Academic literature on the topic 'In vivo tracking'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'In vivo tracking.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "In vivo tracking"

1

Pile, David. "In vivo tracking." Nature Photonics 7, no. 4 (2013): 262. http://dx.doi.org/10.1038/nphoton.2013.85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kåhrström, Christina Tobin. "Tracking persisters in vivo." Nature Reviews Microbiology 12, no. 3 (2014): 153. http://dx.doi.org/10.1038/nrmicro3216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Dengfeng, Yachao Zhang, Chao Liu, Jiangbo Chen, Dong Sun, and Lidai Wang. "Review of photoacoustic imaging for microrobots tracking in vivo [Invited]." Chinese Optics Letters 19, no. 11 (2021): 111701. http://dx.doi.org/10.3788/col202119.111701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Obar, Joshua J., and Brian S. Sheridan. "Tracking cytotoxic potential in vivo." Cellular & Molecular Immunology 12, no. 4 (2014): 505–7. http://dx.doi.org/10.1038/cmi.2014.69.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Locksley, Richard M., Brandon Sullivan, R. Lee Reinhardt, et al. "Tracking cytokine expression in vivo." Cytokine 48, no. 1-2 (2009): 3. http://dx.doi.org/10.1016/j.cyto.2009.07.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Le Bras, Alexandra. "Tracking in vivo cell proliferation." Lab Animal 50, no. 4 (2021): 88. http://dx.doi.org/10.1038/s41684-021-00748-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gebel, Erika. "Cell tracking in vivo with MRI." Analytical Chemistry 78, no. 5 (2006): 1400. http://dx.doi.org/10.1021/ac069368q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nguyen, N. H., S. Keller, E. Norris, T. T. Huynh, M. G. Clemens, and M. C. Shin. "Tracking Colliding Cells In Vivo Microscopy." IEEE Transactions on Biomedical Engineering 58, no. 8 (2011): 2391–400. http://dx.doi.org/10.1109/tbme.2011.2158099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Astolfo, A., E. Schültke, R. H. Menk, C. Hall, B. Juurlink, and F. Arfelli. "X-ray cell tracking: from ex-vivo to in-vivo experiments." Journal of Instrumentation 8, no. 06 (2013): C06010. http://dx.doi.org/10.1088/1748-0221/8/06/c06010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

J. Airenne, Kari, Kaisa-Emilia Makkonen, Anssi J. Mahonen, and Seppo Yla-Herttuala. "In Vivo Application and Tracking of Baculovirus." Current Gene Therapy 10, no. 3 (2010): 187–94. http://dx.doi.org/10.2174/156652310791321206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "In vivo tracking"

1

Graves, S., C. Lewis, H. Valdovinos, et al. "In vivo cell tracking with 52Mn PET: Targetry, Separation, and Applications." Helmholtz-Zentrum Dresden - Rossendorf, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-166432.

Full text
Abstract:
Introduction 52Mn (t½ =5.59 d, β+ = 29.6%, Eβmax = 0.58 MeV) has great potential as a long lived PET isotope for use in cell tracking studies, observation of immunologic response to disease states, or as an alternative to manganese-based MRI contrast agents. Its favorable max positron energy leads to superb imaging resolution, comparable to that of 18F.[1] Manganese is naturally taken up by cells via a multitude of pathways including the divalent metal transporter (DMT1), ZIP8, transferrin receptors (TfR), store-operated Ca2+ channels (SOC-Ca2+), and ionotropic glutamate receptor Ca2+ channel
APA, Harvard, Vancouver, ISO, and other styles
2

van, Gemeren Lindsey. "Imaging agents for mutlimodal in vivo immune cell tracking." Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/6585/.

Full text
Abstract:
The aim of this work was to develop tri-modal cell labels for tracking immune cells in vivo, particularly for longitudinal studies of immune cell therapies. Localisation and quantification of the cells is invaluable in determining the effectiveness of these treatments, so imaging agents for fluorescence, \(^1\)H MRI and \(^19\)F MRI were combined. Four combinations of agents in a robust scaffold were investigated: luminescent dyes and a \(^1\)H MRI contrast agent were trapped electrostatically in a silica matrix; luminescent dyes and proton MRI agents were bound to silica and gold nanoparticle
APA, Harvard, Vancouver, ISO, and other styles
3

Lindström, John. "Method for tracking orthogonal ribosomes in vivo using MS2coat protein." Thesis, Uppsala universitet, Molekylärbiologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-388369.

Full text
Abstract:
Ribosomes are large macromolecules responsible for protein synthesisand they consist of both RNA and proteins. Each ribosome is made of one large and one small subunit. Even though the ribosome is one of the most studied machineries in the cell there is a gap in our understanding of how this macromolecule functions in vivo. In this project we aimed to develop a method for tracking a specific subset of ribosomes using super-resolution fluorescence microscopy. This was achieved by using the MS2 coat protein (MS2CP) fused to a fluorescent marker and by modifying ribosomes to have the RNA loop to
APA, Harvard, Vancouver, ISO, and other styles
4

Błażków-Schmalzbauer, Katarzyna [Verfasser], and Riccardo [Akademischer Betreuer] Giunta. "In vivo Tracking von Mikrofetttransplantaten / Katarzyna Błażków-Schmalzbauer ; Betreuer: Riccardo Giunta." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2017. http://d-nb.info/1148276165/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Broström, Oscar. "Development of a single-molecule tracking assay for the lac repressor in Escherichia coli." Thesis, Uppsala universitet, Institutionen för cell- och molekylärbiologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-388075.

Full text
Abstract:
Gene regulation by transcription factors are one of the key processes that are important to sustain all kinds of life. In the prokaryote Escherichia coli this has shown to especially crucial. The operator sequence to which these transcription factors bind to are very small in comparison to the whole genome of E. coli, thus the question becomes how these proteins can find these sequences quickly. One particularly well-studied transcription factor in this regard is the lac repressor. It has been shown that this transcription factors finds its operators faster than the limit of three dimensional
APA, Harvard, Vancouver, ISO, and other styles
6

Delestro, Felipe. "A multiple cell tracking method dedicated to the analysis of memory formation in vivo." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE038/document.

Full text
Abstract:
La formation et la consolidation de souvenirs est l’une des caractéristiques fondamentales du cerveau, responsable de l’apprentissage et de comportements cognitifs élevés. Malgré son importance, ce processus n’est pas entièrement compris à ce jour et fait l’objet de nombreux travaux de de recherche, allant de l’analyse de l’activité des synapses individuelles à la reconstruction de cartes de connectivité du cerveau. Dans ce travail, nous proposons une approche intégrée pour mesurer in vivo l’activité de chaque neurone du corps pédonculé (Mushroom body, MB) de la Drosophila melanogaster dans un
APA, Harvard, Vancouver, ISO, and other styles
7

Sweeney, Sean Kenneth. "Non-invasive stem cell tracking using novel nanomaterials : in vitro and ex vivo studies." Thesis, University of Iowa, 2012. https://ir.uiowa.edu/etd/2282.

Full text
Abstract:
As research and clinical use of stem cell therapies progresses, it is becoming more evident that being able to visualize the stem cell transplant in vivo is of great benefit to the researcher or clinician. As a result, researchers are working to address this need. Our lab is collaborating to develop novel, multimodal nanomaterials, one with a core of mesoporous silica, and the other with a core of gadolinium oxide. Varying modifications have been made as needs arose. Human mesenchymal stem cells (MSCs) were isolated from bone marrow aspirates and confirmed to be positive for STRO-1, a common M
APA, Harvard, Vancouver, ISO, and other styles
8

Monem, Ramey G. "ATTENTIONAL BIAS TO ALCOHOL IN AN IN VIVO SETTING." UKnowledge, 2018. https://uknowledge.uky.edu/psychology_etds/146.

Full text
Abstract:
The phenomenon of attentional bias to alcohol, where drinkers demonstrate a preference in allocating visual attention towards alcohol-related stimuli rather than neutral stimuli, is well-established. Studies detecting this phenomenon typically utilize computer-administered stimulus presentation tasks such as the visual dot probe task. Despite their frequency of use, these tasks do not represent the ways in which individuals typically encounter alcohol outside of the laboratory. Typical environments where alcohol is present allow individuals to move about freely and encounter alcohol while also
APA, Harvard, Vancouver, ISO, and other styles
9

Robson, Alex J. "Single particle tracking as a tool to investigate the dynamics of integrated membrane complexes in vivo." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:7769f80c-a56d-4513-9123-1d65ef8c9911.

Full text
Abstract:
The last decade has seen substantial advances in single-molecule tracking methods with nano-metre level precision. A powerful tool in single-molecule tracking is fluorescence imaging. One particular application, total internal reflection microscopy, can capture biological processes at high contrast video rate imaging at the single-particle level. This thesis presents methodologically novel methods in analysing single particle tracking data. Presented here is an application of a Bayesian statistical approach that can discriminate between the different diffusive modes that appear with the presen
APA, Harvard, Vancouver, ISO, and other styles
10

Bouccara, Sophie. "Time-gated detection of near-infrared emitting quantum dots for in vivo cell tracking in small animals." Paris 7, 2014. https://pastel.archives-ouvertes.fr/tel-01083824.

Full text
Abstract:
Le suivi de cellules in vivo est essentiel afin de déterminer par exemple les voies de migration de cellules tumorales circulantes ou encore pour suivre l'activité de cellules immunitaires. La microscopie de fluorescence assure une bonne résolution ainsi qu'une grande sensibilité et semble adaptée à la détection de cellules uniques in vivo dans un modèle de souris. Néanmoins, sa sensibilité est limitée par deux principaux facteurs: le signal d'autofluorescence des tissus d'une part, et l'absorption et la diffusion de la lumière visible dans les tissus d'autre part. Nous présentons la synthèse
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "In vivo tracking"

1

Park, Susanna B., Cindy S.-Y. Lin, and Matthew C. Kiernan. Axonal excitability: molecular basis and assessment in the clinic. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199688395.003.0009.

Full text
Abstract:
Axonal excitability techniques were developed to assess axonal resting membrane potential and ion channel function in vivo, and thereby provide greater molecular understanding of the activity of voltage gated ion channels and ion pumps underlying nerve and membrane function. Axonal excitability studies provide complimentary information to conventional nerve conduction studies, using submaximal stimuli to examine the properties underlying the excitability of the axon. Such techniques have been developed both as a research technique to examine disease pathophysiology and as a clinical investigat
APA, Harvard, Vancouver, ISO, and other styles
2

Cosyns, Bernard, Thor Edvardsen, Krasimira Hristova, and Hyung-Kwan Kim. Left ventricle: systolic function. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198726012.003.0020.

Full text
Abstract:
The assessment of left ventricular (LV) systolic function is one of the most important parts of correct diagnosis, selection of treatment strategy or medications, and prediction of prognosis. Although cardiac magnetic resonance imaging is generally accepted as the gold standard in vivo imaging modality for assessing LV systolic function, its practical use is limited due to its limited availability, high cost, and the presence of conditions precluding its performance such as a pacemaker, claustrophobia, and severe arrhythmia. Thus, transthoracic echocardiography is a first-line imaging modality
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "In vivo tracking"

1

Neri, Raul, Asanka Sajini Yapa, and Stefan H. Bossmann. "Energy Transfer Systems for In Vivo Tracking." In Cell Tracking. Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0364-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Hana, and Mi-Young Son. "Using Bioengineered Fluorescence for Selective In Vivo and Ex Vivo Tracking of Intestinal Organoids Derived from Human Pluripotent Stem Cells." In Cell Tracking. Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0364-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Han, Dong, and Joseph C. Wu. "Using Bioengineered Bioluminescence to Track Stem Cell Transplantation In Vivo." In Cell Tracking. Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0364-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eschliman, Kayla, and Stefan H. Bossmann. "Protease-Activated Sensors for In Vivo Imaging of Cell Populations." In Cell Tracking. Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0364-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Eschliman, Kayla, and Stefan H. Bossmann. "Antibody-Targeted Magnetic Nanoparticles to Track Immune Cells In Vivo." In Cell Tracking. Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0364-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Basel, Matthew T. "Lipophilic Near-Infrared Dyes for In Vivo Fluorescent Cell Tracking." In Cell Tracking. Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0364-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shen, Shufang, and Chao Wang. "Upconversion Fluorescent Nanoprobe for Highly Sensitive In Vivo Cell Tracking." In Cell Tracking. Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0364-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Villarreal, Paula, Rahul Pal, and Gracie Vargas. "In Vivo Epithelial Metabolic Imaging Using a Topical Fluorescent Glucose Analog." In Cell Tracking. Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0364-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rush, Catherine M., and James M. Brewer. "Tracking Dendritic Cells In Vivo." In Methods in Molecular Biology. Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-585-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Malide, Daniela. "In Vivo Cell Tracking Using Two-Photon Microscopy." In In Vivo Fluorescence Imaging. Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3721-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "In vivo tracking"

