Dissertations / Theses on the topic 'In vivo Electrophysiology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'In vivo Electrophysiology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kodandaramaiah, Suhasa Bangalore. "Robotics for in vivo whole cell patch clamping." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/51932.
Full textSuk, Ho-Jun. "Automated cell-targeted electrophysiology in vivo and non-invasive gamma frequency entrainment." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122429.
Full textCataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 105-110).
Targeted patch clamp recording is a powerful method for characterizing visually identified cells in intact neural circuits, but it requires skill to perform. We found that a closed-loop real-time imaging strategy, which continuously compensates for cell movement while approaching the cell with a pipette tip, allows for the development of an algorithm amenable to automation. We built a robotic system that can implement this algorithm and validated that our system can automatically patch fluorophore-expressing neurons of multiple types in the living mouse cortex, with yields comparable to skilled human experimenters. By facilitating targeted patch clamp recordings in vivo, our robot may enable scalable characterization of identified cell types in intact neural circuits. Activities of individual neurons in neural circuits give rise to network oscillations, whose frequencies are closely related to specific brain states.
For example, network oscillations in the 30 - 90 Hz range, observed using electroencephalogram (EEG), are called gamma oscillations and increase during attention, memory formation, and recall. In Alzheimer's disease (AD), gamma oscillations are disrupted compared to healthy individuals. Recently, noninvasive visual and auditory stimulations at 40 Hz, called Gamma ENtrainment Using Sensory stimulus ("GENUS"), have been shown to positively impact pathology and improve memory in AD mouse models, with concurrent visual and auditory GENUS leading to a more widespread effect in the AD mouse brain compared to visual or auditory stimulation alone. However, it is unclear what effect such sensory stimulations would have on the human brain. To test for the safety and feasibility of GENUS in humans, we developed a device that can deliver 40 Hz light and sound stimulations at intensity levels tolerable to humans.
We found that our device can safely lead to steady 40 Hz entrainment in cognitively normal young (20 - 33 years old) and older (55 - 75 years old) subjects, with concurrent visual and auditory stimulation leading to stronger and more widespread entrainment than visual or auditory stimulation alone. These findings suggest that GENUS can be a safe and effective method for widespread 40 Hz entrainment, which may have therapeutic effects in people suffering from AD.
by Ho-Jun Suk.
Ph. D.
Ph.D. Harvard-MIT Program in Health Sciences and Technology
Crnic, Agnes. "Effects of Acute and Sustained Administration of Vilazodone (EMD68843) on Monoaminergic Systems: An In Vivo Electrophysiological Study." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31498.
Full textParent, Katherine L., and Katherine L. Parent. "Probing Neural Communication by Expanding In Vivo Electrochemical and Electrophysiological Measurements." Diss., The University of Arizona, 2017. http://hdl.handle.net/10150/626155.
Full textPitcher, Toni Leigh, and n/a. "In vivo electrophysiology of striatal spiny projection neurons in the spontaneously hypertensive rat (SHR)." University of Otago. Department of Anatomy & Structural Biology, 2007. http://adt.otago.ac.nz./public/adt-NZDU20070321.114819.
Full textMalezieux, Meryl. "Dynamique intracellulaire des cellules pyramidales de CA3 dans l'hippocampe pendant les états de veille." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0317/document.
Full textWakefulness is comprised of distinct brain states, correlated with different behaviors and characterized by specific oscillatory patterns in the local field potential (LFP). While much work has characterized different brain states and their LFP signatures, the underlying cellular mechanisms are less known. Changes in single cell properties are thought to correlate with and possibly result in these changes in brain state. Synchronized and coordinated activity among distributed neurons supports cognitive processes such as memory. The hippocampus is essential for spatial and episodic memory, and within the hippocampus, area CA3 is important for rapid encoding of one-trial memory. Additionally, CA3 is the site where information from the entorhinal cortex, dentate gyrus, and CA3 itself is compared and integrated before output to CA1. During quiet wakefulness, the hippocampal LFP displays large irregular activity (LIA) punctuated by sharp-wave ripples, which play a role in memory consolidation. During exploratory behaviors, hippocampal LFP oscillates at both theta and gamma frequencies. CA3 pyramidal cells (PCs) play an important role in each of these brain states; they are necessary for both sharp waves during quiet wakefulness and for gamma oscillations during exploratory behavior. We explored the changes that occur in the intracellular dynamics of CA3 PCs during changes in brain state, by using whole-cell patch-clamp recordings from CA3 PCs in awake head-fixed mice. We combined those recordings with measurements of pupil diameter, treadmill running speed and LFP recordings of oscillatory activity. Our findings show that some CA3 PCs are prone to intracellular modulation during brain rhythms, and tend to decrease their average membrane potential, excitability, variance and output firing during theta as compared to LIA. Future studies will demonstrate whether these effects are due to changes in synaptic and/or neuromodulatory inputs. This modulation at the single-cell level in CA3 could play a role in the emergence of oscillations, and underlie the ability of CA3 to perform different memory functions during different brain states
Pollnow, Stefan [Verfasser], and Olaf [Akademischer Betreuer] Dössel. "Characterizing Cardiac Electrophysiology during Radiofrequency Ablation : An Integrative Ex vivo, In silico, and In vivo Approach / Stefan Pollnow ; Betreuer: Olaf Dössel." Karlsruhe : KIT Scientific Publishing, 2019. http://d-nb.info/1186145404/34.
Full textShim, Stacey. "Alterations of the Monoaminergic Systems in the Rat Brain by Sustained Administration of Carisbamate and Lamotrigine." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23478.
Full textKlimas, Aleksandra. "High-Throughput All-Optical Cardiac Electrophysiology| Design, Validation, and Applications in vitro and in vivo." Thesis, The George Washington University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10621781.
Full textBiological systems are inherently dynamic, requiring active interrogation and recording to provide a full understanding of their underlying mechanics. In order to fully characterize such a system, both readily quantifiable signals as well as a means of dynamic control are necessary. In the heart, the propagation of electrical waves driving contraction are mediated by the flow of ions through various ion channels working in concert to drive de- and re-polarization of the cell membrane. Typically, the culprit of electrical dysfunction in the heart is due to some disruption of normal function of one or more of these ion channels. In order to study these complex electrical disturbances, known as arrhythmias, high spatiotemporal resolution imaging and interrogation are necessary.
Traditional methods of interrogation have relied on the use of electrodes and patch clamp methods, which are inherently low throughput and have limited spatial resolution. Additionally, these approaches do not lend well for in vivo use. While studies of cardiac tissue have also employed optical mapping techniques where voltage- or calcium-sensitive fluorescent reporters provide detailed information about cell activation, repolarization, and wave propagation maps, stimulation has remained primarily limited to electrical means. However, recently developed optogenetic tools provide a means of high-spatiotemporal resolution (and potentially tissue-type specific) means of interrogation. By combining both of these methods, high-spatiotemporal dynamic characterization of cardiac electrophysiology can be achieved.
Here we present how all-optical approaches can be achieved via employing optogenetics in order to explore cardiac electrophysiology at the in vitro as well as in vivo scale. The main optical design is first implemented for in vitro use, where we demonstrate how OptoDyCE, our all-optical dynamic cardiac electrophysiology platform, can be used to screen drug effects in both isolated primary myocytes and human induced pluripotent stem-cell derived cardiomyocytes (hiPSC-CMs) grown in monolayers and 3D tissue constructs. We then characterize an upgraded version of OptoDyCE, capable of simultaneous imaging of membrane voltage and intracellular calcium signals. The system is used for screening of 12 blinded compounds to demonstrate how the platform can used for pro-arrhythmia prediction at the high-throughput (HT) scale. All compounds were properly identified as ‘safe’ or ‘unsafe’ using the multi-parameter endpoints, made possible with high-spatiotemporal resolution recordings under spontaneous and paced conditions. To further demonstrate how all-optical approaches improve proarrhythmia prediction, we tested vanoxerine, a compound that failed Phase III clinical trials, and demonstrate OptoDyCE’s ability to easily identify the compound as pro-arrhythmic, unlike techniques employing patch clamp and in silico modeling that deemed the compound safe for use in humans. As hiPSC-CMs provide a novel testbed for drug testing and disease modeling, we then use OptoDyCE to characterize these cells, both in terms of their potential immaturity (a common criticism) and their ability to recapitulate genetic diseases for use in disease modeling. Finally, the requirements for translating OptoDyCE for in vivo use are considered, and successful demonstration in vivo expression of ChR2 in the rat heart by employing systemic viral delivery, providing a model for development and testing of an optical system in intact tissue and for long-term use in behaving animals. Ultimately, we demonstrate the OptoDyCE platform has capacity to revolutionize pre-clinical drug testing, reduce cost, reduce animal use, and make clinically implemented personalized medicine an obtainable goal.
Squirrell, Daniel. "An in vivo electrophysiological and computational analysis of hippocampal synaptic changes in the Alzheimer's disease mouse." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/an-in-vivo-electrophysiological-and-computational-analysis-of-hippocampal-synaptic-changes-in-the-alzheimers-disease-mouse(de740023-7d91-418a-8c88-1141b3cd81f3).html.
Full textAnnecchino, Luca. "Development and validation of a robotic two-photon targeted whole-cell recording system for in vivo electrophysiology." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/56991.
Full textVelmurugan, Sathya. "Actions of appetite regulating peptides on supraoptic nucleus (SON) oxytocin neurones." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3938.
Full textLau, Petrina Yau Pok. "Long-term plasticity of excitatory inputs onto identified hippocampal neurons in the anaesthetized rat." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:172e0d36-0d67-4932-962e-9ee08dcc366c.
Full textSchweigmann, Michael [Verfasser]. "Versatile LCP surface microelectrodes for combining electrophysiology and in vivo two-photon imaging in the murine CNS / Michael Schweigmann." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1232240095/34.
Full textJiang, Jojo L. "Alterations of the Monoaminergic Systems by Sustained Triple Reuptake Inhibition." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23171.
Full textIro, Chidiebere Michael. "Investigation of the Mechanisms of Action of Ketamine on the Monoamine Systems: Electrophysiological Studies on the Rat Brain." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39910.
Full textHanini-Daoud, Maroua. "Traitement des informations thalamiques au travers des ganglions de la base : approche électrophysiologique et optogénétique in vivo." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4109.
Full textThe centre median/parafascicular (CM/Pf) of the thalamus has recently emerged as a component of interest in the context of Parkinson’s disease. Thus normal and pathological dynamics of BG cannot be fully understood unless it is taken into account. Here, we analyzed the transfer of CM/Pf information through BG by recording, in vivo, the evoked responses of BG output neurons in the substantia nigra pars reticulata (SNr) to either electrical or optogenetic CM/Pf stimulations. Then, we investigated the BG components involved in these responses by analyzing the responses evoked by specific optogenetic activation of the thalamo-striatal, thalamo-subthalamic or thalamo-nigral pathways. Both electrical and optogenetic activation of CM/Pf evoke complex responses in SNr that are composed of an inhibition that can be preceded and/or followed by excitations. The inhibition and the late excitation rely on the activation of the trans-striatal pathways, whereas the early excitations involve thalamo-subthalamic and thalamo-nigral projections. We are currently analyzing whether and how the striatal cholinergic interneurons (CINs) and the dopaminergic afferent system modulate the transfer of thalamic information within the BG. For the second part of my project, we analyzed the treatment of thalamic information from CM/Pf at the level of the striatum. To do this, we recorded the evoked responses of striatal projection neurons by the electrical stimulation of the CM/Pf with or without the inhibition of the CINs by optogenetics. We will then be able to determine how CINs are involved in the transfer of thalamic information at the level of the striatum
Davis, Katherine. "Hippocampal dysfunction in the 3xTgAD mouse model of Alzheimer's disease." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/hippocampal-dysfunction-in-the-3xtgad-mouse-model-of-alzheimers-disease(ba2d4704-9e22-4213-8bc7-a1c55a0e0ccd).html.
Full textVillet, Maxime. "Dynamique cortico-striatale dans l'automatisation de la mémoire." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ6022.
