-dimensional magnetism, ranging from the detection of magnetic order to the characterization of critical behavior, magnetic surface anisotropies, and the oscillatory antiferromagnetic coupling exhibited by giant-magnetoresistanceheterostructures. Additional interest in SMOKE has been generated by the recent commercialization of high-density, magneto-optic information-storage media, and especially by the next-generation candidate material based on Co/Pt superlattices.
APA, Harvard, Vancouver, ISO, and other styles
32

Wijngaard, J. W., J. Dijkstra, R. A. De Groot, H. Feil, and C. Haas. "MAGNETO-OPTIC KERR EFFECT AND ELECTRONIC STRUCTURE OF Fe1/3TaS2." Le Journal de Physique Colloques 49, no. C8 (December 1988): C8–1505—C8–1506. http://dx.doi.org/10.1051/jphyscol:19888693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Nakayama, Satoru, Makoto Okano, Yukio Nozaki, and Shinichi Watanabe. "Magneto-optic Kerr effect CCD imaging with polarization modulation technique." AIP Advances 7, no. 5 (May 2017): 056802. http://dx.doi.org/10.1063/1.4974023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zharov, Alexander A., and Vladislav V. Kurin. "Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials." Journal of Applied Physics 102, no. 12 (December 15, 2007): 123514. http://dx.doi.org/10.1063/1.2822192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Oliver, S. A., C. A. DiMarzio, S. C. Lindberg, S. W. McKnight, and A. B. Kale. "Measurement of magnetic fields using the magneto‐optic Kerr effect." Applied Physics Letters 63, no. 3 (July 19, 1993): 415–17. http://dx.doi.org/10.1063/1.110010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Shang, Xue Fu, Ya Wei Wang, and Ming Qiu Tan. "Full-Potential Study of the Magneto-Optical Kerr Effect for AuMnSb and AuMnSn." Advanced Materials Research 750-752 (August 2013): 941–45. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.941.

Full text
Abstract:
The magneto-optical Kerr effect (MOKE) for both Heusler type alloys (AuMnSb and AuMnSn) were studied using the full-potential linearized augmented plane-wave (FP-LAPW) method, based on the density functional theory implemented in the WIEN2k code. The differences with previous calculations on the Kerr spectra have been found explicitly. At proper Lorentzian such asδ= 0.4 eV, the calculated Kerr angle of AuMnSn reaches its maxima +0.3° near 0.6 eV and-0.5° at 5.2 eV, respectively while the MOKE spectra of AuMnSb exhibit less prominent Peaks (+0.5° at 0.3 eV, -1.9° at 0.9 eV, -1.0° at 2.4 eV and-2.0° at 5.3 eV). The results on the spectra in this work showed quite a lot differences with all previous all-electron calculations. It is concluded that the contribution from Sb (or Sn) site to the magneto-optical kerr effect is quite crucial in Heuslar alloys.
APA, Harvard, Vancouver, ISO, and other styles
37

Dadoenkova, Yuliya S., Igor L. Lyubchanskii, YoungPak Lee, and Theo Rasing. "Electric Field Controlled Magneto-Optical Kerr Effect at Light Reflection From an Electro-Optic/Magneto-Optic Bilayer." IEEE Transactions on Magnetics 47, no. 6 (June 2011): 1623–26. http://dx.doi.org/10.1109/tmag.2011.2106766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kortright, J. B., Sang-Koog Kim, E. E. Fullerton, J. S. Jiang, and S. D. Bader. "X-ray magneto-optic Kerr effect studies of spring magnet heterostructures." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 467-468 (July 2001): 1396–403. http://dx.doi.org/10.1016/s0168-9002(01)00742-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Tejedor, M., A. Fernández, and M. A. Cerdeira. "Enhancement of the transverse Kerr magneto-optic effect by multiple reflections." Review of Scientific Instruments 69, no. 11 (November 1998): 4000–4001. http://dx.doi.org/10.1063/1.1149222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zak, J., E. R. Moog, C. Liu, and S. D. Bader. "Elementary formula for the magneto‐optic Kerr effect from model superlattices." Applied Physics Letters 58, no. 11 (March 18, 1991): 1214–16. http://dx.doi.org/10.1063/1.104368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Dyakov, S. A., F. Spitzer, I. Akimov, D. A. Yavsin, S. I. Pavlov, S. Y. Verbin, S. G. Tikhodeev, N. A. Gippius, A. B. Pevtsov, and M. Bayer. "Wide band enhancement of transverse magneto-optic Kerr effect in magnetite." Journal of Physics: Conference Series 1461 (March 2020): 012033. http://dx.doi.org/10.1088/1742-6596/1461/1/012033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Riveiro, J. M., J. P. Andrés, and J. Colino. "Magneto-optic Kerr effect at the interface of Co/Gd bilayers." Journal of Magnetism and Magnetic Materials 198-199 (June 1999): 428–30. http://dx.doi.org/10.1016/s0304-8853(98)01175-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Krafft, C., R. Josephs, and D. Crompton. "Magneto-optic Kerr effect hysteresis loop measurements on particulate recording media." IEEE Transactions on Magnetics 22, no. 5 (September 1986): 662–64. http://dx.doi.org/10.1109/tmag.1986.1064335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Pradeep, A. V., Sayak Ghosh, and P. S. Anil Kumar. "Simple quadratic magneto-optic Kerr effect measurement system using permanent magnets." Review of Scientific Instruments 88, no. 1 (January 2017): 013901. http://dx.doi.org/10.1063/1.4973419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Grimsditch, M., and P. Vavassori. "The diffracted magneto-optic Kerr effect: what does it tell you?" Journal of Physics: Condensed Matter 16, no. 9 (February 20, 2004): R275—R294. http://dx.doi.org/10.1088/0953-8984/16/9/r01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Maat, S., L. Shen, C. Hou, H. Fujiwara, and G. J. Mankey. "Optical interference in magneto-optic Kerr-effect measurements of magnetic multilayers." Journal of Applied Physics 85, no. 3 (February 1999): 1658–62. http://dx.doi.org/10.1063/1.369301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Parker, M. R., B. A. Diard, A. Sriharan, and P. G. Crump. "Analysis of magneto-optic Kerr effect signals from convergent Gaussian beams." IEEE Transactions on Magnetics 25, no. 5 (1989): 4024–26. http://dx.doi.org/10.1109/20.42511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Carey, R., D. M. Newman, and B. W. J. Thomas. "Polar Kerr effect in granular cobalt films for magneto-optic recording." Thin Solid Films 129, no. 3-4 (July 1985): 231–37. http://dx.doi.org/10.1016/0040-6090(85)90050-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Buda, B., M. Dahl, N. von Truchsess, and A. Waag. "Polar magneto-optic Kerr effect in (Cd,Mn)Te/CdTe superlattices." Journal of Crystal Growth 138, no. 1-4 (April 1994): 652–55. http://dx.doi.org/10.1016/0022-0248(94)90886-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Attaran-Kakhki, Ebrahim. "Large magneto-optic Kerr effect on double thin Mn/Sb films." physica status solidi (c) 3, no. 9 (September 2006): 3193–96. http://dx.doi.org/10.1002/pssc.200567059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography