Dissertations / Theses on the topic 'In vivo electrophysiology recording'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'In vivo electrophysiology recording.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Annecchino, Luca. "Development and validation of a robotic two-photon targeted whole-cell recording system for in vivo electrophysiology." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/56991.
Full textLau, Petrina Yau Pok. "Long-term plasticity of excitatory inputs onto identified hippocampal neurons in the anaesthetized rat." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:172e0d36-0d67-4932-962e-9ee08dcc366c.
Full textChaudun, Fabrice. "Involvement of dorsomedial prefrontal projections pathways to the basolateral amygdala and ventrolateral periaqueductal grey matter in conditioned fear expression." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0118/document.
Full textA central endeavour of modern neuroscience is to understand the neural basis of learningand how the selection of dedicated circuits modulates experience-dependent changes inbehaviour. Decades of research allowed a global understanding of the computations occurring inhard-wired networks during associative learning, in particular fear behaviour. However, brainfunctions are not only derived from hard-wired circuits, but also depend on modulation of circuitfunction. It is therefore realistic to consider that brain areas contain multiple potential circuitswhich selection is based on environmental context and internal state. Whereas the role of entirebrain areas such as the amygdala (AMG), the dorsal medial prefrontal cortex (dmPFC) or theperiaqueductal grey matter (PAG) in fear behaviour is reasonably well understood at themolecular and synaptic levels, there is a big gap in our knowledge of how fear behaviour iscontrolled at the level of defined circuits within these brain areas. More particularly, whereas thedmPFC densely project to both the basolateral amygdala (BLA) and PAG, the contributions ofthese two projections pathway during fear behaviour are largely unknown. Beside theinvolvement of these neuronal pathways in the transmission of fear related-information, theneuronal mechanisms involved in the encoding of fear behaviour within these pathways are alsovirtually unknown. In this context, the present thesis work had two main objectives. First,evaluate the contribution of the dmPFC-BLA and dmPFC-vlPAG pathways in the regulation offear behaviour, and second, identify the neuronal mechanisms controlling fear expression in thesecircuits. To achieve these goals, we used a combination of single unit and local field potentialrecordings coupled to optogenetic approaches in behaving animals submitted to a discriminativefear conditioning paradigm. Our results first, identified a novel neuronal mechanism of fear expression based on the development of 4 H oscillations within dmPFC-BLA circuits thatdetermine the dynamics of freezing behaviour and allows the long-range synchronization offiring activities to drive fear behaviour. Secondly, our results identified the precise circuitry at thelevel of the dmPFC and vlPAG that causally regulate fear behaviour. Together these data provideimportant insights into the neuronal circuits and mechanisms of fear behaviour. Ultimately thesefindings will eventually lead to a refinement of actual therapeutic strategies for pathological conditions such as anxiety disorders
Pye, Richard Laurence. "Measuring the Acute Physiological Effects of Leptin in the Carotid Body." Wright State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=wright1449583350.
Full textBernstein, Jacob (Jacob Gold). "Development of extracellular electrophysiology methods for scalable neural recording." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107581.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
In order to map the dynamics of neural circuits in mammalian brains, there is a need for tools that can record activity over large volumes of tissue and correctly attribute the recorded signals to the individual neurons that generated them. High-resolution neural activity maps will be critical for the discovery of new principles of neural coding and neural computation, and to test computational models of neural circuits. Extracellular electrophysiology is a neural recording method that has been developed to record from large populations of neurons, but well-known problems with signal attribution pose an existential threat to the viability of further system scaling, as analyses of network function become more sensitive to errors in attribution. A key insight is that blind-source separation algorithms such as Independent Component Analysis may ameliorate problems with signal attribution. These algorithms require recording signals at much finer spatial resolutions than existing probes have accomplished, which places demands on recording system bandwidth. We present several advances to technologies in neural recording systems, and a complete neural recording system designed to investigate the challenges of scaling electrophysiology to whole brain recording. We have developed close-packed microelectrode arrays with the highest density of recording sites yet achieved, for which we built our own data acquisition hardware, developed with a computational architecture specifically designed to scale to over several orders of magnitude. We also present results from validation experiments using colocalized patch clamp recording to obtain ground-truth activity data. This dataset provides immediate insight into the nature of electrophysiological signals and the interpretation of data collected from any electrophysiology recording system. This data is also essential in order to optimize probe development and data analysis algorithms which will one day enable whole-brain activity mapping.
by Jacob G. Bernstein.
Ph. D.
Silpa, Nagari. "NANOSTRUCTURED SENSORS FOR IN-VIVO NEUROCHEMICAL RECORDING." UKnowledge, 2007. http://uknowledge.uky.edu/gradschool_theses/487.
Full textNagari, Silpa. "Nano-structured sensors for in-vivo neurochemical recording." Lexington, Ky. : [University of Kentucky Libraries], 2007. http://hdl.handle.net/10225/735.
Full textTitle from document title page (viewed on March 24, 2008). Document formatted into pages; contains: ix, 55 p. : ill. (some col.). Includes abstract and vita. Includes bibliographical references (p. 53-54).
Dodds, Catherine Jane. "The action of naturally-occuring semiochemicals on feeding behaviour and neurophysiology of the field slug Deroceras reticulatum (Mueller)." Thesis, University of Portsmouth, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310443.
Full textHasegawa, Taku. "A wireless system with a motorized microdrive for neural recording in freely behaving animals." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199467.
Full textKodandaramaiah, Suhasa Bangalore. "Robotics for in vivo whole cell patch clamping." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/51932.
Full textCrnic, Agnes. "Effects of Acute and Sustained Administration of Vilazodone (EMD68843) on Monoaminergic Systems: An In Vivo Electrophysiological Study." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31498.
Full textSuk, Ho-Jun. "Automated cell-targeted electrophysiology in vivo and non-invasive gamma frequency entrainment." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122429.