1

Gouveia, Rúben, Evangelos Karapanos, and Marc Hassenzahl. "Activity Tracking in vivo." In CHI '18: CHI Conference on Human Factors in Computing Systems. ACM, 2018. http://dx.doi.org/10.1145/3173574.3173936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Charles P. "Optical Techniques For Tracking Cells In Vivo." In CLEO: Science and Innovations. OSA, 2011. http://dx.doi.org/10.1364/cleo_si.2011.cmdd1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lin, Charles P. "Optical Techniques For Tracking Cells In Vivo." In Optical Molecular Probes, Imaging and Drug Delivery. OSA, 2011. http://dx.doi.org/10.1364/omp.2011.otub1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mehmood, Nasir, and Syed Mahfuzul Aziz. "Magnetic sensing technology for in vivo tracking." In 2012 International Conference on Emerging Technologies (ICET). IEEE, 2012. http://dx.doi.org/10.1109/icet.2012.6375423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Luo, Jianwen, Kana Fujikura, Shunichi Homma, and Elisa Konofagou. "AUTOMATED CONTOUR TRACKING FOR MYOCARDIAL ELASTOGRAPHY IN VIVO." In 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, 2007. http://dx.doi.org/10.1109/isbi.2007.357011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Masson, Norbert, Philippe Zanne, Florent Nageotte, and Michel de Mathelin. "Segmentation of in vivo target prior to tracking." In SPIE Medical Imaging, edited by Benoit M. Dawant and David R. Haynor. SPIE, 2011. http://dx.doi.org/10.1117/12.878342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cui, Jing, Scott T. Acton, and Zongli Lin. "Particle Filter Tracking of Multiple Rolling Leukocytes in Vivo." In 2006 Fortieth Asilomar Conference on Signals, Systems and Computers. IEEE, 2006. http://dx.doi.org/10.1109/acssc.2006.354871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hu, Chengzhi, Qi Zhang, Tobias Meyer, et al. "In vivo tracking and measurement of pollen tube vesicle motion." In 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017. http://dx.doi.org/10.1109/icra.2017.7989410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Homma, Kimi, Atsushi Suetsugu, Takahiro Ochiya, and Robert M. Hoffman. "Abstract 1390: In vivo tracking of cancer-cell-derived exosomes." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-1390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Li, Clemens Alt, Pulin Li, et al. "In vivo cell tracking and quantification method in adult zebrafish." In SPIE BiOS, edited by Daniel L. Farkas, Dan V. Nicolau, and Robert C. Leif. SPIE, 2012. http://dx.doi.org/10.1117/12.909632.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "In vivo tracking"

1

Balaji, Kethandapatti C., Xiaolan Fang, Kennyth Gyabaah, Sandy Sink, Bita Nickkholgh, and Tammy Cockerham. Tracking Origins of Prostate Cancer: An Innovative in Vivo Modeling. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ada614026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Balaji, Kethandapatti C., Xiaolan Fang, Kennyth Gyabaah, Sandy Sink, Tammy Cockerham, and Bita Nickkoholgh. Tracking Origins of Prostate Cancer - An Innovative In Vivo Modeling. Defense Technical Information Center, 2013. http://dx.doi.org/10.21236/ada591966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Balaji, Kethandapatti C., Xiaolan Fang, Kennyth Gyabaah, and Sandy Sink. Tracking Origins of Prostate Cancer - An Innovative in vivo Modeling. Defense Technical Information Center, 2011. http://dx.doi.org/10.21236/ada554390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Balaji, Kethandapatti C., Xiaolan Fang, Kennyth Gyabaah, and Sandy Sink. Tracking Origins of Prostate Cancer - An Innovative In Vivo Modeling. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada574337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Zhenghong. SPECT Imaging for in vivo tracking of NIS containing stem cells. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1072168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Michelson, A. D., M. R. Barnard, H. B. Hechtman, H. Macgregor, and R. J. Connolly. In Vivo Tracking of Platelets: Circulating Degranulated Platelets Rapidly Lose Surface P-Selectin but Continue to Circulate and Function. Defense Technical Information Center, 1995. http://dx.doi.org/10.21236/ada360258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!