Full textMemory is an essential function for any organism, enabling the processing, consolidation and retrieval of information by neuronal networks in the brain. Working memory (WM) is defined as the temporary representation of information that is undergoing processing to allow the development of behaviour. Behaviour may be the result of the concatenation of different actions with the intention of achieving an objective (A-O), or it may be the consequence of a more automatic response to the presentation of a stimulus (Hb).A substantial body of evidence from structural-functional studies has demonstrated that the medio-prefrontal cortex (mPFC) is a crucial component in the WM process. This structure is responsible for processing WM information, thereby enabling the generation of adapted behaviour. In particular, the mCPF plays a pivotal role in the acquisition of A-O behaviour and in the formation of Hb. Similarly, the striatum displays a structural dichotomy, whereby its dorsomedial part (DMS) is associated with A-O behaviour and its dorsolateral part (DLS) is linked to Hb behaviour. In contrast to the mCPF, the dorsal striatum has been associated with conditioning or spontaneous learning, exhibiting a greater propensity for automation than the WM.It is noteworthy that studies have focused on the relationship between WM and A-O, with minimal attention devoted to its involvement in Hb. Our first study was conducted to elucidate the evolutionary trajectory of Hb behaviour within the context of WM. For this, the mCPF was inhibited (DREADD). The results of our study indicate that the mCPF plays a pivotal role in the initial learning of the task, but that it is no longer a prerequisite when the task has been overtrained and has become automatic. Furthermore, the potential role of the DLS in this automation process was investigated. The findings of our study indicate that the DLS is implicated in the final stage of learning, including WM, once the behaviour has become habitual. Furthermore, it was observed that a disruption to the DLS during this phase resulted in a novel adaptation of the learning strategy, A-O. This result indicates the presence of a dormant trace within the mCPF, which persists despite the establishment of Hb behaviour.Our second study proceeded to investigate the neuronal functional dynamics between the DLS and DMS in a continuous spatial alternation task in rats. Our results demonstrate and quantify that both DMS and DLS neurons are engaged in the learning process, from its initial stages to its stabilization phase. Subsequently, the capacity of the neurons to code for events was determined. Regardless of the learning phase, we observed a greater number of coding neurons in the DMS compared to the DLS, indicating a heightened involvement of the DMS in the learning process. Conversely, the number of coding neurons decreases in the DMS whereas it increases in the DLS during the learning stages. This decrease does not influence the coding power of the DMS. This suggests that the network probably needs to be reorganized to be just as efficient in terms of decoding but with fewer neurons. On the other hand, the number of neurons in the DLS is linearly related to the coding power. These results thus show a gradual reorganization of the network, which differs between the DMS and the DLS, and a commitment of the two structures from the initial learning phase to maintenance, in contrast with theories of gradual transfer of the DMS and DLS during the learning stages.The two studies demonstrate the reciprocal involvement of the mCPF and DLS in a working memory task and of the DMS and DLS in a spontaneous alternation task. They illustrate that an automation process can be established regardless of the task, but that the memory trace does not truly migrate from one structure to another. The networks undergo reorganization so that they can either be equally effective with fewer neurons or remain in a dormant state
Dubanet, Olivier. "Dynamique des interactions entre excitation et inhibition périsomatique dans le circuit hippocampique normal et épileptique in vivo." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0259.
Full textThe hippocampus is a key structure for learning and memory. The function of this neuronal circuit is based on complex interactions between excitatory glutamatergic pyramidal cells and various types of inhibitory GABAergic interneurons. The precise roles fullfiled by interneuron subtypes is still unclear because it is challenging to study in vivo the inhibitory function of specific interneurons. Alterations of the synaptic interactions between pyramidal cells and interneurons in the hippocampus also underlie neurological pathologies such as epilepsy, neurodevelopmental diseases such as autism, or neurodegenerative diseases such as Alzheimer's disease. Among the different types of interneurons, those that express parvalbumin (PV) and project to pyramidal cell bodies (perisomatic inhibition) are particularly efficient in blocking action potential generation in their target cells. PV interneurons therefore play a central role in neuronal coding (by controlling which cell can fire or not) but also in the balance between global excitation and inhibition within the circuit, prevention runaway excitation between interconnected pyramidal cells and the generation of epileptic seizure. Functional perisomatic inhibition directly depends on Cl- electrochemical gradient, or the interaction between membrane potential and Cl- distribution across the membrane of the target neuron. However, these parameters change continuously during neuronal activity, and it has been shown that the Cl- gradient can be reversed, resulting in paradoxically excitatory GABAergic transmission. This phenomenon, which contributes to the physiological maturation of neuronal circuits during early development, is also considered as a major source of neuronal circuit dysfunction in various pathologies such as epilepsy, autism or schizophrenia. This field of research is therefore clinically relevant, and the research for drugs restoring a physiological Cl- gradient is very active. However, a direct assessment of the excitatory GABA hypothesis has been hindered by the technical difficulty of probing endogenous GABAergic synaptic function in vivo, and contradictory data in the literature call for a direct evaluation. During my PhD, using electrophysiological, opto- and pharmaco-genetic techniques, I have contributed to develop a new and sophisticated methodological approach to evaluate the perisomatic GABAergic transmission in the hippocampus, respecting the complexity of spontaneous neuronal activity dynamics in vivo. I have studied the functional role of perisomatic inhibition from PV interneurons in the adult hippocampal circuit, in physiological conditions and in two models of epileptic mice in which I was able to detect an excitatory GABAergic transmission in vivo. However, excitatory GABA was unlikely to participate in epileptogenesis because it was expressed only during the period of post-ictal silence after acute seizures, or in a potentially negligible minority of pyramidal cells one week post-status epilepticus during the latent period that precedes the emergence of chronic epilepsy, a stage during which I also demonstrated that the majority of CA3 pyramidal neurons were no longer under perisomatic inhibitory control. In addition to contribute to a better understanding of epileptogenesis, this approach constitutes an invaluable tool to quantify the actual in vivo efficacy of drugs designed to modulate Cl- homeostasis and restore physiological GABAergic inhibition, thereby meeting high clinical and therapeutical expectations
Cabanas, Magali. "Modification des activités de réseaux in vivo chez un modèle murin de la maladie de Huntington." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0345/document.
Full textHuntington’s disease (HD) is an inherited pathology that causes selective degeneration ofindirect striatal pathway neurons of the basal ganglia. In addition to the classic motor,cognitive and psychiatric symptoms, patients and mouse models of HD develop sleepdisorders, which can appear at as early as pre-symptomatic stage. Furthermore, in vivoelectrophysiological study of R6/1 transgenic mice revealed a unique and pathological βrhythm that appear at early symptomatic stage and which is mainly observed during sleep.The aim of this thesis work was to examine the link between changes in cerebral networkactivities, sleep disturbances and β rhythm, and to determine the contribution of theseabnormalities to the behavioral disturbances observed in R6/1 mice. Our neuroimaging study of the marker of neuronal activity c-Fos showed a hyperactivation of frontostriatal pathway at pre-symptomatic stage without any activity changes of the vulnerable indirect pathway neurons. Our pharmacogenetic study demonstrated that changes of striatal projection neuronal activity can modify sleep/wake behaviors, without inducing the pathological β rhythm. Finally, our pharmacological study established a link between orexinergic system dysfunction and β rhythm emergence in R6/1 mice. Our data, therefore, described further the natures of altered neural circuit activity associated with different disease stages, in particular pre-motor symptomatic period, and the importance of these alterations for sleep disturbances as well as β rhythm appearance in transgenic HD mice
Ridler, Thomas. "Entorhinal cortex dysfunction in rodent models of dementia." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/30575.
Full textDanysz, Wojciech, Gunnar Flik, Andrew McCreary, Carsten Tober, Wilfried Dimpfel, Jean C. Bizot, Richard Kostrzewa, et al. "Effects of Sarizotan in Animal Models of ADHD: Challenging Pharmacokinetic–Pharmacodynamic Relationships." Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etsu-works/948.
Full textNg, Kheng-Seong. "The human rectum: innervation in health and impact of surgery on function." Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/16431.
Full textVitrac, Clément. "Contrôle dopaminergique de la motricité au niveau cortical et striatal." Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2282/document.
Full textPrimary motor cortex and striatum are involved in movement planification and selection. Dopamine regulates the neuronal activity of these two structures. The motor impairments observed in Parkinson's disease originates from the loss of dopamine neurons projecting from the substantia nigra pars compacta to the striatum.We characterized the dopaminergic control of the neurons of primary motor cortex in mice and we demonstrated that dopaminergic fibers preferentially innervate the forelimb representation map in the deep cortical layers. Furthermore, we demonstrated that dopamine locally modulates the electrophysiological activity of the cortico-striatal neurons through D2 receptors. These results show that dopamine can directly control motor function by influencing neuronal activity in primary motor cortex.Thereafter, we determined the potential of cell replacement therapies in an animal model of Parkinson's disease. In most studies, the transplanted dopamine neurons have been placed within the striatum. We have chosen an alternative approach by grafting neurons into the lesioned nucleus, substantia nigra. We showed in mice that the lesion of dopaminergic neurons impaired the electrophysiological properties of the striatal neurons. Whereas these properties are not fully restored with an intra-striatal transplant, all the electrophysiological characteristics are recovered with an intra-nigral graft. This result opens new perspectives to study the homotopic graft effects on the activity of the other structures controlling motor function
Thomazeau, Aurore. "Dysfonctions synaptiques glutamatergiques dans le cortex préfrontal de modèles murins de trisomie 21 surexprimant le gène Dyrk1a et stratégies thérapeutiques." Thesis, Bordeaux 2, 2012. http://www.theses.fr/2012BOR21921/document.
Full textDown syndrome is the major cause of mental retardation, the main phenotype of the pathology. It is due to an extra chromosome 21. Many genes have been proposed as candidates for the neurocognitive phenotypes of Down syndrome, notably Dyrk1a. It encodes the serine-threonine kinase DYRK1A which is involved in brain development and synaptic functions. The prefrontal cortex mediates higher cognitive functions, such as executive functions and emotional regulation. This study highlighted major deficits in prefrontal cortex glutamatergic transmission and plasticity of two mouse models for Down syndrome: the overexpressing Dyrk1a mBACtgDyrk1a model and the Ts65Dn model, overexpressing around 130 murine orthologous genes of HSAS21 chromosome. Another aspect of this study was the development of new effective therapeutic strategy for Down syndrome neurocognitive phenotypes based on DYRK1A or other cellular targets activity inhibition
Bienvenu, Thomas Claude Michel. "Functional specialisation of GABAergic cells in the basolateral amygdala." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:d52fb5ad-19cc-41b8-a1e2-2f25ef82dddf.
Full textGao, Xiaojie. "Regulation and functions of burst firing: the role of KCNQ3 potassium channels in vivo." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/22144.
Full textIon channels conduct ion flows across neuronal membrane whereby action potential is generated and propagated. They play a central role in regulating the excitability and firing behavior of a neuron. Among them, the KCNQs present a prominent family of voltage-gated potassium channels. Dysfunction of KCNQ2–5 channels can lead to varied neurological diseases including early onset epilepsy and deafness. In cortex and hippocampus, KCNQ2 and KCNQ3 have been demonstrated to underlie the non-inactivating M-current critical for controlling the repetitive firing of pyramidal cells. However, the functional significance of KCNQ3, unlike that of KCNQ2, remains elusive. Here, by applying in vivo extracellular electrophysiology in Kcnq3 constitutive knockout mice and the wild-type littermates, we find that hippocampal pyramidal cells lacking KCNQ3 exhibit increased burst firing. Moreover, the spike frequency adaptation of their bursts is diminished, and the burst propensity during two different field oscillations – theta versus non-theta – becomes indistinguishable. During theta oscillations, Kcnq3 knockout pyramidal cells no longer display unimodal phase preference and do not coordinate their burst firing. But phase advancement along successive theta cycles continues to occur at times of transiently intensified firing. The selective firing of place cells is largely preserved in the knockout while mainly relying on bursts. These results suggest that KCNQ3 channels indeed play a significant and specific role in regulating the neurons’ excitability and information processing, thus providing crucial mechanistic insights into the relevance of the KCNQ3 channels in neurological disorders.
Carus-Cadavieco, Marta. "Coordination of innate behaviors by GABAergic cells in lateral hypothalamus." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19135.
Full textLateral hypothalamus (LH) is crucial for regulation of innate behaviors. However, it remained unknown whether and how temporal coordination of hypothalamic neuronal populations regulates behavioral transitions. This work combined optogenetics with neuronal recordings in behaving mice. LHVgat cells were optogenetically identified. LHVgat neurons increased firing rates upon transitions from non-REM (NREM) sleep to wakefulness, and their optogenetic stimulation during NREM sleep induced a fast transition to wakefulness. LHVgat cells project to the reticular thalamic nucleus (RTN). Optogenetic activation of LHVgat terminals in the RTN exerted a strong frequency-dependent inhibition of RTN cells and replicated state-dependent changes in RTN neurons activity. Recordings of LH neurons during exploration revealed that 65% of LH neurons increased their activity upon the onset of locomotion. Top-down forebrain innervation of LH is provided, to a great extent, by inhibitory inputs from the lateral septum (LS). During spontaneous exploration in a free-feeding model, LS and LH displayed prominent gamma oscillations (30-90 Hz) which entrained neuronal activity within and across the two regions. Optogenetic gamma-frequency stimulation of somatostatin-positive GABAergic projections to LH facilitated food-seeking, and increased the probability of entering the food zone. LS inhibitory input enabled separate signaling by LH neurons according to their feeding-related activity, making them fire at distinct phases of the gamma oscillation. In contrast to increased food intake during optogenetic stimulation of LHVgat cells, food intake during gamma-rhythmic LS-LH stimulation was not changed. Overall this works provides new insight into the function of LH circuitry, that employs signalling at different time scales, which, in coordination with upstream and downstream circuits, regulates transitions between innate behaviors.
Van, Rheede Joram Jacob. "The emergence of visual responses in the developing retinotectal system in vivo." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:57cb9bff-a085-4ac4-b413-c29112eeb78e.
Full textDelestrée, Nicolas. "Excitabilité intrinsèque, couverture synaptique et vacuolisation dendritique des motoneurones spinaux chez la souris SOD1-G93A, modèle de la Sclérose Latérale Amyotrophique." Thesis, Paris 5, 2014. http://www.theses.fr/2014PA05T035/document.
Full textMotoneurones hold a remarkable position in the organism: they are the interface between the central nervous system and the muscular system. Their excitability is a crucial characteristic in motor behavior since it determines the muscular force produced in response to motor command. In mice, motoneurone discharge is marked by the presence of sub-Threshold oscillations between action potentials which create a behavior of mixed mode oscillations (MMOs). These MMOs allow the motoneurones to fire at low frequency and are responsible for a sub-Primary range of discharge during which the firing frequency is irregular and the slope of current-Frequency relation is steep. We investigated the mechanisms responsible for these MMOs by in vivo recordings in anesthetized mice, using Dynamic Clamp, and by theoretical modelization in a monocompartimental model of motoneurone. Our results showed that MMOs were caused by sodium and potasium currents responsible for action potentials and that they emerged from a state of low membrane excitability caused by a slow inactivation of the sodium current. Paradoxically, we also showed that the after-Hyperpolarization current was able to increase the membrane excitability and to reduce MMOs by de-Inactivating the sodium current. Amyotrophic Lateral Sclerosis (ALS) leads to the specific degeneration of these motoneurones and is accompanied by a vacuolation of their dendritic trees. An early increase in motoneurons excitability during the disease has been widely proposed to account for their degeneration. Indeed, a motoneuron hyperexcitability of intrinsic or extrinsic origin could produce a deleterious excitotoxicity. If such a change of excitability is involved in the disease, it should last until the ages where the first denervation of neuromuscular junctions occurs. We recorded the electrophysiological properties of motoneurones in an in vivo preparation of adult SOD1-G93A mice, model of ALS. Our results showed that their input conductance was increased before the first denervation of their neuromuscular junctions. Nevertheless, their excitability was not modified. Far from being intrinsically hyperexcitable, a fraction of them even lost their ability to discharge repeatedly. We finally studied the vacuolation that takes place in dendrites of motoneurones during the disease and its relation with synaptic coverage. We have shown that the dendritic vacuolation takes place before the denervation and that the size of these vacuoles increases with age in SOD1-G93A mice. Interestingly, this increase was faster in the most vulnerable motoneurones. Although synaptic coverage was not altered in the disease, we ¬revealed higher densities of excitatory and inhibitory synapses on dendritic regions that vacuolate. These results suggest a link between synaptic activity and vacuoles formation in motoneurones during ALS. Motoneurones were not intrinsically hyperexcitable, instead, an excitotoxicity from a synaptic origin may be responsible for their degeneration
Chauviere, Laëtitia. "Déficits cognitifs et altération de l'activité de réseau au cours de l'épileptogenèse dans un modèle expérimental d'épilepsie du lobe temporal." Thesis, Aix-Marseille 2, 2010. http://www.theses.fr/2010AIX20662/document.
Full textTemporal lobe epilepsy (TLE) is the most common form of partial epilepsy in adults. TLE is characterized by a latent period during which TLE takes place. This period is called epileptogenesis. In TLE patients, epileptogenesis is unexplored. However, the use of animal models, like pilocarpine model, allows the study of epileptogenic processes, in order to try to prevent TLE. Thus, my PhD work tries to yield some predictive markers of epileptogenesis, in the pilocarpine model. We studied cognitive and electrophysiological in vivo alterations in this model. We showed that there are early and persistent spatial deficits that correlate with a decrease of the power of theta oscillations, i.e. during the early stage of epileptogenesis and the chronic stage. At the same time, there is also a decrease of power and frequency of theta rhythm during exploratory behaviors. Interictal-like activity (ILA) is a pathological activity present during epileptogenesis in experimental models. ILA does not correlate with cognitive deficits, but decreases theta power after the spike, i.e. in its wave, during epileptogenesis but not during the chronic stage anymore. This suggests an important network alteration before the chronic stage. Indeed, we described two types of ILA, whose properties (number, amplitude) and dynamics evolved during epileptogenesis with a major switch just before the first spontaneous seizure. All together, these results may constitute, with spatial deficits and theta rhythm alterations, predictive markers of epileptogenesis. Moreover, we showed an increase in the coupling, ILA-dependent, between the hippocampus and the entorhinal cortex, during epileptogenesis but not during the chronic stage, whereas a reversal of the information flow between these two structures occurs at the early stage of epileptogenesis and persists without any modification till the chronic stage. These results suggest the build-up of an epileptogenic network, a major switch of network properties just before the first spontaneous seizure, and some markers that could be predictive of epileptogenesis. TLE, oscillations and cognition involved processes at the network level, in particular synchronization processes. These processes could be possible via oscillations, which allow information transfer between structures of the network, in order to provide behavioral and cognitive processing. Recordings performed in 15 different structures of the temporal lobe showed, in pilocarpine animals, a network with more “small-world” (SW) features, with a higher local clustering and a loss of long-range connections. These results could explain cognitive and oscillatory alterations observed previously during epileptogenesis. SW and coherence analysis, at the network level, between signals during different brain-states (behaviors and cognitive processes) showed changes in dynamics occurring during these states, in normal and epileptogenic conditions. All these modifications in network activities may be involved in the construction of an epileptic brain and in associated cognitive deficits
Ziebro, Thomas R. "In vivo PPy(DBS) sensors to quantify excitability of cells via sodium fluctuations in extracellular solution." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492031927557033.
Full textGajowa, Marta. "Synaptic and cellular mechanisms underlying functional responses in mouse primary visual cortex." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCB125.
Full textFeature selectivity of cortical neurons, one example of functional properties in the brain, is the ability of neurons to respond to particular stimulus attributes - e.g. the receptive field of a neuron in the primary visual cortex (V1) with respect to object movement direction. This thesis contributes to understanding how feature selectivity arises in mouse V1. It is divided into two parts, each based on distinct approaches to elucidate visual processing mechanisms, the first at a population level and the second at the single neuron level. First, on a population level, I have developed tools towards an eventual project that combines 2-photon optogenetics, 2-photon imaging and traditional whole-cell electrophysiology to map functional connectivity in V1. This map will provide a link between cell tuning (i.e. cell function) and network architecture, enabling quantitative and qualitative distinction between two extreme scenarios in which cells in mouse V1 are either randomly connected, or are associated in specialized subnetworks. Here I describe the technical validation of the method, with the main focus on finding the appropriate biological preparation and reagents. Second, based on whole-cell patch recordings of single mouse V1 neurons in vivo, I characterize the neuronal input-output (I/O) transfer function using current and conductance inputs, the latter intended to mimic the biophysical properties of synapses in a functional context. I employ a novel closed-loop in vivo protocol based on a combination of current, voltage and dynamic clamp recording modes. I first measure the basic I/O transfer function of a given neuron with current and conductance steps, under current and dynamic clamp, respectively. I then measure the visually evoked spiking output, under current clamp, and the synaptic conductance input, under voltage clamp, to that neuron. Finally, I reintroduce variations of the visually-evoked conductance input to the same cell under dynamic clamp. In that manner, I describe an I/O transfer function which allows a characterization of the mathematical operations performed by the neuron during functional processing. Furthermore, modifications of the relative scaling and the temporal characteristics of the excitatory and inhibitory components of the reintroduced synaptic input, enables dissection of each component's role in shaping the spiking output, as well as to infer overall differences between various physiological cell types (e.g. regular-adapting, presumably excitatory, versus fast-spiking, presumably inhibitory, neurons). Finally, examination of the transfer functions, in particular their dependence on temporal modifications, provides insights on the relationship between the neuronal code and the biophysical properties of neurons and their network
Pracucci, Enrico. "Unraveling alterations of excitation/inhibition balance in in vivo models of epilepsy and genetic autism." Doctoral thesis, Scuola Normale Superiore, 2019. http://hdl.handle.net/11384/85883.
Full textChik, William Wai Bun. "In vivo and in vitro high density spatial and temporal resolution, visual and thermal mapping of radiofrequency ablation lesions utilising novel technologies to improve the success and safety of cardiac electrophysiology ablation procedures." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/12885.
Full textRajaraman, Swaminathan. "Micromachined three-dimensional electrode arrays for in-vitro and in-vivo electrogenic cellular networks." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28129.
Full textCommittee Chair: Mark G. Allen; Committee Member: Elliot L. Chaikof; Committee Member: Ionnis (John) Papapolymerou; Committee Member: Maysam Ghovanloo; Committee Member: Oliver Brand.
Nguyen, Thanh Hai. "Cibles sérotoninergiques et non sérotoninergiques des ISRS : approches Pharmacologique et Génétique in vivo chez la souris." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00663312.
Full textKaufmann, Anna-Kristin. "Functional properties of the intact and compromised midbrain dopamine system." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:8769a453-aa91-4509-b06e-48f25e88f15a.
Full textDelaville, Claire. "Implication des systèmes monoaminergiques dans la physiopathologie de la maladie de Parkinson : étude comportementale et électrophysiologique in vivo." Thesis, Bordeaux 2, 2011. http://www.theses.fr/2011BOR21828/document.
Full textThe loss of dopamine (DA) nigro-striatal neurons has been the pathophysiological focus of the devastating conditions of Parkinson’s disease, but depletion of DA alone in animal models has failed to simultaneously elicit both the motor and non-motor deficits of PD. There is growing evidence that additional loss of locus coeruleus noradrenaline (NA) and dorsal raphe serotonin (5-HT) neurons in PD could be involved in the clinical expression of many of the observed deficits but also on the efficiency and on the side effects of antiparkinsonian treatments, L-Dopa and High Frequency Stimulation (HFS) of the subthalamic nucleus (STN).First, we focused on the respective role of DA, NA and 5-HT systems on motor and non-motor deficits and on the pathological activity of three basal ganglia nuclei, STN, substantia nigra pars reticulata and globus pallidus. Results of the present study bring new insights into the combined roles of the three monoaminergic systems in the motor and non motor symptoms of PD and also into the pathological activity of basal ganglia nuclei.Second, we studied the involvement of DA, NA and 5-HT depletions on the efficiency of L-Dopa and HFS of STN. Our results show that when DA depletion is combined with another monoamine depletion, STN HFS is less efficient compared to the situation when DA is depleted alone. These data provide a clear explanation on the lack of efficacy of this treatment in some operated parkinsonian patients.Finally, as few studies focused on NAergic modulation of basal ganglia, we studied the effects of NAergic agents locally injected into the STN on motor behavior and also on STN neuronal activity. We show that alpha 1 NAergic receptors are implicated in the modulation of firing rate and that alpha 2 receptors play an important role in the emergence of burst activity, which could be at the origin of motor deficits.Results of this thesis provide new evidences on the involvement of the three monoaminergic systems in motor and non motor symptoms and also in the efficiency of antiparkinsonian treatments. Moreover, we show that NAergic alpha receptors are implicated in the control of STN neuronal activity and consequently in the motor control
Gupta, Sujasha. "Development and Utilization of a Novel Synaptic Transistor to Detect Dynamic Neuronal Processes." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1590765716831174.
Full textZanona, Querusche Klippel. "Estudo dos efeitos da MT3 na plasticidade sináptica de longa duração e interações com a sinalização gabaérgica em hipocampo dorsal pela eletrofisiologia in vivo em animal anestesiado." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/132342.
Full textThe cholinergic muscarinic system exerts modulatory function over different aspects of cognition and emotion. All five muscarinic receptors subtypes (mAChR), M1 to M5, are expressed at mammals hippocampus and at least two of them are simultaneously activated by most of the drugs, hindering significant advances on the role of each component of this system. The muscarinic toxin 3 (MT3) is a selective antagonist for the M4 subtype, allowing the investigation of the modulatory actions of this receptor over learning, memory and synaptic plasticity. The M4 are G protein coupled receptors (GPCRs) that act through Gi/o triggering inhibitory effects on which cells they are occur. Previous behavioral studies have shown that administration of MT3 soon after aversive task training exerts amnestic effects over memory, while administration prior to recall, leads to facilitation. A possible explanation to these results could be that the local circuits involved on memory consolidation and recall are different in nature. On this perspective, the amnestic effect of MT3 over memory consolidation should be consequence of GABAergic interneurons inhibition suppression; while the effect on recall, should be over glutamatergic synapses modulation. Thereby, the present work, with the objective to investigate how the M4 receptor modulates long-term synaptic plasticity and interacts with the GABAergic system, in vivo electrophysiological approach of anesthetized rats’ hippocampus was applied. Hence, field excitatory postsynaptic potentials (fEPSP) from CA1 were recorded after stimulation of contralateral Schaffer Collateral pathway with drugs infusion 15 min before or after high or low frequency electric stimulation (HFS: 10 trains 0.5 Hz, 20 pulses 100 Hz; LFS: 600 pulses 1 Hz, respectively). Neither MT3 (4.00 μg/μl), bicuculline (0.06 μg/μl), baclofen (0.20 μg/μl) nor vehicle, isolated or combined, changed the baseline evoked response amplitude 15 min after infusion nor the paired-pulse facilitation ratio (PPF). MT3 apparently attenuated, but not significantly, the long-term potentiation (LTP) compared to control (31.8% and 66.0% potentiation 60 min after HFS, respectively). In addition, there was no significant difference between baseline and 60 min after HFS fEPSP amplitude at MT3 group. Bicuculline, although did not abolish LTP neither changed PPF, it did produce a potentiation of only 36.4%. Baclofen induced a potentiation similar to control group. Baclofen administration also significantly reduced PPF compared to baseline. The simultaneous administration of MT3 and bicuculline or baclofen led to a potentiation similar to the control group. MT3 did not show any effect over LTP maintenance when applied 15 min after HFS. Lastly, it was not possible to induce long-term depression (LTD) with the used LFS protocol. Although there was no statistical significance between groups due to the low animal numbers used, data suggest that bicuculline had reduced LTP amplitude. Baclofen did alter PPF and the same was not observed on control group. When bicuculline or baclofen were injected with MT3, those alterations were not observed. These are inconclusive and preliminary results, notwithstanding this work allowed to set up the in vivo electrophysiology technique in anesthetized animals what will provide new tools for future research.
Couderc, Yoni. "Dopaminergic modulation of the insular cortex in anxiety-related behaviors and emotional valence." Electronic Thesis or Diss., Bordeaux, 2025. http://www.theses.fr/2025BORD0017.
Full textAnxiety is an adaptive response of individuals exposed to a potentially threatening context. However, anxiety levels can be persistently high independently of the environment and become pathological. Although anxiety disorders represent the most prevalent psychiatric conditions - characterized by chronic high levels of anxiety and an attentional bias towards negative valence - the underlying neurobiology remains poorly understood. Numerous studies in humans and in preclinical models revealed the implication of different neuromodulators including serotonin, norepinephrine, but also dopamine. Imaging studies have shown that the insular cortex (or insula), particularly its anterior region, is hyperactivated in individuals with anxiety disorders in response to salient or negative stimuli. Although dopamine neurotransmission is known to regulate anxiety in humans and animal models, its specific regulatory effects on the anterior insula have remained largely unexplored.This PhD dissertation aims to investigate the role of dopamine transmission in the insular cortex in shaping anxiety and emotional valence in mice. Through a multifaceted approach, this research uncovered how dopamine modulates anterior insula function in anxiety and valence processing at three key levels of analysis. (1) First, we mapped the dopaminergic system of the insular cortex and revealed a high density of neurons expressing type-1 dopamine receptors (D1) in the insula, particularly important in the anterior insula, and seven times greater than the density of neurons expressing type-2 dopamine receptors (D2). Then, we found that pharmacological activation of D1 in the anterior insula is anxiogenic, suggesting a direct link between insular dopamine signaling and anxiety-related behaviors. (2) Using fiber-photometry, we identified that the amplitude of dopamine release onto D1+ neurons in the anterior insula while mice were in anxiogenic spaces or receiving mild foot shocks was both positively correlated with mice level of trait anxiety. (3) Finally, population dynamics and deep-learning analyses of anterior insula single-unit recordings uncovered distinct coding patterns of anxiety-provoking and safe environments, as well as tastants of positive and negative valence. Remarkably, systemic D1 activation, which heightens anxiety-related behaviors, dampens this coding dichotomy by increasing coding variability for protected spaces while increasing the coding specificity for anxiogenic spaces. Interestingly, the coding reliability of anxiogenic areas was positively correlated with mice level of trait anxiety, and we observed a trend towards a positive correlation between the coding reliability of a negative tastants, and mice level of anxiety.Altogether, our findings provide a new model of neural population coding of anxiety and emotional valence and unravel D1-dependent coding mechanisms in the mouse anterior insula
Reisiger, Anne-Ruth. "Pathologie du système de récompense : effets à long terme d’une exposition chronique à la nicotine et au sucrose." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR14870/document.
Full textLearning mechanisms associated with active responding for nicotine enhanced the excitability of the ILCx-BNST pathway. The objective of this project was to better understand the involvement of the ILCx-BNST pathway in nicotine self-administration. Since the endocannabinoid system controls nicotine reinforcement and nicotine-induced synaptic modifications, we examined the role of CB1 receptors in the BNST. We showed that acquisition of nicotine IVSA was associated with a persistent facilitation of LTP induction at ILCx-BNST synapses. Behaviorally, electrical stimulation temporarily increased excessive responding to nicotine when nicotine was not available. Moreover, using intra-BNST pharmacology, we revealed that stimulation of BNST CB1 receptors enhanced sensitivity to nicotine-paired cue. In contrast, after a prolonged history of nicotine intake, it blocked drug-seeking in a reinstatement model of relapse. Drug addiction is partly due to the inability to stop using despite negative consequences. The hypothesis that palatable food induces similar uncontrolled consumption is becoming more widespread. As drug addiction is known to increases activity of VTA DA neurons, we aimed to examine whether exposure to sucrose would induce similar neuronal modifications and impair the capacity to respond to an aversive stimulus. We found that sucrose enhanced spontaneous activity of DA VTA neurons. In addition, while a footshock caused a nearly complete inhibition of activity of VTA DA neurons in control rats, sucrose disrupted signaling of an aversive stimulus. These modifications were independent from the caloric state of the rats
Monlezun, Laura. "Etudes structurales et fonctionnelles de la pompe d'efflux MexAB-OprM impliquée dans la résistance aux antibiotiques chez Pseudomonas aeruginosa." Phd thesis, Université René Descartes - Paris V, 2012. http://tel.archives-ouvertes.fr/tel-00801703.
Full textWilliams, Mark. "Dynamique de l’excitabilité corticale dans l’épilepsie-absence et intégration sensorielle Integrative properties and transfer function of cortical neurons initiating absence seizures in a rat genetic model Building Up Absence Seizures in the Somatosensory Cortex: From Network to Cellular Epileptogenic Processes." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS608.
Full textAn epileptic seizure results from the sudden occurrence of abnormally intense, rhythmic and synchronous neuronal activity, in a more or less broad region of the central nervous system. The clinical consequences are extremely varied, depending on the affected brain areas and the duration of the seizures, ranging from brief localized muscular twitches to a complete loss of consciousness, potentially associated with convulsions. Absence epilepsy is a generalised epilepsy of genetic origin, mostly affecting children of school age. During absence attacks, children experience a suspension of conscious processes in all their dimensions, including an interruption of conscious perceptions. These symptoms are correlated with bilateral spike-wave discharges (SWD) in the electroencephalograms (EEGs). The pathophysiological mechanisms underlying the alteration of consciousness during absences remain the subject of an intense debate, opposing functional dysfunctions on large scale neural networks to a filtering of sensory information by epileptic oscillations. During my PhD research, I explored the alternative, but not exclusive, hypothesis of a dynamic dysfunction in sensory integration processes within primary thalamo-cortical circuits. Given that multi-scale electrophysiological investigations cannot be conducted in epileptic children, I used a genetic model prsenting a strong homology with the human pathology: the Genetic Absence Epilepsy Rat from Strasbourg (GAERS).By combining in vivo electrocorticographic (ECoG) and intracellular recordings in the primary somatosensory cortex (S1), previously identified as the site of seizure initiation, I first analysed the integrative properties and excitability of S1 pyramidal neurons, during and in between seizures, and compared them to those measured in homologous neurons from non-epileptic rats. I showed that these neurons exhibit a higher excitability during inter-ictal periods, expressed as an increased firing response to excitatory stimuli of increasing intensity, as well as an exacerbated tendency to depolarize following a hyperpolarization of large amplitude, suggesting an augmented cationic current h. During seizures, the same neurons showed specific changes in their membrane excitability, according to the spike or wave component in the corresponding ECoG. The spike component was associated with increased current-evoked firing and a decreased membrane resistance. Conversely, the wave was correlated with an increase in membrane resistance and a decrease in excitability. These dynamic changes in neuronal integrative properties suggest an instability of cortical responses during the spike-wave epileptic cycle that could "scramble" sensory signals during seizures. I tested this hypothesis by analysing the sensory responses of cortical neurons, and corresponding thalamo-cortical neurons, to stimulations applied to contralateral whiskers. Although synaptic responses induced in S1 neurons by sensory stimuli were not globally impaired during seizures, they were larger and more likely to trigger action potentials during wave compared to the spike component. This relative increase in neuronal responsiveness during the ECoG wave probably results from the previously described increase in membrane resistance, an augmented driving force of glutamatergic synaptic currents and a higher probability of action potentials discharge in the corresponding thalamic neurons during this component. My doctoral research indicates that sensory inputs processing persists in the thalamo-cortical circuits during SWDs, but that the alternation of the spike and wave components introduces a strong instability of the neuronal responses during seizures. This new pathophysiological mechanism could contribute to the inability to generate a conscious, stable and effective, perception during generalised epileptic seizures
Pye, Richard Laurence. "Measuring the Acute Physiological Effects of Leptin in the Carotid Body." Wright State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=wright1449583350.
Full textDe, la crompe de la boissiere Brice. "Etude dynamique de la génération des oscillations Beta dans la maladie de Parkinson : approche électrophysiologique et optogénétique." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0325/document.
Full textThe basal-ganglia (BG) form a complex loop with the cortex and the thalamus that is involved in action selection and movement control. Synchronized oscillatory activities in basal-ganglia neuronal circuits have been proposed to play a key role in coordinating information flow within this neuronal network. If synchronized oscillatory activities are important for normal motor function, their dysregulation in space and time could be pathological. Indeed, in Parkinson’s disease (PD), many studies have reported an abnormal increase in the expression level of neuronal oscillations contain in the beta (β) frequency range (15-30 Hz). These abnormal β oscillations have been correlated with two mains symptoms of PD: akinesia/bradykinesia. However, which BG neuronal circuits generate those abnormal β oscillations, and whether they play a causal role in PD motor dysfunction is not known. The subthalamic nucleus (STN) is a key nucleus in BG that receives converging inputs from the motor cortex, the parafascicular thalamic nucleus and the globus pallidus. Here, we used a rat model of PD combined with in vivo electrophysiological recordings and optogenetic silencing to investigate how selective manipulation of STN inputs causally influence BG network dynamic. Our data highlight the causal role of the globus pallidus in the generation and propagation mechanisms of abnormal β-oscillations
Aby, Franck. "Les neurones sérotoninergiques du noyau raphé Magnus dans le contrôle de la transmission nociceptive dans la corne dorsale de la moelle épinière : une étude optogénétique dans différents contextes pathophysiologiques." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0354.
Full textPain is an unpleasant sensation and emotional experience elicited by potentially harmful stimulations to protect the integrity of the body. An endogenous mechanism involving the PAG-RVM modulatory system control pain sensation by filtering nociceptive inputs. A balance between both excitatory and inhibitory influences control nociceptive transmission and impairment in this balance leads to the development of pathological pain. In the present study, we used an optogenetic approach to specifically target serotoninergic neurons (5-HT) that projected to the dorsal horn of the spinal cord. We showed that these neurons exerted a tonic analgesic action through a decreased excitability of projection neurons of the dorsal horn of the spinal cord. This effect is gender independent. We also observed that 5-HT neurons are indirectly connected to projection neurons through local inhibitory interneurons. Then, we showed that 5-HT neurons of the RMg received descending inputs from the SST neurons of the ventro-lateral part of the periaqueductal gray (vlPAG) that exerted downward facilitation on pain transmission. Interestingly, we show that 5-HT inhibitory action is switched to an excitatory influence in a model of peripheral neuropathy due to a spinal chloride equilibrium shift. These results suggest that the same descending pathway can be both excitatory and inhibitory upon pathological conditions, providing crucial insights about long-term changes associated with chronic pain
Glangetas, Christelle. "The Bed Nucleus of the Stria Terminalis between Stress and Reward." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0419/document.
Full textThe main goal of my PhD was to identify the adaptive neuronal mechanismsdeveloping in the reward circuit and in the circuit implicated in the regulation of stressresponses. More specifically, we have studied the function of the bed nucleus of the striaterminalis (BNST) in both circuits.My hypothesis was that, the BNST belongs to interconnected circuits in whichintegrates contextual (from ventral hippocampus) and emotional informations (from medialprefrontal cortex). Thus, the BNST diffuses these informations in order to regulate the basalinnate level of anxiety and stress centers responses induced after acute stress exposure, butalso to adapt the activity of dopaminergic neurons of the ventral tegmental area (VTA) thatcan promote or prevent a behavioral task associated with a rewarding or aversive stimulus.To test this hypothesis, we decided to develop several research projects usingelectrophysiological, anatomical and behavioral approaches.Firstly, we focused our interest on the stress circuit in which the BNST is a keystructure which participates in regulating the responses of stress centers after acute stressexposure. By using in vivo electrophysiology approach in anesthetized mice, we haveshown that after acute restraint stress, BNST neurons adapt their plastic responses inducedby the tetanic stimulation of the medial prefrontal cortex: switch from long term depression(LTD) under control condition to long term potentiation (LTP) after acute stress condition.Furthermore, we demonstrated that both LTD and LTP are endocannabinoid dependent byusing genetic modified mice for the type 1 endocannabinoid receptors and localpharmacological approach in the BNST.In a second step, we studied the function of the ventral subiculum (vSUB) in theregulation of BNST neurons and the impact of the vSUB-BNST pathway activation on theother glutamatergic ILCx-BNST pathway. In a first set of experiments, we showed that asame single BNST neuron could integrate informations from both vSUB and the infralimbiccortex. By using high frequency stimulation (HFS) protocols, we induced in vivo NMDAdependentLTP in the vSUB-BNST pathway whereas the same protocol led to LTD in thesame BNST neurons in the ILCx-BNST pathway. Moreover, we noted single application ofHFS protocol in the vSUB induced a long term decrease of the basal innate level of anxietyin rats.Lastly, we presented the BNST as a key excitatory relay between the vSUB and theVTA. Here, we have shown that in vivo HFS protocols in the vSUB potentiate the activity ofdopaminergic (DA) neurons of the VTA. However, the vSUB does not directly project to theVTA. We observed that a HFS protocol in the vSUB first induce NMDA-dependent LTP inBNST neurons that project to the VTA, which is necessary to promote the potentiation of7VTA DA neurons. In the last step, we demonstrated in vivo that the potentiation of VTA DAneurons increases the locomotor response to cocaine challenge.All together, these projects allow us to confirm and detail the major function of theBNST in the regulation of stress and anxiety and also in the motivational circuit