Full textCataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 105-110).
Targeted patch clamp recording is a powerful method for characterizing visually identified cells in intact neural circuits, but it requires skill to perform. We found that a closed-loop real-time imaging strategy, which continuously compensates for cell movement while approaching the cell with a pipette tip, allows for the development of an algorithm amenable to automation. We built a robotic system that can implement this algorithm and validated that our system can automatically patch fluorophore-expressing neurons of multiple types in the living mouse cortex, with yields comparable to skilled human experimenters. By facilitating targeted patch clamp recordings in vivo, our robot may enable scalable characterization of identified cell types in intact neural circuits. Activities of individual neurons in neural circuits give rise to network oscillations, whose frequencies are closely related to specific brain states.
For example, network oscillations in the 30 - 90 Hz range, observed using electroencephalogram (EEG), are called gamma oscillations and increase during attention, memory formation, and recall. In Alzheimer's disease (AD), gamma oscillations are disrupted compared to healthy individuals. Recently, noninvasive visual and auditory stimulations at 40 Hz, called Gamma ENtrainment Using Sensory stimulus ("GENUS"), have been shown to positively impact pathology and improve memory in AD mouse models, with concurrent visual and auditory GENUS leading to a more widespread effect in the AD mouse brain compared to visual or auditory stimulation alone. However, it is unclear what effect such sensory stimulations would have on the human brain. To test for the safety and feasibility of GENUS in humans, we developed a device that can deliver 40 Hz light and sound stimulations at intensity levels tolerable to humans.
We found that our device can safely lead to steady 40 Hz entrainment in cognitively normal young (20 - 33 years old) and older (55 - 75 years old) subjects, with concurrent visual and auditory stimulation leading to stronger and more widespread entrainment than visual or auditory stimulation alone. These findings suggest that GENUS can be a safe and effective method for widespread 40 Hz entrainment, which may have therapeutic effects in people suffering from AD.
by Ho-Jun Suk.
Ph. D.
Ph.D. Harvard-MIT Program in Health Sciences and Technology
Parent, Katherine L., and Katherine L. Parent. "Probing Neural Communication by Expanding In Vivo Electrochemical and Electrophysiological Measurements." Diss., The University of Arizona, 2017. http://hdl.handle.net/10150/626155.
Full textPitcher, Toni Leigh, and n/a. "In vivo electrophysiology of striatal spiny projection neurons in the spontaneously hypertensive rat (SHR)." University of Otago. Department of Anatomy & Structural Biology, 2007. http://adt.otago.ac.nz./public/adt-NZDU20070321.114819.
Full textGeddes, Sean D. "Dynamic Regulation of Synaptic Transmission onto Serotonin Neurons by Antidepressants." Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23532.
Full textPollnow, Stefan [Verfasser], and Olaf [Akademischer Betreuer] Dössel. "Characterizing Cardiac Electrophysiology during Radiofrequency Ablation : An Integrative Ex vivo, In silico, and In vivo Approach / Stefan Pollnow ; Betreuer: Olaf Dössel." Karlsruhe : KIT Scientific Publishing, 2019. http://d-nb.info/1186145404/34.
Full textKlimas, Aleksandra. "High-Throughput All-Optical Cardiac Electrophysiology| Design, Validation, and Applications in vitro and in vivo." Thesis, The George Washington University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10621781.
Full textBiological systems are inherently dynamic, requiring active interrogation and recording to provide a full understanding of their underlying mechanics. In order to fully characterize such a system, both readily quantifiable signals as well as a means of dynamic control are necessary. In the heart, the propagation of electrical waves driving contraction are mediated by the flow of ions through various ion channels working in concert to drive de- and re-polarization of the cell membrane. Typically, the culprit of electrical dysfunction in the heart is due to some disruption of normal function of one or more of these ion channels. In order to study these complex electrical disturbances, known as arrhythmias, high spatiotemporal resolution imaging and interrogation are necessary.
Traditional methods of interrogation have relied on the use of electrodes and patch clamp methods, which are inherently low throughput and have limited spatial resolution. Additionally, these approaches do not lend well for in vivo use. While studies of cardiac tissue have also employed optical mapping techniques where voltage- or calcium-sensitive fluorescent reporters provide detailed information about cell activation, repolarization, and wave propagation maps, stimulation has remained primarily limited to electrical means. However, recently developed optogenetic tools provide a means of high-spatiotemporal resolution (and potentially tissue-type specific) means of interrogation. By combining both of these methods, high-spatiotemporal dynamic characterization of cardiac electrophysiology can be achieved.
Here we present how all-optical approaches can be achieved via employing optogenetics in order to explore cardiac electrophysiology at the in vitro as well as in vivo scale. The main optical design is first implemented for in vitro use, where we demonstrate how OptoDyCE, our all-optical dynamic cardiac electrophysiology platform, can be used to screen drug effects in both isolated primary myocytes and human induced pluripotent stem-cell derived cardiomyocytes (hiPSC-CMs) grown in monolayers and 3D tissue constructs. We then characterize an upgraded version of OptoDyCE, capable of simultaneous imaging of membrane voltage and intracellular calcium signals. The system is used for screening of 12 blinded compounds to demonstrate how the platform can used for pro-arrhythmia prediction at the high-throughput (HT) scale. All compounds were properly identified as ‘safe’ or ‘unsafe’ using the multi-parameter endpoints, made possible with high-spatiotemporal resolution recordings under spontaneous and paced conditions. To further demonstrate how all-optical approaches improve proarrhythmia prediction, we tested vanoxerine, a compound that failed Phase III clinical trials, and demonstrate OptoDyCE’s ability to easily identify the compound as pro-arrhythmic, unlike techniques employing patch clamp and in silico modeling that deemed the compound safe for use in humans. As hiPSC-CMs provide a novel testbed for drug testing and disease modeling, we then use OptoDyCE to characterize these cells, both in terms of their potential immaturity (a common criticism) and their ability to recapitulate genetic diseases for use in disease modeling. Finally, the requirements for translating OptoDyCE for in vivo use are considered, and successful demonstration in vivo expression of ChR2 in the rat heart by employing systemic viral delivery, providing a model for development and testing of an optical system in intact tissue and for long-term use in behaving animals. Ultimately, we demonstrate the OptoDyCE platform has capacity to revolutionize pre-clinical drug testing, reduce cost, reduce animal use, and make clinically implemented personalized medicine an obtainable goal.
Ponente, Federico. "Enhanced recording paradigms and advanced analyses of peripheral nerve fibers SPiike software." Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/672365.
Full textKumbhare, Deepak. "ELECTROPHYSIOLOGY OF BASAL GANGLIA (BG) CIRCUITRY AND DYSTONIA AS A MODEL OF MOTOR CONTROL DYSFUNCTION." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4305.
Full textShim, Stacey. "Alterations of the Monoaminergic Systems in the Rat Brain by Sustained Administration of Carisbamate and Lamotrigine." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23478.
Full textKeefer, Edward W. "Unique applications of cultured neuronal networks in pharmacology, toxicology, and basic neuroscience." Thesis, University of North Texas, 2001. https://digital.library.unt.edu/ark:/67531/metadc2797/.
Full textCao, Tuoxin. "Hydrogen Peroxide and Pharmacological Agent Modulation of TRPV2 Channel Gating." VCU Scholars Compass, 2017. http://scholarscompass.vcu.edu/etd/4848.
Full textKursu, O. E. (Olli-Erkki). "Micromotion compensation and a neural recording and stimulation system for electrophysiological measurements." Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526210186.
Full textTiivistelmä Tämän väitöskirjatyön tavoitteena oli kehittää mittaus- ja säätöjärjestelmiä aivotutkimuksen ja biofysiikan sovelluksiin. Ensimmäisenä tutkimuskokonaisuutena oli mittaus- ja säätöjärjestelmän kehittäminen, minkä tavoitteena oli mahdollistaa aivojen sähköisen signaloinnin mittaaminen mahdollisimman luonnollisessa tilassa olevilla koe-eläimillä (esim. hyönteiset, matelijat tai pienet nisäkkäät). Tätä varten kehitettiin aktiivinen liikekompensointimekanismi, jossa kosketusanturilla mitattiin aivokudoksen mikrometriluokan mekaanista liikettä ja kompensoitiin sähköistä mittausta suorittavan anturin ja aivon välinen suhteellinen liike liikuttamalla takaisinkytkentälenkissä olevaa pietsosähköistä aktuaattoria. Kompensointimekanismin toiminta testattiin realistisissa mittausolosuhteissa. Liikekompensoinnilla saatiin vähennettyä mittausanturin liikettä suhteessa kudokseen alle mikrometriin, maksimikompensoinnin ollessa noin 98 % alle 10 Hz:n taajuudella. Väitöskirjaan liitettiin pietsosähköisiin komponentteihin liittyen taustatiedoksi artikkeli aiemmin suunnitellusta pietsosähköisestä bimorph aktuaattori/sensori -komponentista. Toisen tutkimuskokonaisuuden muodosti suurten hermosolupopulaatioiden toiminnan mittaamiseen sekä stimulointiin kehitetty monikanavainen järjestelmä. Tärkeimpänä mittauskohteena työssä ovat ekstrasellulaariset aktiopotentiaalisignaalit, jotka ovat eräänlainen evoluution tuottama “digitaalinen” hermosolujen välinen kommunikaatiomenetelmä. Kiinnostuksen kohteena ovat näiden aktiopotentiaalisignaalien aaltomuodot. Mittauksia varten työssä kehitettiin hermosolujen solun ulkopuoliseen nesteeseen asetettaviin elektrodeihin kytkettävä elektroniikka, jolla pystytään sekä stimuloimaan että mittaamaan jokaista elektrodia. Suunniteltu vahvistinelektroniikka on matalakohinainen, matalatehoinen ja pienikokoinen. Mittausjärjestelmään on suunniteltu myös multipleksointi, A/D-muunninelektroniikka sekä ohjauslogiikka, joka sisältää muunnostulosten puskuroinnin integroidun piirin rekisteripankkeihin, SPI-liitynnän high-speed USB protokollaa tukevalle mikrokontrollerille sekä konfiguraatiorekistereitä, joihin SPI-väylän kautta kirjoittamalla voidaan säätää piirin vahvistusta, operaatiovahvistimien biasvirtoja, kaistanleveyttä sekä stimulaatiovirtojen voimakkuuksia. Piirin vahvistus on säädettävissä 100:n ja 5000:n välillä ja ylipäästösuodatuksen kulmataajuus välillä 0,5 Hz - 900 Hz. Piirin näytteistystaajuus on 20,833 kSps ja tiedonsiirtonopeus 3,5 Mbps. Piirin kohinatasoksi mitattiin 7,5 µV (rms) (300 Hz - 10 kHz) ja koko piirin tehonkulutukseksi alle 2 mW. Integroidusta piiristä valmistettiin 16-kanavainen prototyyppi 0,35 µm:n CMOS-teknologialla. Kehitetyn laitteen toiminta varmistettiin mittaamalla hermosignaaleja torakkapreparaatista (Periplaneta americana). Mittausdata siirrettiin onnistuneesti ja luotettavasti PC:lle
Squirrell, Daniel. "An in vivo electrophysiological and computational analysis of hippocampal synaptic changes in the Alzheimer's disease mouse." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/an-in-vivo-electrophysiological-and-computational-analysis-of-hippocampal-synaptic-changes-in-the-alzheimers-disease-mouse(de740023-7d91-418a-8c88-1141b3cd81f3).html.
Full textVelmurugan, Sathya. "Actions of appetite regulating peptides on supraoptic nucleus (SON) oxytocin neurones." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3938.
Full textSchweigmann, Michael [Verfasser]. "Versatile LCP surface microelectrodes for combining electrophysiology and in vivo two-photon imaging in the murine CNS / Michael Schweigmann." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1232240095/34.
Full textJiang, Jojo L. "Alterations of the Monoaminergic Systems by Sustained Triple Reuptake Inhibition." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23171.
Full textIro, Chidiebere Michael. "Investigation of the Mechanisms of Action of Ketamine on the Monoamine Systems: Electrophysiological Studies on the Rat Brain." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39910.
Full textTiwari, Ekta. "ASSESSMENT OF CANINE BLADDER FUNCTION RESTORATION USING BEHAVIORAL MONITORING AND IN-VIVO ELECTROPHYSIOLOGICAL TECHNIQUES." Diss., Temple University Libraries, 2019. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/590674.
Full textPh.D.
Spinal cord injuries and other neurological disorders can disturb the regulation of normal bladder function including continence and micturition. Developing new neuronal pathways by surgically rerouting nerves is a potential approach for restoring bladder function. Our laboratory successfully rerouted somatic nerves to the anterior vesical branch of the pelvic nerve to reinnervate the bladder muscle in canines. Electrical stimulation of these transferred nerves induced detrusor pressure and bladder emptying and we confirmed regrowth of these rerouted nerves using retrograde neurotracing methods. In these studies, reinnervation was proved at 1st and 3rd months after decentralization. We believe that our aim of developing an approach to surgically reinnervate the bladder after long-term decentralization is critical to the success of the reinnervation surgery due to the possibility that patients would delay having a surgery until they try other non-surgical approaches or therapies. We also demonstrated the reinnervation of urethral and anal sphincters by femoral to pudendal nerve transfer after sacral ventral root transection to restore continence. However, these studies did not demonstrate the reinnervation of bladder, urethra and anal sphincter, all in same animal that would be helpful to human patients with lower motor neuron lesioned bladders to restore both continence and emptying. Therefore, prior to applying these surgical procedures to human patients, further investigation is required to prove the effectiveness of nerve transfer strategies in this canine model using multiple experimental techniques. This dissertation is a part of a larger project in canines examining whether surgical rerouting of obturator to pelvic nerve and sciatic to pudendal nerve allows restoration of bladder, urethral and anal sphincter functions, including continence (storage) and emptying (voiding and defecation) functions, in lower motor neuron lesioned bladders. In this study, it was aimed to explore bladder and urethral reinnervation using behavioral observation and in-vivo electrophysiological techniques. In order to completely prove that the reinnervation surgeries are responsible for restoration of bladder and urethral functions, it was first necessary to demonstrate the absence of these functions in animals with long term decentralized bladders and to determine whether the same animals were able to recover functions after reinnervation. In specific aim 1, we addressed this goal by tracking squat-and-void behaviors at monthly intervals after decentralization and reinnervation, using home cage video recordings and evaluation of bladder sensation and emptying after bladder filling. Immediately prior to euthanasia, reinnervation was also explored by electrical stimulation of transferred nerves to evaluate motor function. Retrograde neuronal tracing was also performed to explore sensory reinnervation. Results showed evidence of functional restoration of bladder and urethral function in reinnervated animals based on behavior observation and electrical stimulation of transferred nerves. Also, regrowth of neuronal cells in the new neuronal pathways was observed that were developed by the nerve transfer surgeries. This study also aimed to establish an electroneurogram recording method (part of in-vivo electrophysiological experiments) to explore afferent (sensory) neuronal activity in transferred nerves induced by bladder filling. However, the extraction of neuronal activity from the peripheral nerves is a challenging task. Several factors including noise, interference from surrounding muscle activities and the electronic components can affect these microvolts level recordings. Choice of recording electrode in configuration with the whole recording setup also plays a significant role while performing these low amplitude signal recordings. In specific aim 2, we addressed this issue by refining electroneurogram recording techniques to obtain high strength signal during multifiber recording. We first developed custom electrodes, suitable for varying nerve diameters and available implantation sites, were tested for functionality. Then, we performed multiple testing using these electrodes with different amplifiers to calibrate noise in saline. Testing results helped to establish the recording setup suitable for in-vivo experimental environment. Later, these refined techniques were applied to record afferent (sensory) activity of sciatic nerves and afferent (sensory) and efferent (motor) activity of hypogastric nerves in rats. Based on the recording results, it was aimed to employ similar techniques in order to record nerve activity in the canine model. Prior to applying these refined techniques to explore sensory reinnervation from new neuronal pathways after nerve transfer surgeries, in specific aim 3, we aimed to assess the hypogastric nerve activity in normal intact and acutely lumbosacral decentralized bladders using these refined techniques. The effects of electrical stimulation of hypogastric nerves or lumbar roots on detrusor pressure were determined, as were effects of isoflurane versus propofol anesthetics on hypogastric nerve stimulation evoked pressure. Hypogastric nerve activity was recorded using custom-made bipolar cuff electrodes during bladder filling. To confirm or refute that any increase in electroneurogram during bladder filling is due to afferent activity from the end organ, the hypogastric nerve was transected between the recording electrode and the spinal cord and the effects of bladder filling on afferent but not efferent activity were recorded. Results showed that electrical stimulation of hypogastric nerves evoked low amplitude detrusor pressures that did not differ between the two anesthetics. Upper lumbar (L2) ventral root stimulation evoked detrusor pressures were suppressed, yet not eliminated after transection of hypogastric nerves and all spinal roots below L5. Afferent and efferent hypogastric nerve activity did not change with bladder filling in neuronally intact bladders but decreased in decentralized bladders. No change in afferent activity were observed during bladder filling in normal intact and decentralized bladders. Overall findings in this research indicate that the new neuronal pathways created by nerve transfer can restore bladder sensation and emptying function in lower motor neuron-lesioned canines. A more complete decentralized bladder model needs to include transection of both the lumbosacral spinal roots innervating the bladder and the hypogastric nerves prior to performing nerve transfer surgeries. The refined electroneurogram recording methods may be suitable for evaluating the effectiveness of nerve transfer surgeries by monitoring the sensory activities of the transferred nerve.
Temple University--Theses
Pospischil, Martin. "Interaction between synaptic conductances and action potential initiation in cortical neurons : computational models and analysis of intracellular recording." Paris 6, 2007. http://www.theses.fr/2007PA066647.
Full textHalpern, Jeffrey Mark. "Non-Planar Diamond Electrodes for Biomedical Neural Sensing and Stimulating." Cleveland, Ohio : Case Western Reserve University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1269612139.
Full textDepartment of Chemical Engineering Title from PDF (viewed on 2010-05-25) Includes abstract Includes bibliographical references and appendices Available online via the OhioLINK ETD Center
Davis, Katherine. "Hippocampal dysfunction in the 3xTgAD mouse model of Alzheimer's disease." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/hippocampal-dysfunction-in-the-3xtgad-mouse-model-of-alzheimers-disease(ba2d4704-9e22-4213-8bc7-a1c55a0e0ccd).html.
Full textMalezieux, Meryl. "Dynamique intracellulaire des cellules pyramidales de CA3 dans l'hippocampe pendant les états de veille." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0317/document.
Full textWakefulness is comprised of distinct brain states, correlated with different behaviors and characterized by specific oscillatory patterns in the local field potential (LFP). While much work has characterized different brain states and their LFP signatures, the underlying cellular mechanisms are less known. Changes in single cell properties are thought to correlate with and possibly result in these changes in brain state. Synchronized and coordinated activity among distributed neurons supports cognitive processes such as memory. The hippocampus is essential for spatial and episodic memory, and within the hippocampus, area CA3 is important for rapid encoding of one-trial memory. Additionally, CA3 is the site where information from the entorhinal cortex, dentate gyrus, and CA3 itself is compared and integrated before output to CA1. During quiet wakefulness, the hippocampal LFP displays large irregular activity (LIA) punctuated by sharp-wave ripples, which play a role in memory consolidation. During exploratory behaviors, hippocampal LFP oscillates at both theta and gamma frequencies. CA3 pyramidal cells (PCs) play an important role in each of these brain states; they are necessary for both sharp waves during quiet wakefulness and for gamma oscillations during exploratory behavior. We explored the changes that occur in the intracellular dynamics of CA3 PCs during changes in brain state, by using whole-cell patch-clamp recordings from CA3 PCs in awake head-fixed mice. We combined those recordings with measurements of pupil diameter, treadmill running speed and LFP recordings of oscillatory activity. Our findings show that some CA3 PCs are prone to intracellular modulation during brain rhythms, and tend to decrease their average membrane potential, excitability, variance and output firing during theta as compared to LIA. Future studies will demonstrate whether these effects are due to changes in synaptic and/or neuromodulatory inputs. This modulation at the single-cell level in CA3 could play a role in the emergence of oscillations, and underlie the ability of CA3 to perform different memory functions during different brain states
Hanini-Daoud, Maroua. "Traitement des informations thalamiques au travers des ganglions de la base : approche électrophysiologique et optogénétique in vivo." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4109.
Full textThe centre median/parafascicular (CM/Pf) of the thalamus has recently emerged as a component of interest in the context of Parkinson’s disease. Thus normal and pathological dynamics of BG cannot be fully understood unless it is taken into account. Here, we analyzed the transfer of CM/Pf information through BG by recording, in vivo, the evoked responses of BG output neurons in the substantia nigra pars reticulata (SNr) to either electrical or optogenetic CM/Pf stimulations. Then, we investigated the BG components involved in these responses by analyzing the responses evoked by specific optogenetic activation of the thalamo-striatal, thalamo-subthalamic or thalamo-nigral pathways. Both electrical and optogenetic activation of CM/Pf evoke complex responses in SNr that are composed of an inhibition that can be preceded and/or followed by excitations. The inhibition and the late excitation rely on the activation of the trans-striatal pathways, whereas the early excitations involve thalamo-subthalamic and thalamo-nigral projections. We are currently analyzing whether and how the striatal cholinergic interneurons (CINs) and the dopaminergic afferent system modulate the transfer of thalamic information within the BG. For the second part of my project, we analyzed the treatment of thalamic information from CM/Pf at the level of the striatum. To do this, we recorded the evoked responses of striatal projection neurons by the electrical stimulation of the CM/Pf with or without the inhibition of the CINs by optogenetics. We will then be able to determine how CINs are involved in the transfer of thalamic information at the level of the striatum
Danysz, Wojciech, Gunnar Flik, Andrew McCreary, Carsten Tober, Wilfried Dimpfel, Jean C. Bizot, Richard Kostrzewa, et al. "Effects of Sarizotan in Animal Models of ADHD: Challenging Pharmacokinetic–Pharmacodynamic Relationships." Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etsu-works/948.
Full textRidler, Thomas. "Entorhinal cortex dysfunction in rodent models of dementia." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/30575.
Full textVan, Rheede Joram Jacob. "The emergence of visual responses in the developing retinotectal system in vivo." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:57cb9bff-a085-4ac4-b413-c29112eeb78e.
Full textDubanet, Olivier. "Dynamique des interactions entre excitation et inhibition périsomatique dans le circuit hippocampique normal et épileptique in vivo." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0259.
