Academic literature on the topic 'Incremental learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Incremental learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Incremental learning"
Tsvetkov, V. Ya. "INCREMENTAL LEARNING." Образовательные ресурсы и технологии, no. 4 (2021): 44–52. http://dx.doi.org/10.21777/2500-2112-2021-4-44-52.
Full textSim, Kwee-Bo, Kwang-Seung Heo, Chang-Hyun Park, and Dong-Wook Lee. "The Speaker Identification Using Incremental Learning." Journal of Korean Institute of Intelligent Systems 13, no. 5 (October 1, 2003): 576–81. http://dx.doi.org/10.5391/jkiis.2003.13.5.576.
Full textBoukli Hacene, Ghouthi, Vincent Gripon, Nicolas Farrugia, Matthieu Arzel, and Michel Jezequel. "Transfer Incremental Learning Using Data Augmentation." Applied Sciences 8, no. 12 (December 6, 2018): 2512. http://dx.doi.org/10.3390/app8122512.
Full textBasu Roy Chowdhury, Somnath, and Snigdha Chaturvedi. "Sustaining Fairness via Incremental Learning." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 6 (June 26, 2023): 6797–805. http://dx.doi.org/10.1609/aaai.v37i6.25833.
Full textRui, Xue, Ziqiang Li, Yang Cao, Ziyang Li, and Weiguo Song. "DILRS: Domain-Incremental Learning for Semantic Segmentation in Multi-Source Remote Sensing Data." Remote Sensing 15, no. 10 (May 12, 2023): 2541. http://dx.doi.org/10.3390/rs15102541.
Full textShen, Furao, Hui Yu, Youki Kamiya, and Osamu Hasegawa. "An Online Incremental Semi-Supervised Learning Method." Journal of Advanced Computational Intelligence and Intelligent Informatics 14, no. 6 (September 20, 2010): 593–605. http://dx.doi.org/10.20965/jaciii.2010.p0593.
Full textMadhusudhanan, Sathya, Suresh Jaganathan, and Jayashree L S. "Incremental Learning for Classification of Unstructured Data Using Extreme Learning Machine." Algorithms 11, no. 10 (October 17, 2018): 158. http://dx.doi.org/10.3390/a11100158.
Full textCHALUP, STEPHAN K. "INCREMENTAL LEARNING IN BIOLOGICAL AND MACHINE LEARNING SYSTEMS." International Journal of Neural Systems 12, no. 06 (December 2002): 447–65. http://dx.doi.org/10.1142/s0129065702001308.
Full textLiMin Fu, Hui-Huang Hsu, and J. C. Principe. "Incremental backpropagation learning networks." IEEE Transactions on Neural Networks 7, no. 3 (May 1996): 757–61. http://dx.doi.org/10.1109/72.501732.
Full textHan, Zhi, De-Yu Meng, Zong-Ben Xu, and Nan-Nan Gu. "Incremental Alignment Manifold Learning." Journal of Computer Science and Technology 26, no. 1 (January 2011): 153–65. http://dx.doi.org/10.1007/s11390-011-9422-9.
Full textDissertations / Theses on the topic "Incremental learning"
Westendorp, James Computer Science & Engineering Faculty of Engineering UNSW. "Robust incremental relational learning." Awarded by:University of New South Wales. Computer Science & Engineering, 2009. http://handle.unsw.edu.au/1959.4/43513.
Full textHILLNERTZ, FREDRIK. "Incremental Self Learning Road map." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-155910.
Full textKim, Min Sub Computer Science & Engineering Faculty of Engineering UNSW. "Reinforcement learning by incremental patching." Awarded by:University of New South Wales, 2007. http://handle.unsw.edu.au/1959.4/39716.
Full textGiritharan, Balathasan. "Incremental Learning with Large Datasets." Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc149595/.
Full textMonica, Riccardo. "Deep Incremental Learning for Object Recognition." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12331/.
Full textSindhu, Muddassar. "Incremental Learning and Testing of Reactive Systems." Licentiate thesis, KTH, Teoretisk datalogi, TCS, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-37763.
Full textQC 20110822
Suryanto, Hendra Computer Science & Engineering Faculty of Engineering UNSW. "Learning and discovery in incremental knowledge acquisition." Awarded by:University of New South Wales. School of Computer Science and Engineering, 2005. http://handle.unsw.edu.au/1959.4/20744.
Full textFlorez-Larrahondo, German. "Incremental learning of discrete hidden Markov models." Diss., Mississippi State : Mississippi State University, 2005. http://library.msstate.edu/etd/show.asp?etd=etd-05312005-141645.
Full textMOTTA, EDUARDO NEVES. "SUPERVISED LEARNING INCREMENTAL FEATURE INDUCTION AND SELECTION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=28688@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
PROGRAMA DE EXCELENCIA ACADEMICA
A indução de atributos não lineares a partir de atributos básicos é um modo de obter modelos preditivos mais precisos para problemas de classificação. Entretanto, a indução pode causar o rápido crescimento do número de atributos, resultando usualmente em overfitting e em modelos com baixo poder de generalização. Para evitar esta consequência indesejada, técnicas de regularização são aplicadas, para criar um compromisso entre um reduzido conjunto de atributos representativo do domínio e a capacidade de generalização Neste trabalho, descrevemos uma abordagem de aprendizado de máquina supervisionado com indução e seleção incrementais de atributos. Esta abordagem integra árvores de decisão, support vector machines e seleção de atributos utilizando perceptrons esparsos em um framework de aprendizado que chamamos IFIS – Incremental Feature Induction and Selection. Usando o IFIS, somos capazes de criar modelos regularizados não lineares de alto desempenho utilizando um algoritmo com modelo linear. Avaliamos o nosso sistema em duas tarefas de processamento de linguagem natural em dois idiomas. Na primeira tarefa, anotação morfossintática, usamos dois corpora, o corpus WSJ em língua inglesa e o Mac-Morpho em Português. Em ambos, alcançamos resultados competitivos com o estado da arte reportado na literatura, alcançando as acurácias de 97,14 por cento e 97,13 por cento, respectivamente. Na segunda tarefa, análise de dependência, utilizamos o corpus da CoNLL 2006 Shared Task em português, ultrapassando os resultados reportados durante aquela competição e alcançando resultados competitivos com o estado da arte para esta tarefa, com a métrica UAS igual a 92,01 por cento. Com a regularização usando um perceptron esparso, geramos modelos SVM que são até 10 vezes menores, preservando sua acurácia. A redução dos modelos é obtida através da regularização dos domínios dos atributos, que atinge percentuais de até 99 por cento. Com a regularização dos modelos, alcançamos uma redução de até 82 por cento no tamanho físico dos modelos. O tempo de predição do modelo compacto é reduzido em até 84 por cento. A redução dos domínios e modelos permite também melhorar a engenharia de atributos, através da análise dos domínios compactos e da introdução incremental de novos atributos.
Non linear feature induction from basic features is a method of generating predictive models with higher precision for classification problems. However, feature induction may rapidly lead to a huge number of features, causing overfitting and models with low predictive power. To prevent this side effect, regularization techniques are employed to obtain a trade-off between a reduced feature set representative of the domain and generalization power. In this work, we describe a supervised machine learning approach that incrementally inducts and selects feature conjunctions derived from base features. This approach integrates decision trees, support vector machines and feature selection using sparse perceptrons in a machine learning framework named IFIS – Incremental Feature Induction and Selection. Using IFIS, we generate regularized non-linear models with high performance using a linear algorithm. We evaluate our system in two natural language processing tasks in two different languages. For the first task, POS tagging, we use two corpora, WSJ corpus for English, and Mac-Morpho for Portuguese. Our results are competitive with the state-of-the-art performance in both, achieving accuracies of 97.14 per cent and 97.13 per cent, respectively. In the second task, Dependency Parsing, we use the CoNLL 2006 Shared Task Portuguese corpus, achieving better results than those reported during that competition and competitive with the state-of-the-art for this task, with UAS score of 92.01 per cent. Applying model regularization using a sparse perceptron, we obtain SVM models 10 times smaller, while maintaining their accuracies. We achieve model reduction by regularization of feature domains, which can reach 99 per cent. Using the regularized model we achieve model physical size shrinking of up to 82 per cent. The prediction time is cut by up to 84 per cent. Domains and models downsizing also allows enhancing feature engineering, through compact domain analysis and incremental inclusion of new features.
Tortajada, Velert Salvador. "Incremental Learning approaches to Biomedical decision problems." Doctoral thesis, Universitat Politècnica de València, 2012. http://hdl.handle.net/10251/17195.
Full textTortajada Velert, S. (2012). Incremental Learning approaches to Biomedical decision problems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17195
Palancia
Books on the topic "Incremental learning"
United States. National Aeronautics and Space Administration., ed. Representation in incremental learning. Moffet Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1993.
Find full textGovea, Alejandro Dizan Vasquez. Incremental Learning for Motion Prediction of Pedestrians and Vehicles. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13642-9.
Full textHirsh, Haym. Incremental Version-Space Merging: A General Framework for Concept Learning. Boston, MA: Springer US, 1990.
Find full textHirsh, Haym. Incremental Version-Space Merging: A General Framework for Concept Learning. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-1557-5.
Full textChakraborty, Sanjay, Sk Hafizul Islam, and Debabrata Samanta. Data Classification and Incremental Clustering in Data Mining and Machine Learning. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93088-2.
Full textLim, Chee Peng. An incremental adaptive network for on-line, supervised learning and probability estimation. Sheffield: University of Sheffield, Dept. of Automatic Control & Systems Engineering, 1995.
Find full textProietto Salanitri, Federica, Serestina Viriri, Ulaş Bağcı, Pallavi Tiwari, Boqing Gong, Concetto Spampinato, Simone Palazzo, et al., eds. Artificial Intelligence in Pancreatic Disease Detection and Diagnosis, and Personalized Incremental Learning in Medicine. Cham: Springer Nature Switzerland, 2025. http://dx.doi.org/10.1007/978-3-031-73483-0.
Full textHwang, Francis. Effects of a Curriculum-Based Intervention on the Increments of Stimulus Control for Bidirectional Naming and Student Learning. [New York, N.Y.?]: [publisher not identified], 2021.
Find full textRepresentation in incremental learning. Moffet Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1993.
Find full textCrompton, Deon. Keras Python : Keras Incremental Training: Learning Rate Keras. Independently Published, 2021.
Find full textBook chapters on the topic "Incremental learning"
Utgoff, Paul E., James Cussens, Stefan Kramer, Sanjay Jain, Frank Stephan, Luc De Raedt, Ljupčo Todorovski, et al. "Incremental Learning." In Encyclopedia of Machine Learning, 515–18. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_386.
Full textGeng, Xin, and Kate Smith-Miles. "Incremental Learning." In Encyclopedia of Biometrics, 731–35. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-73003-5_304.
Full textGeng, Xin, and Kate Smith-Miles. "Incremental Learning." In Encyclopedia of Biometrics, 912–17. Boston, MA: Springer US, 2015. http://dx.doi.org/10.1007/978-1-4899-7488-4_304.
Full textE.Utgoff, Paul. "Incremental Learning." In Encyclopedia of Machine Learning and Data Mining, 1–5. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-1-4899-7502-7_130-1.
Full textUtgoff, Paul E. "Incremental Learning." In Encyclopedia of Machine Learning and Data Mining, 634–37. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_130.
Full textHirsh, Haym. "Incremental Batch Learning." In The Kluwer International Series in Engineering and Computer Science, 69–74. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-1557-5_6.
Full textHyder, Rakib, Ken Shao, Boyu Hou, Panos Markopoulos, Ashley Prater-Bennette, and M. Salman Asif. "Incremental Task Learning with Incremental Rank Updates." In Lecture Notes in Computer Science, 566–82. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-20050-2_33.
Full textM. Bagirov, Adil, Napsu Karmitsa, and Sona Taheri. "Incremental Clustering Algorithms." In Unsupervised and Semi-Supervised Learning, 185–200. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37826-4_7.
Full textTschumitschew, Katharina, and Frank Klawonn. "Incremental Statistical Measures." In Learning in Non-Stationary Environments, 21–55. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-8020-5_2.
Full textBouchachia, Abdelhamid, and Markus Prossegger. "Incremental Spectral Clustering." In Learning in Non-Stationary Environments, 77–99. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-8020-5_4.
Full textConference papers on the topic "Incremental learning"
Esaki, Yasushi, Satoshi Koide, and Takuro Kutsuna. "One-Shot Domain Incremental Learning." In 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10650928.
Full textYi, Huiyu. "Few-Shot Class-Incremental Learning with Class Centers and Contrastive Learning for Incremental Vehicle Recognition." In 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10650773.
Full textBaysal, Engin, and Cuneyt Bayilmis. "Incremental Machine Learning: Incremental Classification." In 2022 7th International Conference on Computer Science and Engineering (UBMK). IEEE, 2022. http://dx.doi.org/10.1109/ubmk55850.2022.9919487.
Full textKim, Seoyoon, Seongjun Yun, and Jaewoo Kang. "DyGRAIN: An Incremental Learning Framework for Dynamic Graphs." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/438.
Full textLuo, Zilin, Yaoyao Liu, Bernt Schiele, and Qianru Sun. "Class-Incremental Exemplar Compression for Class-Incremental Learning." In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023. http://dx.doi.org/10.1109/cvpr52729.2023.01094.
Full textWu, Yue, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. "Large Scale Incremental Learning." In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. http://dx.doi.org/10.1109/cvpr.2019.00046.
Full textYang, Qing, Yudi Gu, and Dongsheng Wu. "Survey of incremental learning." In 2019 Chinese Control And Decision Conference (CCDC). IEEE, 2019. http://dx.doi.org/10.1109/ccdc.2019.8832774.
Full textBouchachia, Abdelhamid. "Incremental Learning By Decomposition." In 2006 5th International Conference on Machine Learning and Applications (ICMLA'06). IEEE, 2006. http://dx.doi.org/10.1109/icmla.2006.28.
Full textBouchachia, Abdelhamid, Markus Prossegg, and Hakan Duman. "Semi-supervised incremental learning." In 2010 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2010. http://dx.doi.org/10.1109/fuzzy.2010.5584328.
Full textMi, Fei, Lingjing Kong, Tao Lin, Kaicheng Yu, and Boi Faltings. "Generalized Class Incremental Learning." In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2020. http://dx.doi.org/10.1109/cvprw50498.2020.00128.
Full textReports on the topic "Incremental learning"
Benz, Zachary O., Justin Derrick Basilico, Warren Leon Davis, Kevin R. Dixon, Brian S. Jones, Nathaniel Martin, and Jeremy Daniel Wendt. Incremental learning for automated knowledge capture. Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1121921.
Full textFischer, Gerhard, Andreas Lemke, and Helga Nieper-Lemke. Enhancing Incremental Learning Processes With Knowledge-Based Systems. Fort Belvoir, VA: Defense Technical Information Center, March 1988. http://dx.doi.org/10.21236/ada460163.
Full textGil, Yolanda. Learning by Experimentation: Incremental Refinement of Incomplete Planning Domains. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada269671.
Full textLovett, Andrew, Morteza Dehghani, and Kenneth Forbus. Incremental Learning of Perceptual Categories for Open-Domain Sketch Recognition. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada470431.
Full textClement, Timothy, and Brett Vaughan. Evaluation of a mobile learning platform for clinical supervision. University of Melbourne, 2021. http://dx.doi.org/10.46580/124369.
Full textBailey Bond, Robert, Pu Ren, James Fong, Hao Sun, and Jerome F. Hajjar. Physics-informed Machine Learning Framework for Seismic Fragility Analysis of Steel Structures. Northeastern University, August 2024. http://dx.doi.org/10.17760/d20680141.
Full textSchiefelbein, Ernesto, Paulina Schiefelbein, and Laurence Wolff. Cost-Effectiveness of Education Policies in Latin America: A Survey of Expert Opinion. Inter-American Development Bank, December 1998. http://dx.doi.org/10.18235/0008789.
Full textAguiar, Brandon, Paul Bianco, and Arvind Agarwal. Using High-Speed Imaging and Machine Learning to Capture Ultrasonic Treatment Cavitation Area at Different Amplitudes. Florida International University, October 2021. http://dx.doi.org/10.25148/mmeurs.009773.
Full textTurmena, Lucas, Flávia Guerra, Altiere Freitas, Alejandra Ramos-Galvez, Simone Sandholz, Michael Roll, Isadora Freire, and Millena Oliveira. TUC Urban Lab Profile: Alliance for the Centre of Recife, Brazil. United Nations University - Institute for Environment and Human Security (UNU-EHS), March 2024. http://dx.doi.org/10.53324/hcyv7857.
Full textEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak, and Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, July 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Full text