Academic literature on the topic 'Inconel 718'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Inconel 718.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Inconel 718"
Zheng, Jin, Yaoman Zhang, and Hanying Qiao. "Milling Mechanism and Chattering Stability of Nickel-Based Superalloy Inconel 718." Materials 16, no. 17 (August 22, 2023): 5748. http://dx.doi.org/10.3390/ma16175748.
Full textMakhofane, Milton M., Hertzog Bissett, Andrei V. Kolesnikov, Kasturie Premlall, and Ryno van der Merwe. "Plasma spheroidisation of Inconel 718." MATEC Web of Conferences 406 (2024): 03007. https://doi.org/10.1051/matecconf/202440603007.
Full textZhao, Heng, Qing Bin Liu, Gang Lee, and Da Wei Yao. "The Addition of Zr in Nickel-Based Inconel 718 Superalloy to Prevent Hot Cracks Propagation." Key Engineering Materials 727 (January 2017): 3–8. http://dx.doi.org/10.4028/www.scientific.net/kem.727.3.
Full textHa, Seong-Ho, Jaegu Choi, and Dong-Hyuk Kim. "Investigating Oxide Formation and Growth in Inconel 718 Oxidized at High Temperatures." Journal of Nanoelectronics and Optoelectronics 19, no. 10 (October 1, 2024): 1007–10. http://dx.doi.org/10.1166/jno.2024.3655.
Full textRen, Jia Long, Qing Yu Zheng, Ren He, and Chun Yan Zhang. "The Cutting Simulation of Inconel 718." Applied Mechanics and Materials 43 (December 2010): 717–21. http://dx.doi.org/10.4028/www.scientific.net/amm.43.717.
Full textAggarwal, Vivek, Rajiv K. Garg, and Sehijpal Singh Khangura. "Technological Innovations in Machining of Inconel 718." International Journal of Manufacturing, Materials, and Mechanical Engineering 5, no. 2 (April 2015): 17–43. http://dx.doi.org/10.4018/ijmmme.2015040102.
Full textZeng, Jun Ling, Wan Xiu Hai, Jun Hu Meng, and Jin Jun Lu. "Friction and Wear of Ti3SiC2-Ag/Inconel 718 Tribo-Pair under a Hemisphere-on-Disk Contact." Key Engineering Materials 602-603 (March 2014): 507–10. http://dx.doi.org/10.4028/www.scientific.net/kem.602-603.507.
Full textHaidong, Zhao, Zou Ping, Ma Wenbin, and Zhou Zhongming. "A Study on Ultrasonic Elliptical Vibration Cutting of Inconel 718." Shock and Vibration 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/3638574.
Full textIsik, Murat. "Additive manufacturing and characterization of a stainless steel and a nickel alloy." Materials Testing 65, no. 3 (March 1, 2023): 378–88. http://dx.doi.org/10.1515/mt-2022-0278.
Full textMohandas, Naveen Karuthodi, Alex Giorgini, Matteo Vanazzi, Ton Riemslag, Sean Paul Scott, and Vera Popovich. "Hydrogen Embrittlement of Inconel 718 Manufactured by Laser Powder Bed Fusion Using Sustainable Feedstock: Effect of Heat Treatment and Microstructural Anisotropy." Metals 13, no. 2 (February 17, 2023): 418. http://dx.doi.org/10.3390/met13020418.
Full textDissertations / Theses on the topic "Inconel 718"
Chen, Qiguang. "Fatigue and fracture in Inconel 718-copper-Inconel 718 explosion-bonded composites." Thesis, Massachusetts Institute of Technology, 1990. https://hdl.handle.net/1721.1/128798.
Full textTitle as it appears in the M.I.T. Graduate List, Feb. 1990: Fatigue and fracture in explosion-bonded Inconel 718-copper-Inconel 718 composites.
Includes bibliographical references.
by Chikuang Chen.
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1990.
Zhao, Mengxiong. "Ultrasonic fatigue study of Inconel 718." Thesis, Paris 10, 2018. http://www.theses.fr/2018PA100063/document.
Full textInconel 718 is widely used in turbine disk of aeronautic engines, due to its high resistance to corrosion, oxidation, thermal creep deformation and high mechanical strength at elevated temperature. The total cycle of these mechanical components is up to 109~1010 during its whole lifetime. It endures high-amplitude low-frequency loading including centrifugal force or thermal stress, and also low-amplitude high-frequency loading came from vibration of blade.In this work, the very high cycle fatigue (VHCF) behaviour of Inconel 718 with self-heating phenomenon without any cooling is studied using ultrasonic fatigue system at 20KHz. Acquisition system is improved using NI capture card with LabView for monitoring the frequency, temperature, displacement and so on during all the tests. Keyence laser sensor with two probes at the top and bottom surfaces of the specimens is used to reveal the frequency and vibration mode. The difference of mean values between these two probes is the elongation of the specimen caused by self-heating phenomenon.Three sets of materials with different heat treatment, As-Received (AR), Directly Aged (DA) and Directly Aged High Quality (DAHQ) from ONERA and SAFRAN are compared. The difference of grain size, phase, precipitate particle, etc. is investigated by metallographic micrograph using optical microscope (OM) and scanning electron microscope (SEM). Quasi-static uniaxial tensile property and cyclic stress-strain response is also proposed. The transition from cyclic hardening to cyclic softening appears after aged heat treatment. Finally, fracture surfaces are observed using optical camera and scanning electron microscope in order to identify the mechanism of fracture of Inconel 718 in the VHCF domain
Knock, Nathaniel Oscar. "CHARACTERIZATION OF INCONEL 718: USING THE GLEEBLE AND VARESTRAINT TESTING METHODS TO DETERMINE THE WELDABILITY OF INCONEL 718." DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/396.
Full textTavakoli, Manshadi Salar. "Laser assisted machining of Inconel 718 superalloy." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40803.
Full textCette recherche évalue l'effet de l’usinage assisté par Laser (UAL) sur l’usinabilité d'Inconel 718 en utilisant deux outils : Le premier est enrobé d’une triple couche de carbure et le second est en céramique sialon. Cette étude a été motivée par la difficulté d’usiner IN718 conventionnellement. Dans ce travail, un rayon laser Nd:YAG a été utilisé comme une source de chaleur localisée pour adoucir thermiquement la pièce avant l'usinage. Les expériences représentaient les opérations de finitions. Une optimisation a été exécutée à travers une sélection unitaire pour une large gamme de vitesses de coupes (aux limites de 100 à 500 m/min) et de vitesses d’avance (aux limites de 0.125 à 0.5 mm/rév). Les résultats ont manifesté une réduction significative dans toutes les trois composantes de la force de coupe quand l'adoucissement thermique provoqué par le laser était mis en effet. D’après les tests, les valeurs optimales de vitesse de coupe et d’avance sont 200 m/min et 0.25 mm/rév pour l’outil avec la couche de carbure et 300 m/min et 0.4 mm/rév pour l’outil en céramique. Dans ces conditions optimales, des épreuves de tenue d’outils ont été réalisées. Une augmentation du taux d’enlèvement de matière a été démontrée lors de l’application de l’UAL en comparaison à l’usinage conventionnel. Une augmentation dans le taux d’enlèvement de matière de 300% a été établie pour l’outil enrobé de carbure avec une légère réduction en tenue d’outil. La raison de cette réduction est le fait que ces couches qui offrent une protection thermique et une résistance d’usure ne pouvaient pas résister aux températures élevées associées à l’UAL. Une augmentation de 800% dans le taux d’enlèvement de matière a été accomplie pour l’outil en céramique avec une amélioration de tenue d’outils d’environ 50%. Dans tous les cas, une amélioration de l’intégrité de la surface à ét
Yang, Libin. "Modelling of the inertia welding of Inconel 718." Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/760/.
Full textChang, Min Carleton University Dissertation Engineering Mechanical. "Damage tolerance of Inconel 718 turbine disc material." Ottawa, 1991.
Find full textDeng, Dunyong. "Additively Manufactured Inconel 718 : Microstructures and Mechanical Properties." Licentiate thesis, Linköpings universitet, Konstruktionsmaterial, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-144491.
Full textInformation about opponent and seminar are missing.
Cazic, Ivan. "Coaxial laser wire additive manufacturing of Inconel 718." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0113.
Full textThe use of Inconel 718 alloy in additive manufacturing has been the subject of numerous studies in recent years. It has appeared early that the control of the morphology and size of the grains forming during solidification is a formidable challenge. Our work aims to address this challenge in the case of coaxial laser wire technology by providing a better understanding of the formation of microstructures, including the conditions for the appearance of fine equiaxed grains observed at the bottom of the melt pools.First, the stability of the process as well as the thermal aspects have been investigated, in connection with solidification. Thanks to fast imaging and thermal imaging, we have been able to estimate the solidification conditions at the bottom of the bath.In a second step, we have analyzed by EBSD the equiaxed zones and we have observed that they are very often clustered with twin relations compliant with some icosahedral symmetry. It is proposed that this particular organization is the signature of an "Icosahedral Short Range Order mediated nucleation" (ISRO) mechanism, which would be favored by the high cooling rates imposed by the process on the one hand, and by local enrichments of the liquid at the bottom of the melt pool during the melting of the previous layer on the other hand.We have therefore characterized the equiaxed zones by SEM and TEM. We have identified TiC carbides in the grain clusters and we have highlighted a strong local enrichment in Nb around the carbides by EDS. We have been able to identify Nb2Ni at the surface of a TiC carbide which requires a high local Nb composition to appear.From these observations we propose a possible scenario for the appearance of fine equiaxed grains in Inconel 718 deposited by the coaxial laser wire technology. TiC would play an important role by capturing minority elements during remelting, and by promoting the local appearance of icosahedral clusters in the liquid that would favor the nucleation of grains whose relative orientations would reflect this icosahedral order
Gustafsson, David. "High temperature fatigue crack propagation behaviour of Inconel 718." Doctoral thesis, Linköpings universitet, Hållfasthetslära, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-85934.
Full textGustafsson, David. "Constitutive and fatigue crack propagation behaviour of Inconel 718." Licentiate thesis, Linköpings universitet, Hållfasthetslära, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-72610.
Full textBooks on the topic "Inconel 718"
Fox, Stephen Peter. Precipitation reactions in Inconel Alloy 718. Birmingham: University of Birmingham, 1988.
Find full textSharman, Adrian. An investigation into the high speed machining of Inconel 718. Birmingham: University of Birmingham, 1998.
Find full textInternational Symposium on Superalloys 718, 625, 706 and Various Derivatives (4th 1997). Superalloys 718, 625, 706 and various derivatives: Proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives. Warrendale, PA: The Society, 1997.
Find full textA, Johnson Walter, Maurer Gernant A, and United States. National Aeronautics and Space Administration., eds. Effects of tin on microstructure and mechanical behavior of Inconel 718. [Washington, D.C.?]: National Aeronautics and Space Administration, 1985.
Find full textA, Johnson Walter, Maurer Gernant A, and United States. National Aeronautics and Space Administration, eds. Effects of tin on microstructure and mechanical behavior of Inconel 718. [Washington, D.C.?]: National Aeronautics and Space Administration, 1985.
Find full textJames, William F. Mechanical properties of inconel 718 and nickel 201 alloys after thermal histories simulating brazing and high temperature service. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1985.
Find full textInternational Symposium on Superalloys 718, 625, 706 and Various Derivatives (5th 2001). Superalloys 718, 625, 706 and various derivatives: Proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives : held June 17-20, 2001. Warrendale, Pennsylvania: TMS, 2001.
Find full textInternational Symposium on Superalloys 718, 625, 706 and Various Derivatives (6th 2005). Superalloys 718, 625, 706 and various derivatives: Proceedings of the Sixth International Symposium on Superalloys 718, 625, 706 and Various Derivatives : held October 2-5, 2005. Warrendale, Pa: TMS, 2005.
Find full textUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., ed. A mechanical property and stress corrosion evaluation of VIM-ESR-VAR work strengthened and direct double aged inconel 718 bar material. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Find full textUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., ed. A mechanical property and stress corrosion evaluation of VIM-ESR-VAR work strengthened and direct double aged inconel 718 bar material. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Find full textBook chapters on the topic "Inconel 718"
Klemm, Daniel. "Nickelbasis Legierung Inconel® 718." In Lokale Verformungsevolution von im Elektronenstrahlschmelzverfahren hergestellten IN718-Gitterstrukturen, 57–70. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-42688-0_3.
Full textBenn, Raymond C., and Randy P. Salva. "Additively Manufactured INCONEL(®) Alloy 718." In Superalloy 718 and Derivatives, 455–69. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118495223.ch35.
Full textClos, R., H. Lorenz, U. Schreppel, and P. Veit. "Verformungslokalisierung und Spanbildung in Inconel 718." In Hochgeschwindigkeitsspanen metallischer Werkstoffe, 426–45. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527605142.ch19.
Full textRessa, Aaron, Timothy Liutkus, Jeremy D. Seidt, and Amos Gilat. "Time Dependent Response of Inconel 718." In Challenges in Mechanics of Time Dependent Materials, Volume 2, 101–4. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22443-5_12.
Full textJasthi, Bharat K., Edward Y. Chen, William J. Arbegast, Matthew Heringer, Douglas R. Bice, and Stanley M. Howard. "Friction Stir Processing of Cast Inconel 718." In Friction Stir Welding and Processing VI, 25–32. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118062302.ch4.
Full textNeidel, Andreas, Lothar Engel, Hermann Klingele, Jörg Völker, Biljana Matijasevic-Lux, Johann Grosch, and Horst Wanzek. "Werkstoff-Nr. 2.4668 (NiCr19NbMo), Markenname Inconel 718." In Handbuch Metallschäden, 722. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2012. http://dx.doi.org/10.1007/978-3-446-42966-6_37.
Full textFu, Shuhong, Jianxin Dong, Maicang Zhang, Ning Wang, and Xishan Xie. "Research on Inconel 718 Type Alloys with Improvement of Temperature Capability." In Superalloy 718 and Derivatives, 281–96. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118495223.ch21.
Full textHirschmann, A. C. O., M. M. Silva, C. Moura Neto, M. Ueda, C. B. Mello, M. J. R. Barboza, and A. A. Couto. "Surface Modification of Inconel 718 Superalloy by Plasma Immersion Ion Implantation." In Superalloy 718 and Derivatives, 992–1001. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118495223.ch75.
Full textWang, Zixing, Dianhua Zhou, Qun Deng, Guosheng Chen, and Wei Xie. "The Microstructure and Mechanical Properties of Inconel 718 Fine Grain Ring Forging." In Superalloy 718 and Derivatives, 343–49. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118495223.ch26.
Full textBor, Hui-Yun, Chao-Nan Wei, Huu Tri Nguyen, An-Chou Yeh, and Chen-Ming Kuo. "Aging Effects on the γ′ and γ″ Precipitates of Inconel 718 Superalloy." In Superalloy 718 and Derivatives, 678–88. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118495223.ch52.
Full textConference papers on the topic "Inconel 718"
Wong, W., E. Irissou, J. G. Legoux, F. Bernier, P. Vo, S. Yue, S. Michiyoshi, and H. Fukanuma. "Cold Spray Forming Inconel 718." In ITSC 2012, edited by R. S. Lima, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, A. McDonald, and F. L. Toma. ASM International, 2012. http://dx.doi.org/10.31399/asm.cp.itsc2012p0243.
Full textBrooks, J. W., and P. J. Bridges. "Metallurgical Stability of Inconel Alloy 718." In Superalloys. TMS, 1988. http://dx.doi.org/10.7449/1988/superalloys_1988_33_42.
Full textChen, Q., N. Kawagoishi, K. Othubo, E. Kondo, M. Sakai, and T. Kizaki. "Ultrasonic Fatigue Strength in Inconel 718." In Superalloys. TMS, 2001. http://dx.doi.org/10.7449/2001/superalloys_2001_573_582.
Full textBenn, R., and R. Salva. "Additively Manufactured INCONEL® Alloy 718." In Superalloys. John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.7449/2010/superalloys_2010_455_469.
Full textShin, Yung C., and Jin-Nam Kim. "Plasma Enhanced Machining of Inconel 718." In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0791.
Full textSainte-Catherine, C., and M. Jeandin. "Laser Cladding of Astroloy on Inconel 718." In Superalloys. TMS, 1989. http://dx.doi.org/10.7449/1989/superalloys_1989_479_488.
Full textLewandowski, M. S., V. Sahai, R. C. Wilcox, C. A. Matlock, and R. A. Overfelt. "High Temperature Deformation of INCONEL 718 Castings." In Superalloys. TMS, 1994. http://dx.doi.org/10.7449/1994/superalloys_1994_345_354.
Full textCobb, Gregory R., Adam D. Nesmith, Andrew J. Lingenfelter, and Ryan P. O'Hara. "Vibrational Properties of Additively Manufactured Inconel 718." In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0489.
Full textZYSK, KEVIN. "Pulsed CO2 laser welding of Inconel 718." In 26th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-2514.
Full textStewart, William R., and Thomas E. Dyson. "Conjugate Heat Transfer Scaling for Inconel 718." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64873.
Full textReports on the topic "Inconel 718"
Chaudhury, Prabir K., and Dan Zhao. Atlas of Formability: INCONEL 718. Fort Belvoir, VA: Defense Technical Information Center, July 1992. http://dx.doi.org/10.21236/ada268350.
Full textStrons, P. S., J. L. Bailey, J. Song, and S. D. Chemerisov. Analysis of the NorthStar Inconel 718 Window. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1576467.
Full textFietek, Carter, and Edmundo Corona. Power Law Hardening Fit for Inconel 718 Material. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1774745.
Full textSaleh, Tarik A., Hong Bach, Stuart A. Maloy, Tobias J. Romero, and Osman Anderoglu. Mechanical Properties of an Irradiated Inconel 718 Beam Window. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1054667.
Full textTaller, Stephen, Annabelle Le Coq, Caleb Massey, Jesse Werden, Matthew Lynch, Matthew Lynch, and Kory Linton. Report on Evolution of Inconel 718 Following HFIR Irradiation. Office of Scientific and Technical Information (OSTI), October 2022. http://dx.doi.org/10.2172/1963154.
Full textWeerasooriya, T., and T. Nicholas. Overload Effects in Sustained Load Crack Growth in Inconel 718. Fort Belvoir, VA: Defense Technical Information Center, November 1985. http://dx.doi.org/10.21236/ada162739.
Full textGREENE, G. A., and C. C. FINFROCK. OXIDATION OF INCONEL 718 IN AIR AT TEMPERATURES FROM 973K TO 1620K. Office of Scientific and Technical Information (OSTI), October 2000. http://dx.doi.org/10.2172/777719.
Full textGREENE, G. A. DEPENDENCE OF TOTAL HEMISPHERICAL EMISSIVITY OF INCONEL-718 ON SURFACE OXIDATION AND TEMPERATURE. Office of Scientific and Technical Information (OSTI), September 1999. http://dx.doi.org/10.2172/750781.
Full textModdeman, W., W. Jones, T. Koeller, S. Craven, and D. Kramer. Chemistry of glass-ceramic to metal bonding for header applications: III. Treatment of Inconel 718 to eliminate hot cracking during laser welding. Office of Scientific and Technical Information (OSTI), April 1987. http://dx.doi.org/10.2172/6454838.
Full textLillard, R. S., D. L. Pile, and D. P. Butt. Materials corrosion and mitigation strategies for APT, end of FY `97 report: Inconel 718 in-beam corrosion rates from the `97 A6 irradiation. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/656710.
Full text