Full textThe hippocampus is a key structure for learning and memory. The function of this neuronal circuit is based on complex interactions between excitatory glutamatergic pyramidal cells and various types of inhibitory GABAergic interneurons. The precise roles fullfiled by interneuron subtypes is still unclear because it is challenging to study in vivo the inhibitory function of specific interneurons. Alterations of the synaptic interactions between pyramidal cells and interneurons in the hippocampus also underlie neurological pathologies such as epilepsy, neurodevelopmental diseases such as autism, or neurodegenerative diseases such as Alzheimer's disease. Among the different types of interneurons, those that express parvalbumin (PV) and project to pyramidal cell bodies (perisomatic inhibition) are particularly efficient in blocking action potential generation in their target cells. PV interneurons therefore play a central role in neuronal coding (by controlling which cell can fire or not) but also in the balance between global excitation and inhibition within the circuit, prevention runaway excitation between interconnected pyramidal cells and the generation of epileptic seizure. Functional perisomatic inhibition directly depends on Cl- electrochemical gradient, or the interaction between membrane potential and Cl- distribution across the membrane of the target neuron. However, these parameters change continuously during neuronal activity, and it has been shown that the Cl- gradient can be reversed, resulting in paradoxically excitatory GABAergic transmission. This phenomenon, which contributes to the physiological maturation of neuronal circuits during early development, is also considered as a major source of neuronal circuit dysfunction in various pathologies such as epilepsy, autism or schizophrenia. This field of research is therefore clinically relevant, and the research for drugs restoring a physiological Cl- gradient is very active. However, a direct assessment of the excitatory GABA hypothesis has been hindered by the technical difficulty of probing endogenous GABAergic synaptic function in vivo, and contradictory data in the literature call for a direct evaluation. During my PhD, using electrophysiological, opto- and pharmaco-genetic techniques, I have contributed to develop a new and sophisticated methodological approach to evaluate the perisomatic GABAergic transmission in the hippocampus, respecting the complexity of spontaneous neuronal activity dynamics in vivo. I have studied the functional role of perisomatic inhibition from PV interneurons in the adult hippocampal circuit, in physiological conditions and in two models of epileptic mice in which I was able to detect an excitatory GABAergic transmission in vivo. However, excitatory GABA was unlikely to participate in epileptogenesis because it was expressed only during the period of post-ictal silence after acute seizures, or in a potentially negligible minority of pyramidal cells one week post-status epilepticus during the latent period that precedes the emergence of chronic epilepsy, a stage during which I also demonstrated that the majority of CA3 pyramidal neurons were no longer under perisomatic inhibitory control. In addition to contribute to a better understanding of epileptogenesis, this approach constitutes an invaluable tool to quantify the actual in vivo efficacy of drugs designed to modulate Cl- homeostasis and restore physiological GABAergic inhibition, thereby meeting high clinical and therapeutical expectations
Castagnola, Valentina. "Implantable microelectrodes on soft substrate with nanostructured active surface for stimulation and recording of brain activities." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2646/.
Full textImplantable neural prosthetics devices offer, nowadays, a promising opportunity for the restoration of lost functions in patients affected by brain or spinal cord injury, by providing the brain with a non-muscular channel able to link machines to the nervous system. The long term reliability of these devices constituted by implantable electrodes has emerged as a crucial factor in view of the application in the "brain-machine interface" domain. However, current electrodes for recording or stimulation still fail within months or even weeks. This lack of long-term reliability, mainly related to the chronic foreign body reaction, is induced, at the beginning, by insertion trauma, and then exacerbated as a result of mechanical mismatch between the electrode and the tissue during brain motion. All these inflammatory factors lead, over the time, to the encapsulation of the electrode by an insulating layer of reactive cells thus impacting the quality of the interface between the implanted device and the brain tissue. To overcome this phenomenon, both the biocompatibility of materials and processes, and the mechanical properties of the electrodes have to be considered. During this PhD, we have addressed both issues by developing a simple process to fabricate soft implantable devices fully made of parylene. The resulting flexible electrodes are fully biocompatible and more compliant with the brain tissue thus limiting the inflammatory reaction during brain motions. Once the fabrication process has been completed, our study has been focused on the device performances and stability. The use of high density micrometer electrodes with a diameter ranging from 10 to 50 µm, on one hand, provides more localized recordings and allows converting a series of electrophysiological signals into, for instance, a movement command. On the other hand, as the electrode dimensions decrease, the impedance increases affecting the quality of signal recordings. Here, an organic conductive polymer, the poly(3,4-ethylenedioxythiophene), PEDOT, has been used to improve the recording characteristics of small electrodes. PEDOT was deposited on electrode surfaces by electrochemical deposition with a high reproducibility. Homogeneous coatings with a high electrical conductivity were obtained using various electrochemical routes. Thanks to the increase of the surface to volume ratio provided by the PEDOT coating, a significant lowering of the electrode impedance (up to 3 orders of magnitude) has been obtained over a wide range of frequencies. Thermal accelerated ageing tests were also performed without any significant impact on the electrical properties demonstrating the stability of the PEDOT coatings over several months. The resulting devices, made of parylene with a PEDOT coating on the active surface of electrodes, have been tested in vitro and in vivo in mice brain. An improved signal to noise ratio during neural recording has been measured in comparison to results obtained with commercially available electrodes. In conclusion, the technology described here, combining long-term stability and low impedance, make these implantable electrodes suitable candidates for the development of chronic neural interfaces
Gao, Xiaojie. "Regulation and functions of burst firing: the role of KCNQ3 potassium channels in vivo." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/22144.
Full textIon channels conduct ion flows across neuronal membrane whereby action potential is generated and propagated. They play a central role in regulating the excitability and firing behavior of a neuron. Among them, the KCNQs present a prominent family of voltage-gated potassium channels. Dysfunction of KCNQ2–5 channels can lead to varied neurological diseases including early onset epilepsy and deafness. In cortex and hippocampus, KCNQ2 and KCNQ3 have been demonstrated to underlie the non-inactivating M-current critical for controlling the repetitive firing of pyramidal cells. However, the functional significance of KCNQ3, unlike that of KCNQ2, remains elusive. Here, by applying in vivo extracellular electrophysiology in Kcnq3 constitutive knockout mice and the wild-type littermates, we find that hippocampal pyramidal cells lacking KCNQ3 exhibit increased burst firing. Moreover, the spike frequency adaptation of their bursts is diminished, and the burst propensity during two different field oscillations – theta versus non-theta – becomes indistinguishable. During theta oscillations, Kcnq3 knockout pyramidal cells no longer display unimodal phase preference and do not coordinate their burst firing. But phase advancement along successive theta cycles continues to occur at times of transiently intensified firing. The selective firing of place cells is largely preserved in the knockout while mainly relying on bursts. These results suggest that KCNQ3 channels indeed play a significant and specific role in regulating the neurons’ excitability and information processing, thus providing crucial mechanistic insights into the relevance of the KCNQ3 channels in neurological disorders.
Rodríguez, Salinas Roberto Javier. "El uso e impacto de las técnicas de grabación y mezcla analógica en la producción musical estadounidense de pop y rock (2011-2017): Alternativas para su aplicación en el estudio digital." Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2020. http://hdl.handle.net/10757/654919.
Full textThe hereby thesis attempts to identify and analyze the influence and application of analog audio in contemporary music production by covering diverse criteria: sonic/technical, performative, social, of preservation or archive, among others. Although digital audio, and its derived use of editing and mixing tools, are currently considered standard in the music industry, it is also known that a significant number of producers, engineers and artists still employ analog recording and mixing techniques developed decades ago. Hence, analog audio presents itself as an alternative to the modern creative and production processes, at both sonic and performance levels. This work begins with the technical and aesthetical development within an analog recording, comparing it afterwards with its digital counterpart. To serve this purpose, the opinion and detailed production processes of renowned American producers and professionals, responsible for the most acclaimed records in the last ten years, are taken into consideration. Those records evidence the creative use of analog audio, as well as its adaptation to a digital setup. Finally, independent producers could benefit the most from the information and arguments in this paper, because they directly or indirectly know the benefits of working analog, even when they often lack the resources to acquire these tools. Therefore, the author attempts to bring tools and solutions for the application of analog and digital audio in a single modern production.
Tesis
Bienvenu, Thomas Claude Michel. "Functional specialisation of GABAergic cells in the basolateral amygdala." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:d52fb5ad-19cc-41b8-a1e2-2f25ef82dddf.
Full textVitrac, Clément. "Contrôle dopaminergique de la motricité au niveau cortical et striatal." Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2282/document.
Full textPrimary motor cortex and striatum are involved in movement planification and selection. Dopamine regulates the neuronal activity of these two structures. The motor impairments observed in Parkinson's disease originates from the loss of dopamine neurons projecting from the substantia nigra pars compacta to the striatum.We characterized the dopaminergic control of the neurons of primary motor cortex in mice and we demonstrated that dopaminergic fibers preferentially innervate the forelimb representation map in the deep cortical layers. Furthermore, we demonstrated that dopamine locally modulates the electrophysiological activity of the cortico-striatal neurons through D2 receptors. These results show that dopamine can directly control motor function by influencing neuronal activity in primary motor cortex.Thereafter, we determined the potential of cell replacement therapies in an animal model of Parkinson's disease. In most studies, the transplanted dopamine neurons have been placed within the striatum. We have chosen an alternative approach by grafting neurons into the lesioned nucleus, substantia nigra. We showed in mice that the lesion of dopaminergic neurons impaired the electrophysiological properties of the striatal neurons. Whereas these properties are not fully restored with an intra-striatal transplant, all the electrophysiological characteristics are recovered with an intra-nigral graft. This result opens new perspectives to study the homotopic graft effects on the activity of the other structures controlling motor function
Thomazeau, Aurore. "Dysfonctions synaptiques glutamatergiques dans le cortex préfrontal de modèles murins de trisomie 21 surexprimant le gène Dyrk1a et stratégies thérapeutiques." Thesis, Bordeaux 2, 2012. http://www.theses.fr/2012BOR21921/document.
Full textDown syndrome is the major cause of mental retardation, the main phenotype of the pathology. It is due to an extra chromosome 21. Many genes have been proposed as candidates for the neurocognitive phenotypes of Down syndrome, notably Dyrk1a. It encodes the serine-threonine kinase DYRK1A which is involved in brain development and synaptic functions. The prefrontal cortex mediates higher cognitive functions, such as executive functions and emotional regulation. This study highlighted major deficits in prefrontal cortex glutamatergic transmission and plasticity of two mouse models for Down syndrome: the overexpressing Dyrk1a mBACtgDyrk1a model and the Ts65Dn model, overexpressing around 130 murine orthologous genes of HSAS21 chromosome. Another aspect of this study was the development of new effective therapeutic strategy for Down syndrome neurocognitive phenotypes based on DYRK1A or other cellular targets activity inhibition
Cabanas, Magali. "Modification des activités de réseaux in vivo chez un modèle murin de la maladie de Huntington." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0345/document.
Full textHuntington’s disease (HD) is an inherited pathology that causes selective degeneration ofindirect striatal pathway neurons of the basal ganglia. In addition to the classic motor,cognitive and psychiatric symptoms, patients and mouse models of HD develop sleepdisorders, which can appear at as early as pre-symptomatic stage. Furthermore, in vivoelectrophysiological study of R6/1 transgenic mice revealed a unique and pathological βrhythm that appear at early symptomatic stage and which is mainly observed during sleep.The aim of this thesis work was to examine the link between changes in cerebral networkactivities, sleep disturbances and β rhythm, and to determine the contribution of theseabnormalities to the behavioral disturbances observed in R6/1 mice. Our neuroimaging study of the marker of neuronal activity c-Fos showed a hyperactivation of frontostriatal pathway at pre-symptomatic stage without any activity changes of the vulnerable indirect pathway neurons. Our pharmacogenetic study demonstrated that changes of striatal projection neuronal activity can modify sleep/wake behaviors, without inducing the pathological β rhythm. Finally, our pharmacological study established a link between orexinergic system dysfunction and β rhythm emergence in R6/1 mice. Our data, therefore, described further the natures of altered neural circuit activity associated with different disease stages, in particular pre-motor symptomatic period, and the importance of these alterations for sleep disturbances as well as β rhythm appearance in transgenic HD mice
Carus-Cadavieco, Marta. "Coordination of innate behaviors by GABAergic cells in lateral hypothalamus." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19135.
Full textLateral hypothalamus (LH) is crucial for regulation of innate behaviors. However, it remained unknown whether and how temporal coordination of hypothalamic neuronal populations regulates behavioral transitions. This work combined optogenetics with neuronal recordings in behaving mice. LHVgat cells were optogenetically identified. LHVgat neurons increased firing rates upon transitions from non-REM (NREM) sleep to wakefulness, and their optogenetic stimulation during NREM sleep induced a fast transition to wakefulness. LHVgat cells project to the reticular thalamic nucleus (RTN). Optogenetic activation of LHVgat terminals in the RTN exerted a strong frequency-dependent inhibition of RTN cells and replicated state-dependent changes in RTN neurons activity. Recordings of LH neurons during exploration revealed that 65% of LH neurons increased their activity upon the onset of locomotion. Top-down forebrain innervation of LH is provided, to a great extent, by inhibitory inputs from the lateral septum (LS). During spontaneous exploration in a free-feeding model, LS and LH displayed prominent gamma oscillations (30-90 Hz) which entrained neuronal activity within and across the two regions. Optogenetic gamma-frequency stimulation of somatostatin-positive GABAergic projections to LH facilitated food-seeking, and increased the probability of entering the food zone. LS inhibitory input enabled separate signaling by LH neurons according to their feeding-related activity, making them fire at distinct phases of the gamma oscillation. In contrast to increased food intake during optogenetic stimulation of LHVgat cells, food intake during gamma-rhythmic LS-LH stimulation was not changed. Overall this works provides new insight into the function of LH circuitry, that employs signalling at different time scales, which, in coordination with upstream and downstream circuits, regulates transitions between innate behaviors.
Ziebro, Thomas R. "In vivo PPy(DBS) sensors to quantify excitability of cells via sodium fluctuations in extracellular solution." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492031927557033.
Full textDelestrée, Nicolas. "Excitabilité intrinsèque, couverture synaptique et vacuolisation dendritique des motoneurones spinaux chez la souris SOD1-G93A, modèle de la Sclérose Latérale Amyotrophique." Thesis, Paris 5, 2014. http://www.theses.fr/2014PA05T035/document.
Full textMotoneurones hold a remarkable position in the organism: they are the interface between the central nervous system and the muscular system. Their excitability is a crucial characteristic in motor behavior since it determines the muscular force produced in response to motor command. In mice, motoneurone discharge is marked by the presence of sub-Threshold oscillations between action potentials which create a behavior of mixed mode oscillations (MMOs). These MMOs allow the motoneurones to fire at low frequency and are responsible for a sub-Primary range of discharge during which the firing frequency is irregular and the slope of current-Frequency relation is steep. We investigated the mechanisms responsible for these MMOs by in vivo recordings in anesthetized mice, using Dynamic Clamp, and by theoretical modelization in a monocompartimental model of motoneurone. Our results showed that MMOs were caused by sodium and potasium currents responsible for action potentials and that they emerged from a state of low membrane excitability caused by a slow inactivation of the sodium current. Paradoxically, we also showed that the after-Hyperpolarization current was able to increase the membrane excitability and to reduce MMOs by de-Inactivating the sodium current. Amyotrophic Lateral Sclerosis (ALS) leads to the specific degeneration of these motoneurones and is accompanied by a vacuolation of their dendritic trees. An early increase in motoneurons excitability during the disease has been widely proposed to account for their degeneration. Indeed, a motoneuron hyperexcitability of intrinsic or extrinsic origin could produce a deleterious excitotoxicity. If such a change of excitability is involved in the disease, it should last until the ages where the first denervation of neuromuscular junctions occurs. We recorded the electrophysiological properties of motoneurones in an in vivo preparation of adult SOD1-G93A mice, model of ALS. Our results showed that their input conductance was increased before the first denervation of their neuromuscular junctions. Nevertheless, their excitability was not modified. Far from being intrinsically hyperexcitable, a fraction of them even lost their ability to discharge repeatedly. We finally studied the vacuolation that takes place in dendrites of motoneurones during the disease and its relation with synaptic coverage. We have shown that the dendritic vacuolation takes place before the denervation and that the size of these vacuoles increases with age in SOD1-G93A mice. Interestingly, this increase was faster in the most vulnerable motoneurones. Although synaptic coverage was not altered in the disease, we ¬revealed higher densities of excitatory and inhibitory synapses on dendritic regions that vacuolate. These results suggest a link between synaptic activity and vacuoles formation in motoneurones during ALS. Motoneurones were not intrinsically hyperexcitable, instead, an excitotoxicity from a synaptic origin may be responsible for their degeneration
Rajaraman, Swaminathan. "Micromachined three-dimensional electrode arrays for in-vitro and in-vivo electrogenic cellular networks." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28129.
Full textCommittee Chair: Mark G. Allen; Committee Member: Elliot L. Chaikof; Committee Member: Ionnis (John) Papapolymerou; Committee Member: Maysam Ghovanloo; Committee Member: Oliver Brand.
Nguyen, Thanh Hai. "Cibles sérotoninergiques et non sérotoninergiques des ISRS : approches Pharmacologique et Génétique in vivo chez la souris." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00663312.
Full text