Academic literature on the topic 'Independent-gate Asymmetric Double Gate MOSFET'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Independent-gate Asymmetric Double Gate MOSFET.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Independent-gate Asymmetric Double Gate MOSFET"

1

Wei, Zhaoxiang, Hao Fu, Xiaowen Yan, et al. "Influence of Different Device Structures on the Degradation for Trench-Gate SiC MOSFETs: Taking Avalanche Stress as an Example." Materials 15, no. 2 (2022): 457. http://dx.doi.org/10.3390/ma15020457.

Full text
Abstract:
The variations in the degradation of electrical characteristics resulting from different device structures for trench-gate SiC metal-oxide-semiconductor field effect transistors (MOSFETs) are investigated in this work. Two types of the most advanced commercial trench products, which are the asymmetric trench SiC MOSFET and the double-trench SiC MOSFET, are chosen as the targeted devices. The discrepant degradation trends caused by the repetitive avalanche stress are monitored. For the double-trench device, the conduction characteristic improves while the gate-drain capacitance (Cgd) increases seriously. It is because positive charges are injected into the bottom gate oxide during the avalanche process, which are driven by the high oxide electronic field (Eox) and the high impact ionization rate (I.I.) there. Meanwhile, for the asymmetric trench SiC MOSFET, the I–V curve under the high gate bias condition and the Cgd remain relatively stable, while the trench bottom is well protected by the deep P+ well. However, it’s threshold voltage (Vth) decreases more obviously when compared with that of the double-trench device and the inclined channel suffers from more serious stress than the vertical channel. Positive charges are more easily injected into the inclined channel. The phenomena and the corresponding mechanisms are analyzed and proved by experiments and technology computer-aided design (TCAD) simulations.
APA, Harvard, Vancouver, ISO, and other styles
2

Singh, Ajay Kumar. "Modeling of electrical behavior of undoped symmetric Double-Gate (DG) MOSFET using carrier-based approach." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 38, no. 2 (2019): 815–28. http://dx.doi.org/10.1108/compel-08-2018-0327.

Full text
Abstract:
Purpose This study aims to develop a compact analytical models for undoped symmetric double-gate MOSFET based on carrier approach. Double-Gate (DG) MOSFET is a newly emerging device that can potentially further scale down CMOS technology owing to its excellent control of short channel effects, ideal subthreshold slope and free dopant-associated fluctuation effects. DG MOSFET is of two types: the symmetric DG MOSFET with two gates of identical work functions and asymmetric DG MOSFET with two gates of different work functions. To fully exploit the benefits of DG MOSFETs, the body of DG MOSFETs is usually undoped because the undoped body greatly reduces source and drain junction capacitances, which enhances the switching speed. Highly accurate and compact models, which are at the same time computationally efficient, are required for proper modeling of DG MOSFETs. Design/methodology/approach This paper presents a carrier-based approach to develop a compact analytical model for the channel potential, threshold voltage and drain current of a long channel undoped symmetric DG MOSFETs. The formulation starts from a solution of the 2-D Poisson’s equation in which mobile charge term has been included. The 2-D Poisson’s equation in rectangular coordinate system has been solved by splitting the total potential into long-channel (1-D Poisson’s equation) and short-channel components (remnant 2-D differential equation) in accordance to the device physics. The analytical model of the channel potential has been derived using Boltzmann’s statistics and carrier-based approach. Findings It is shown that the metal gate suppresses the center potential more than the poly gate. The threshold voltage increases with increasing metal work function. The results of the proposed models have been validated against the Technology Computer Aided Design simulation results with close agreement. Originality/value Compact Analytical models for undoped symmetric double gate MOSFETs.
APA, Harvard, Vancouver, ISO, and other styles
3

Abebe, H., E. Cumberbatch, H. Morris, V. Tyree, T. Numata, and S. Uno. "Symmetric and Asymmetric Double Gate MOSFET Modeling." JSTS:Journal of Semiconductor Technology and Science 9, no. 4 (2009): 225–32. http://dx.doi.org/10.5573/jsts.2009.9.4.225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zou, Yuan, Jue Wang, Hongyi Xu, and Hengyu Wang. "Investigation of SiC Trench MOSFETs’ Reliability under Short-Circuit Conditions." Materials 15, no. 2 (2022): 598. http://dx.doi.org/10.3390/ma15020598.

Full text
Abstract:
In this paper, the short-circuit robustness of 1200 V silicon carbide (SiC) trench MOSFETs with different gate structures has been investigated. The MOSFETs exhibited different failure modes under different DC bus voltages. For double trench SiC MOSFETs, failure modes are gate failure at lower dc bus voltages and thermal runaway at higher dc bus voltages, while failure modes for asymmetric trench SiC MOSFETs are soft failure and thermal runaway, respectively. The shortcircuit withstanding time (SCWT) of the asymmetric trench MOSFET is higher than that of the double trench MOSFETs. The thermal and mechanical stresses inside the devices during the short-circuit tests have been simulated to probe into the failure mechanisms and reveal the impact of the device structures on the device reliability. Finally, post-failure analysis has been carried out to verify the root causes of the device failure.
APA, Harvard, Vancouver, ISO, and other styles
5

Jung, Hakkee. "Threshold voltage roll-off for sub-10 nm asymmetric double gate MOSFET." International Journal of Electrical and Computer Engineering (IJECE) 9, no. 1 (2019): 163. http://dx.doi.org/10.11591/ijece.v9i1.pp163-169.

Full text
Abstract:
Threshold voltage roll-off is analyzed for sub-10 nm asymmetric double gate (DG) MOSFET. Even asymmetric DGMOSFET will increase threshold voltage roll-off in sub-10 nm channel length because of short channel effects due to the increase of tunneling current, and this is an obstacle against the miniaturization of asymmetric DGMOSFET. Since asymmetric DGMOSFET can be produced differently in top and bottom oxide thickness, top and bottom oxide thicknesses will affect the threshold voltage roll-off. To analyze this, <em>thermal</em><em> </em>emission current and tunneling current have been calculated, and threshold voltage roll-off by the reduction of channel length has been analyzed by using channel thickness and top/bottom oxide thickness as parameters. As a result, it is found that, in short channel asymmetric double gate MOSFET, threshold voltage roll-off is changed greatly according to top/bottom gate oxide thickness, and that threshold voltage roll-off is more influenced by silicon thickness. In addition, it is found that top and bottom oxide thickness have a relation of inverse proportion mutually for maintaining identical threshold voltage. Therefore, it is possible to reduce the leakage current of the top gate related with threshold voltage by increasing the thickness of the top gate oxide while maintaining the same threshold voltage.
APA, Harvard, Vancouver, ISO, and other styles
6

Jung, Hakkee. "Analysis for Gate Oxide Dependent Subthreshold Swing of Asymmetric Double Gate MOSFET." Journal of the Korea Institute of Information and Communication Engineering 18, no. 4 (2014): 885–90. http://dx.doi.org/10.6109/jkiice.2014.18.4.885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jung, Hakkee. "Analysis of subthreshold swing in junctionless double gate MOSFET using stacked high-k gate oxide." International Journal of Electrical and Computer Engineering (IJECE) 11, no. 1 (2021): 240. http://dx.doi.org/10.11591/ijece.v11i1.pp240-248.

Full text
Abstract:
In this paper, the subthreshold swing was observed when the stacked high-k gate oxide was used for a junctionless double gate (JLDG) MOSFET. For this purpose, a subthreshold swing model was presented using the series-type potential model derived from the Poisson equation. The results of the model presented in this paper were in good agreement with the two-dimensional numerical values and those from other papers. Using this model, the variation of the subthreshold swing for the channel length, silicon thickness, gate oxide thickness, and dielectric constant of the stacked high-k material was observed using the dielectric constant as a parameter. As a result, the subthreshold swing was reduced when the high-k materials were used as the stacked gate oxide film. In the case of the asymmetric structure, the subthreshold swing can be reduced than that of the symmetric JLDG MOSFET when the dielectric constant of the bottom stacked oxide film was greater than that of the top stacked oxide film. In the case of the asymmetric structure, the subthreshold swing could be also reduced by applying the bottom gate voltage lower than the top gate voltage.
APA, Harvard, Vancouver, ISO, and other styles
8

Jung, Hakkee. "Bottom Gate Voltage Dependent Threshold Voltage Roll-off of Asymmetric Double Gate MOSFET." Journal of the Korea Institute of Information and Communication Engineering 18, no. 6 (2014): 1422–28. http://dx.doi.org/10.6109/jkiice.2014.18.6.1422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ortiz-Conde, Adelmo, and Francisco J. García-Sánchez. "Generic complex-variable potential equation for the undoped asymmetric independent double-gate MOSFET." Solid-State Electronics 57, no. 1 (2011): 43–51. http://dx.doi.org/10.1016/j.sse.2010.10.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jung, Hakkee. "Subthreshold Swing for Top and Bottom Gate Voltage of Asymmetric Double Gate MOSFET." Journal of the Korea Institute of Information and Communication Engineering 18, no. 3 (2014): 657–62. http://dx.doi.org/10.6109/jkiice.2014.18.3.657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography