To see the other types of publications on this topic, follow the link: India-Asia Collision.

Journal articles on the topic 'India-Asia Collision'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'India-Asia Collision.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Aitchison, J. C., and J. R. Ali. "India-Asia collision timing." Proceedings of the National Academy of Sciences 109, no. 40 (August 6, 2012): E2645. http://dx.doi.org/10.1073/pnas.1207859109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

White, L. T., and G. S. Lister. "The collision of India with Asia." Journal of Geodynamics 56-57 (May 2012): 7–17. http://dx.doi.org/10.1016/j.jog.2011.06.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sahni, Ashok. "Biotic Response to the India-Asia Collision: Changing Palaeoenvironments and Vertebrate Faunal Relationships." Palaeontographica Abteilung A 278, no. 1-6 (October 26, 2006): 15–26. http://dx.doi.org/10.1127/pala/278/2006/15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aitchison, Jonathan C., and Aileen M. Davis. "When did the India — Asia Collision Really Happen?" Gondwana Research 4, no. 4 (October 2001): 560–61. http://dx.doi.org/10.1016/s1342-937x(05)70363-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hall, Robert, Marco W. A. van Hattum, and Wim Spakman. "Impact of India–Asia collision on SE Asia: The record in Borneo." Tectonophysics 451, no. 1-4 (April 2008): 366–89. http://dx.doi.org/10.1016/j.tecto.2007.11.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zheng, Yongfei, and Fuyuan Wu. "The timing of continental collision between India and Asia." Science Bulletin 63, no. 24 (December 2018): 1649–54. http://dx.doi.org/10.1016/j.scib.2018.11.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Meade, Brendan J. "Present-day kinematics at the India-Asia collision zone." Geology 35, no. 1 (2007): 81. http://dx.doi.org/10.1130/g22924a.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Huangfu, Pengpeng, Yuejun Wang, Zhonghai Li, Weiming Fan, and Yan Zhang. "Effects of crustal eclogitization on plate subduction/collision dynamics: Implications for India-Asia collision." Journal of Earth Science 27, no. 5 (October 2016): 727–39. http://dx.doi.org/10.1007/s12583-016-0701-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Replumaz, Anne, Ana M. Negredo, Stéphane Guillot, Peter van der Beek, and Antonio Villaseñor. "Crustal mass budget and recycling during the India/Asia collision." Tectonophysics 492, no. 1-4 (September 2010): 99–107. http://dx.doi.org/10.1016/j.tecto.2010.05.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

DeCelles, Peter G., Isla S. Castañeda, Barbara Carrapa, Juan Liu, Jay Quade, Ryan Leary, and Liyun Zhang. "Oligocene-Miocene Great Lakes in the India-Asia Collision Zone." Basin Research 30 (September 26, 2016): 228–47. http://dx.doi.org/10.1111/bre.12217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Copley, Alex, and Dan McKenzie. "Models of crustal flow in the India-Asia collision zone." Geophysical Journal International 169, no. 2 (May 2007): 683–98. http://dx.doi.org/10.1111/j.1365-246x.2007.03343.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Tapponnier, P., G. Peltzer, and R. Armijo. "On the mechanics of the collision between India and Asia." Geological Society, London, Special Publications 19, no. 1 (1986): 113–57. http://dx.doi.org/10.1144/gsl.sp.1986.019.01.07.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hu, Xiumian, Eduardo Garzanti, Jiangang Wang, Wentao Huang, Wei An, and Alex Webb. "The timing of India-Asia collision onset – Facts, theories, controversies." Earth-Science Reviews 160 (September 2016): 264–99. http://dx.doi.org/10.1016/j.earscirev.2016.07.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ding, Lin, Satybaev Maksatbek, FuLong Cai, HouQi Wang, PeiPing Song, WeiQiang Ji, Qiang Xu, LiYun Zhang, Qasim Muhammad, and Baral Upendra. "Processes of initial collision and suturing between India and Asia." Science China Earth Sciences 60, no. 4 (February 16, 2017): 635–51. http://dx.doi.org/10.1007/s11430-016-5244-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zhang, Jinjiang, M. Santosh, Xiaoxian Wang, Lei Guo, Xiongying Yang, and Bo Zhang. "Tectonics of the northern Himalaya since the India–Asia collision." Gondwana Research 21, no. 4 (May 2012): 939–60. http://dx.doi.org/10.1016/j.gr.2011.11.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

van Hinsbergen, D. J. J., P. C. Lippert, G. Dupont-Nivet, N. McQuarrie, P. V. Doubrovine, W. Spakman, and T. H. Torsvik. "Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia." Proceedings of the National Academy of Sciences 109, no. 20 (April 30, 2012): 7659–64. http://dx.doi.org/10.1073/pnas.1117262109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Searle, Michael P. "Timing of subduction initiation, arc formation, ophiolite obduction and India–Asia collision in the Himalaya." Geological Society, London, Special Publications 483, no. 1 (September 12, 2018): 19–37. http://dx.doi.org/10.1144/sp483.8.

Full text
Abstract:
AbstractReconstruction of the Western Himalaya requires three subduction systems operating beneath the Spong arc, Dras–Kohistan arc and the Asian continent during the Late Cretaceous–Paleocene. The timing of the closure of the Neo-Tethys Ocean along the Indus Suture Zone (ISZ) in Ladakh and south Tibet has been proposed to be as old as c. 65 Ma and as young as c. 37 Ma. The definition of the India–Asia collision can span >15 myr from the first touching of Indian continental crust with Asian crust to the final marine sedimentation between the two plates. There is good geological evidence for a Late Cretaceous–Early Paleocene phase of folding, thrusting and crustal thickening of Indian Plate shelf carbonates associated with obduction of ophiolites. There is no geological evidence of any oceanic ‘Greater Indian Basin’ separating the northern Tethyan and Greater Himalaya from India. There is clear evidence to support final ending of marine sedimentation along the ISZ at 50 Ma (planktonic foraminifera zone P7–P8). There is no evidence for diachroneity of collision along the Pakistan–Ladakh–South Tibet Himalaya. The timing of ultrahigh-pressure metamorphism cannot be used to constrain India–Asia collision, and the timing of high-grade kyanite- and sillimanite-grade metamorphism along the Greater Himalaya can only give a minimum age of collision.
APA, Harvard, Vancouver, ISO, and other styles
18

Mattauer, Maurice, Philippe Matte, and Jean-Louis Olivet. "A 3D model of the India-Asia collision at plate scale." Comptes Rendus de l'Académie des Sciences - Series IIA - Earth and Planetary Science 328, no. 8 (April 1999): 499–508. http://dx.doi.org/10.1016/s1251-8050(99)80130-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dupont-Nivet, Guillaume, Douwe J. J. van Hinsbergen, and Trond H. Torsvik. "Persistently low Asian paleolatitudes: Implications for the India-Asia collision history." Tectonics 29, no. 5 (October 2010): n/a. http://dx.doi.org/10.1029/2008tc002437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Srimal, Neptune. "India-Asia collision: Implications from the geology of the eastern Karakoram." Geology 14, no. 6 (1986): 523. http://dx.doi.org/10.1130/0091-7613(1986)14<523:iciftg>2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Huang, Wentao, Douwe J. J. van Hinsbergen, Peter C. Lippert, Zhaojie Guo, and Guillaume Dupont-Nivet. "Paleomagnetic tests of tectonic reconstructions of the India-Asia collision zone." Geophysical Research Letters 42, no. 8 (April 17, 2015): 2642–49. http://dx.doi.org/10.1002/2015gl063749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Beck, Richard A., Douglas W. Burbank, William J. Sercombe, Gregory W. Riley, Jeffrey K. Barndt, John R. Berry, Jamil Afzal, et al. "Stratigraphic evidence for an early collision between northwest India and Asia." Nature 373, no. 6509 (January 1995): 55–58. http://dx.doi.org/10.1038/373055a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Replumaz, Anne, Stéphane Guillot, Antonio Villaseñor, and Ana M. Negredo. "Amount of Asian lithospheric mantle subducted during the India/Asia collision." Gondwana Research 24, no. 3-4 (November 2013): 936–45. http://dx.doi.org/10.1016/j.gr.2012.07.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bhandari, Saunak, Wenjiao Xiao, Songjian Ao, Brian F. Windley, Rixiang Zhu, Rui Li, Hao Y. C. Wang, and Rasoul Esmaeili. "Rifting of the northern margin of the Indian craton in the Early Cretaceous: Insight from the Aulis Trachyte of the Lesser Himalaya (Nepal)." Lithosphere 11, no. 5 (July 12, 2019): 643–51. http://dx.doi.org/10.1130/l1058.1.

Full text
Abstract:
Abstract To reconstruct the early tectonic history of the Himalayan orogen before final India-Asia collision, we carried out geochemical and geochronological studies on the Early Cretaceous Aulis Trachyte of the Lesser Himalaya. The trace-element geochemistry of the trachytic lava flows suggests formation in a rift setting, and zircon U-Pb ages indicate that volcanism occurred in Early Cretaceous time. The felsic volcanics show enrichment of more incompatible elements and rare earth elements, a pattern that is identical to the trachyte from the East African Rift (Kenya rift), with conspicuous negative anomalies of Nb, P, and Ti. Although much of the zircon age data are discordant, they strongly suggest an Early Cretaceous eruption age, which is in agreement with the fossil age of intravolcanic siltstones. The Aulis Trachyte provides the first corroboration of Cretaceous rifting in the Lesser Himalaya as suggested by paleomagnetic data associated with the concept that the northern margin of India separated as a microcontinent and drifted north in the Neo-Tethys before terminal collision of India with Asia.
APA, Harvard, Vancouver, ISO, and other styles
25

Shaffer, Madeline, Bradley R. Hacker, Lothar Ratschbacher, and Andrew R. C. Kylander-Clark. "Foundering Triggered by the Collision of India and Asia Captured in Xenoliths." Tectonics 36, no. 10 (October 2017): 1913–33. http://dx.doi.org/10.1002/2017tc004704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hazarika, Devajit, Koushik Sen, and Naresh Kumar. "Characterizing the intracrustal low velocity zone beneath northwest India–Asia collision zone." Geophysical Journal International 199, no. 3 (September 30, 2014): 1338–53. http://dx.doi.org/10.1093/gji/ggu328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

O'Brien, P. J., N. Zotov, R. Law, M. A. Khan, and M. Q. Jan. "Coesite in Himalayan eclogite and implications for models of India-Asia collision." Geology 29, no. 5 (2001): 435. http://dx.doi.org/10.1130/0091-7613(2001)029<0435:ciheai>2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Baral, Upendra, Lin Ding, and Bhupati Neupane. "U-Pb ages of the Himalayan foreland basin Northeast India: Implications for the India-Asia collision." ASEG Extended Abstracts 2019, no. 1 (November 11, 2019): 1–2. http://dx.doi.org/10.1080/22020586.2019.12073115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bhutani, Rajneesh, Kanchan Pande, and T. R. Venkatesan. "Tectono-thermal evolution of the India-Asia collision zone based on40Ar-39Ar thermochronology in Ladakh, India." Journal of Earth System Science 113, no. 4 (December 2004): 737–54. http://dx.doi.org/10.1007/bf02704033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Yamahira, Kazunori, Satoshi Ansai, Ryo Kakioka, Hajime Yaguchi, Takeshi Kon, Javier Montenegro, Hirozumi Kobayashi, et al. "Mesozoic origin and ‘out-of-India’ radiation of ricefishes (Adrianichthyidae)." Biology Letters 17, no. 8 (August 2021): 20210212. http://dx.doi.org/10.1098/rsbl.2021.0212.

Full text
Abstract:
The Indian subcontinent has an origin geologically different from Eurasia, but many terrestrial animal and plant species on it have congeneric or sister species in other parts of Asia, especially in the Southeast. This faunal and floral similarity between India and Southeast Asia is explained by either of the two biogeographic scenarios, ‘into-India’ or ‘out-of-India’. Phylogenies based on complete mitochondrial genomes and five nuclear genes were undertaken for ricefishes (Adrianichthyidae) to examine which of these two biogeographic scenarios fits better. We found that Oryzias setnai , the only adrianichthyid distributed in and endemic to the Western Ghats, a mountain range running parallel to the western coast of the Indian subcontinent, is sister to all other adrianichthyids from eastern India and Southeast–East Asia. Divergence time estimates and ancestral area reconstructions reveal that this western Indian species diverged in the late Mesozoic during the northward drift of the Indian subcontinent. These findings indicate that adrianichthyids dispersed eastward ‘out-of-India’ after the collision of the Indian subcontinent with Eurasia, and subsequently diversified in Southeast–East Asia. A review of geographic distributions of ‘out-of-India’ taxa reveals that they may have largely fuelled or modified the biodiversity of Eurasia.
APA, Harvard, Vancouver, ISO, and other styles
31

Jadoon, Umar Farooq, Baochun Huang, Qian Zhao, Syed Anjum Shah, and Yasin Rahim. "Remagnetization of Jutal dykes in Gilgit area of the Kohistan Island Arc: Perspectives from the India–Asia collision." Geophysical Journal International 226, no. 1 (March 9, 2021): 33–46. http://dx.doi.org/10.1093/gji/ggab091.

Full text
Abstract:
SUMMARY The Kohistan Island Arc (KIA) occupies the northwestern region of the Himalayan Mountains, sandwiched between Asia and India plates. Its formation, collision with plate boundaries, and evolution has been controversially discussed for a couple of decades. To better understand this, a palaeomagnetic study has been conducted on the Jutal dykes (ca. 75 Ma), intruded in the northeastern part of the KIA. Comprehensive rock magnetic investigations reveal that the magnetic carrier minerals are pyrrhotite and magnetite. An intermediate temperature component (ITC) predominates the natural remanent magnetization and shows good coincidence within-site; it is carried by pyrrhotite and is considered reliable, yielding a mean direction at Dg/Ig = 11.5°/39.9° (kg = 28.4, α95 = 3.5°) before and Ds/Is = 8.6°/12.1° (ks = 5.1, α95 = 9.1°) after tilt correction. A high-temperature component that is carried by magnetite exhibits random distribution within-site. The fold test for the ITC is negative, indicating a post-folding origin. Scanning electron microscopy combined with energy-dispersive X-ray spectroscopy indicates that the magnetic carrier minerals were influenced by metamorphism or thermochemical fluids. The comparison of mean palaeolatitude (22.6 ± 3.5°N) of the ITC with the collisional settings and thermal history of the study area implies that the remagnetization occurred at ∼50–35 Ma, consistent with the previous reported palaeomagnetic data of the KIA. We propose a tectonic model that shows the evolution of the Jutal dykes, supporting the concept that India collided with the KIA first, followed by a later collision with Asia.
APA, Harvard, Vancouver, ISO, and other styles
32

Zhu, Bin, William S. F. Kidd, David B. Rowley, Brian S. Currie, and Naseer Shafique. "Age of Initiation of the India‐Asia Collision in the East‐Central Himalaya." Journal of Geology 113, no. 3 (May 2005): 265–85. http://dx.doi.org/10.1086/428805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

REHMAN, HAFIZ UR, TETSUZO SENO, HIROSHI YAMAMOTO, and TAHSEENULLAH KHAN. "Timing of collision of the Kohistan–Ladakh Arc with India and Asia: Debate." Island Arc 20, no. 3 (August 24, 2011): 308–28. http://dx.doi.org/10.1111/j.1440-1738.2011.00774.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Johnson, M. R. W. "Shortening budgets and the role of continental subduction during the India–Asia collision." Earth-Science Reviews 59, no. 1-4 (November 2002): 101–23. http://dx.doi.org/10.1016/s0012-8252(02)00071-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Niu, Yaoling. "What drives the continued India-Asia convergence since the collision at 55 Ma?" Science Bulletin 65, no. 3 (February 2020): 169–72. http://dx.doi.org/10.1016/j.scib.2019.11.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Chen, Yan, Vincent Courtillot, Jean-Pascal Cogné, Jean Besse, Zhenyu Yang, and Randy Enkin. "The configuration of Asia prior to the collision of India: Cretaceous paleomagnetic constraints." Journal of Geophysical Research: Solid Earth 98, B12 (December 10, 1993): 21927–41. http://dx.doi.org/10.1029/93jb02075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhou, Jianxun, and Hao Su. "Site and Timing of Substantial India‐Asia Collision Inferred From Crustal Volume Budget." Tectonics 38, no. 7 (July 2019): 2275–90. http://dx.doi.org/10.1029/2018tc005412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Yan, Chen, and Vincent Courtillot. "Widespread Cenozoic (?) remagnetization in Thailand and its implications for the India-Asia collision." Earth and Planetary Science Letters 93, no. 1 (May 1989): 113–22. http://dx.doi.org/10.1016/0012-821x(89)90189-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Beck, Richard A., Douglas W. Burbank, William J. Sercombe, Asrar M. Khan, and Robert D. Lawrence. "Late Cretaceous ophiolite obduction and Paleocene India-Asia collision in the westernmost Himalaya." Geodinamica Acta 9, no. 2-3 (January 1996): 114–44. http://dx.doi.org/10.1080/09853111.1996.11105281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Flesch, L., and R. Bendick. "Present-day kinematics at the India-Asia collision zone: COMMENT and REPLY: COMMENT." Geology 35, no. 1 (January 1, 2007): e160-e160. http://dx.doi.org/10.1130/g24443c.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Meade, B. "Present-day kinematics at the India-Asia collision zone: COMMENT and REPLY: REPLY." Geology 35, no. 1 (January 1, 2007): e161-e161. http://dx.doi.org/10.1130/g24640y.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hetzel, Ralf, István Dunkl, Vicky Haider, Marcus Strobl, Hilmar von Eynatten, Lin Ding, and Dirk Frei. "Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift." Geology 39, no. 10 (October 2011): 983–86. http://dx.doi.org/10.1130/g32069.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Andronicos, Christopher L., Aaron A. Velasco, and José M. Hurtado. "Large-scale deformation in the India-Asia collision constrained by earthquakes and topography." Terra Nova 19, no. 2 (April 2007): 105–19. http://dx.doi.org/10.1111/j.1365-3121.2006.00714.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hu, XiuMian, JianGang Wang, Wei An, Eduardo Garzanti, and Juan Li. "Constraining the timing of the India-Asia continental collision by the sedimentary record." Science China Earth Sciences 60, no. 4 (February 24, 2017): 603–25. http://dx.doi.org/10.1007/s11430-016-9003-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Searle, M. P., and B. R. Hacker. "Structural and metamorphic evolution of the Karakoram and Pamir following India–Kohistan–Asia collision." Geological Society, London, Special Publications 483, no. 1 (September 12, 2018): 555–82. http://dx.doi.org/10.1144/sp483.6.

Full text
Abstract:
AbstractFollowing the c. 50 Ma India–Kohistan arc–Asia collision, crustal thickening uplifted the Himalaya (Indian Plate), and the Karakoram, Pamir and Tibetan Plateau (Asian Plate). Whereas surface geology of Tibet shows limited Cenozoic metamorphism and deformation, and only localized crustal melting, the Karakoram–Pamir show regional sillimanite- and kyanite-grade metamorphism, and crustal melting resulting in major granitic intrusions (Baltoro granites). U/Th–Pb dating shows that metamorphism along the Hunza Karakoram peaked at c. 83–62 and 44 Ma with intrusion of the Hunza dykes at 52–50 Ma and 35 ± 1.0 Ma, and along the Baltoro Karakoram peaked at c. 28–22 Ma, but continued until 5.4–3.5 Ma (Dassu dome). Widespread crustal melting along the Baltoro Batholith spanned 26.4–13 Ma. A series of thrust sheets and gneiss domes (metamorphic core complexes) record crustal thickening and regional metamorphism in the central and south Pamir from 37 to 20 Ma. At 20 Ma, break-off of the Indian slab caused large-scale exhumation of amphibolite-facies crust from depths of 30–55 km, and caused crustal thickening to jump to the fold-and-thrust belt at the northern edge of the Pamir. Crustal thickening, high-grade metamorphism and melting are certainly continuing at depth today in the India–Asia collision zone.
APA, Harvard, Vancouver, ISO, and other styles
46

Srimal, Neptune, Asish R. Basu, and T. Kurt Kyser. "Tectonic inferences from oxygen isotopes in volcano-plutonic complexes of the India-Asia COllision Zone, NW India." Tectonics 6, no. 3 (June 1987): 261–73. http://dx.doi.org/10.1029/tc006i003p00261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Spratt, Jessica E., Alan G. Jones, K. Douglas Nelson, and Martyn J. Unsworth. "Crustal structure of the India–Asia collision zone, southern Tibet, from INDEPTH MT investigations." Physics of the Earth and Planetary Interiors 150, no. 1-3 (May 2005): 227–37. http://dx.doi.org/10.1016/j.pepi.2004.08.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ding, Lin, Paul Kapp, and Xiaoqiao Wan. "Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet." Tectonics 24, no. 3 (May 6, 2005): n/a. http://dx.doi.org/10.1029/2004tc001729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Davis, Paul, Philip England, and Gregory Houseman. "Comparison of shear wave splitting and finite strain from the India-Asia collision zone." Journal of Geophysical Research: Solid Earth 102, B12 (December 10, 1997): 27511–22. http://dx.doi.org/10.1029/97jb02378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Rowley, David B. "Age of initiation of collision between India and Asia: A review of stratigraphic data." Earth and Planetary Science Letters 145, no. 1-4 (December 1996): 1–13. http://dx.doi.org/10.1016/s0012-821x(96)00201-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography