Academic literature on the topic 'Indium sulfure'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Indium sulfure.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Indium sulfure"
Kumar, P. Anil, T. S. Sasi Jyothsna, T. N. R. Srinivas, Ch Sasikala, Ch V. Ramana, and J. F. Imhoff. "Marichromatium bheemlicum sp. nov., a non-diazotrophic, photosynthetic gammaproteobacterium from a marine aquaculture pond." International Journal of Systematic and Evolutionary Microbiology 57, no. 6 (June 1, 2007): 1261–65. http://dx.doi.org/10.1099/ijs.0.64753-0.
Full textGotoh, Tamihiro. "Effect of heat treatments on the electronic properties of indium sulfide films." European Physical Journal Applied Physics 89, no. 2 (February 2020): 20301. http://dx.doi.org/10.1051/epjap/2020190240.
Full textLi, Yong Gang, Da Jin Yang, Jian Rong Peng, and Xiao Ying Li. "Enriching Indium Using Neutralization from Solution Bearing Indium." Advanced Materials Research 287-290 (July 2011): 2952–56. http://dx.doi.org/10.4028/www.scientific.net/amr.287-290.2952.
Full textNarayan, Om Prakash, Nidhi Verma, Abhimanyu Jogawat, Meenakshi Dua, and Atul Kumar Johri. "Sulfur transfer from the endophytic fungus Serendipita indica improves maize growth and requires the sulfate transporter SiSulT." Plant Cell 33, no. 4 (January 21, 2021): 1268–85. http://dx.doi.org/10.1093/plcell/koab006.
Full textChoi, Hyung Seok, Youngsun Kim, Jae Chul Park, Mi Hwa Oh, Duk Young Jeon, and Yoon Sung Nam. "Highly luminescent, off-stoichiometric CuxInyS2/ZnS quantum dots for near-infrared fluorescence bio-imaging." RSC Advances 5, no. 54 (2015): 43449–55. http://dx.doi.org/10.1039/c5ra06912b.
Full textLi, Cun Xiong, Chang Wei, Hong Sheng Xu, Ji Qiang Liao, Zhi Gan Deng, and Gang Fan. "Leaching Behaviour of Metals from a Sphalerite Concentrate in Sulfuric Acid-Oxygen System." Advanced Materials Research 201-203 (February 2011): 1725–31. http://dx.doi.org/10.4028/www.scientific.net/amr.201-203.1725.
Full textde Tacconi, Norma R., and Krishnan Rajeshwar. "Electrosynthesis of indium sulfide on sulfur-modified polycrystalline gold electrodes." Journal of Electroanalytical Chemistry 444, no. 1 (March 1998): 7–10. http://dx.doi.org/10.1016/s0022-0728(97)00533-0.
Full textZimin, S. P., A. S. Pipkova, L. A. Mazaletskiy, I. I. Amirov, E. S. Gorlachev, S. V. Vasilev, V. V. Khoroshko, V. F. Gremenok, and A. N. Pyatlitski. "Formation of Metallic Droplets on the Surface of Indium Sulfide Films During Argon Plasma Treatment." International Journal of Nanoscience 18, no. 03n04 (June 2019): 1940066. http://dx.doi.org/10.1142/s0219581x19400660.
Full textDeng, Zheng Bin, Xian Xie, Xiong Tong, Yong Cheng Zhou, Xiao Wang, and Xiang Wen Lv. "Flotation of Indium-Beard Marmatite in the Low Alkali Conditions." Applied Mechanics and Materials 316-317 (April 2013): 846–49. http://dx.doi.org/10.4028/www.scientific.net/amm.316-317.846.
Full textZorn, S. R., F. Drewnick, M. Schott, T. Hoffmann, and S. Borrmann. "Characterization of the South Atlantic marine boundary layer aerosol using an Aerodyne Aerosol Mass Spectrometer." Atmospheric Chemistry and Physics Discussions 8, no. 2 (March 5, 2008): 4831–76. http://dx.doi.org/10.5194/acpd-8-4831-2008.
Full textDissertations / Theses on the topic "Indium sulfure"
Beauvais, Jacques. "Gain optique dans le cadmium indium sulfide." Thesis, University of Ottawa (Canada), 1987. http://hdl.handle.net/10393/5316.
Full textSo, David. "Copper indium sulfide colloidal quantum dot solar cells." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/404049.
Full textConseguir la ubicuidad de la tecnología de conversión de energía solar es un objetivo al que aspiramos en este siglo. Las células solares de puntos cuánticos coloidales (CQD) constituyen una plataforma interesante, debido a su bajo coste y a que permiten un control sencillo sobre las propiedades de la película y la fabricación de dispositivos, pero que están dominadas por PbS. El CuInS2 (CIS) es una alternativa no tóxica, prometedora en cuanto al grosor y como sensibilizadora, pero que no ha sido estudiada a fondo para su uso en células solares de CQD. El objetivo de este trabajo es incorporar nanocristales de CIS en toda la gama de materiales de células solares de CQD, mediante la creación de sólidos optoelectrónicos de CQD, fabricando dispositivos funcionales con diversas arquitecturas e identificando y superando las limitaciones de las propiedades de los materiales y los mecanismos de los dispositivos. Describimos una estrategia sintética que resultó en nanocristales de CIS que pueden ser depositados en forma de sólidos de CQD con espesores controlables. Los nanocristales de CIS son típicamente sintetizados utilizando tioles de cadena larga que son difíciles de eliminar de su superficie. Introdujimos aminas y fosfinas de cadena larga, un calcogenuro descomponible y tratamientos de oleato de zinc para substituir las funciones que realizaba el tiol. Esto generó nanocristales cúbicos de tamaño controlable, de 2 nm a 3.2 nm, con Eg de entre 2.5 eV y 1.5 eV. Estás partículas también son pobres en cobre, y su superficie está cubierta de indio y zinc. Mediante este proceso hemos podido diseñar un protocolo de intercambio de ligandos utilizando ácidos duros para generar películas de CQD en estado sólido, lo que constituye un avance para la ingeniería de dispositvos optoelectrónicos. Utilizando estas películas, fabricamos dispositivos optoelectrónicos e identificamos las propiedades de película fina que podrían limitar el rendimiento del dispositivo. Estos ensamblados de nanocristales de CIS se acoplan entre sí tal y como muestran los cambios en la duración de la fotoluminiscencia con la distancia. Cuando la distancia entre nanocristales se reduce, estas películas de tipo-p conducen, a pesar de tener bajas movilidades (~10-5 cm2V-1s-1) y de mostrar características que indican altas densidades de trampa, tales como una alta capacidad de respuesta y largos decaimientos fotoconductores. La capacidad para formar películas en estado sólido nos ha permitido fabricar dispositivos optoelectrónicos como transistores, fotodetectores y células solares. En las células solares, los sólidos de CQD de CIS han dado buenos Vocs, en torno a 0.6 V, pero bajas Jscs ~1 mA/cm2, y FFs ~0.30. Los coeficientes de absorción de los sólidos de CQDs de CIS indicaron que la eficiencia quántica interna (IQE) de estos dispositivos está muy por debajo del 10%. Esto destaca la importancia de solucionar la alta densidad de trampas en los sólidos de punto cuántico. Los bajos Jsc y FF en células solares de CQD de CIS fueron abordados utilizando una arquitectura de heterounión mayor (BHJ). Esta arquitectura no recocida se fabricó aumentando el tamaño de poro de la red de TiO2, lo que permitió una infiltración uniforme y profunda de los nanocristales de CIS. Utilizando la arquitectura BHJ hemos mejorado el rendimiento de las células solares de CQD de CIS, principalmente debido al aumento de las Jsc y los FFs, que conducen a incremento de seis veces en la eficiencia, del 0.15% inicial al 1.16%. A partir del análisis de las mediciones de Suns-Voc, -Jsc y Voc y Jsc transitorios, hemos identificado que los dispositivos de BHJ tienen una menor recombinación asistida por trampa y una menor energía de activación (EU) para la extracción de huecos. Esto fue confirmados por los cambios en la fotoluminiscencia del dispositivo total. Sugerimos que la estructura de BHJ permite el quenching de los tail states más profundos cerca de la nada de valencia en CIS por la transferencia de electrones de TiO2. En este trabajo, intentado introducir nanocristales de CIS en dispositivos optoelectrónicos, comenzando por precursores moleculares sintéticos hasta el diseño de estructuras supramoleculares. En cada etapa, hemos destacado el material y las propiedades de película y de dispositivos que serán necesarios para conseguir un buen rendimiento. Este trabajo tiene como objetivo final estimular un nuevo interés en futuros desarrollos de células solares de CQD de CIS, abriendo la posibilidad para fotovoltaicas no tóxicas de CQD.
Pouget, Stéphanie. "Contribution à l'étude de l'influence de la dilution sur les propriétés magnétiques de composés isolants frustrés." Toulouse, INSA, 1993. http://www.theses.fr/1993ISAT0039.
Full textCharbonneau, Sylvain. "Intensity dependent photoconductivity and photoluminescence in cadmium indium sulfide." Thesis, University of Ottawa (Canada), 1985. http://hdl.handle.net/10393/4725.
Full textHalverson, Adam Fraser 1978. "The role of sulfur alloying in defects and transitions in copper indium gallium diselenide disulfide thin films." Thesis, University of Oregon, 2007. http://hdl.handle.net/1794/6193.
Full textThe effects of sulfur alloying on the electronic properties of CuIn(SeS) 2 and CuInGa(SeS) 2 materials has been investigated using sophisticated junction capacitance techniques including drive-level capacitance profiling and transient photocapacitance and photocurrent spectroscopies. CISSe and CIGSSe materials are used as absorber layers in thin-film photovoltaic devices. By characterizing the electronic properties of these materials we hope to understand how these materials can be improved to make thin-film devices with better conversion efficiencies. Sulfur widens the bandgap of these materials by moving the valence band to lower energies and the conduction band to higher energies. This significantly affects the electronic structure of these devices by increasing the activation energies of dominant acceptor levels and lowering room temperature free hole carrier densities. Using optical spectroscopies we observe a large, broad defect that also changes its apparent energetic depth with sulfur alloying. The occupation of this defect was controlled both optically and thermally, and showed a striking temperature dependence. This temperature dependence was measured by recording the relative defect signal, the ratio of the TPC signal in the defect regime to the above bandgap regime, as a function of temperature. As the temperature of the measurement was decreased, steps in the relative defect signal were observed, indicating the turning off of the thermal pathway that emptied trapped charge from the defect. Remarkably, such steps were seen at the same temperature in CISSe and CIGSSe devices with similar sulfur content. In addition, no steps were seen in CMS devices. This points to a defect state specific to the incorporation of sulfur in the absorber material. We hope that a better understanding of the electronic structure of these materials will assist in the creation of improved wide-bandgap thin-film photovoltaic devices.
Adviser: J. David Cohen
Weïwer, Michel. "Acides de Lewis comme catalyseurs dans des réactions de macrocyclisation et de fonctionnalisation d'oléfines : applications en chimie des arômes et parfums." Nice, 2005. http://www.theses.fr/2005NICE4094.
Full textGhzizal, Abdelaziz el. "Contribution à l'optimisation des photopiles p-CuInSe2/n-CdS fabriquées par pulvérisation chimique réactive." Montpellier 2, 1989. http://www.theses.fr/1989MON20133.
Full textHalverson, Adam Fraser. "The role of sulfur alloying in defects and transitions in copper indium gallium diselenide disulfide thin films /." Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2007. http://hdl.handle.net/1794/6193.
Full textTypescript. Includes vita and abstract. Includes bibliographical references (leaves 127-132). Also available online in Scholars' Bank; and in ProQuest, free to University of Oregon users.
Rickman, Sarah. "Growth and characterization of molybdenum disulfide, molybdenum diselenide, and molybdenum(sulfide, selenide) formed between molybdenum and copper indium(sulfide, selenide) during growth." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 0.94 Mb., 85 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:1435848.
Full textSaifi, Ali. "Contribution à l'étude des propriétés magnétiques des systèmes spinelles isolants CdCr2xIn2-2xS4 et ZnCr2xGa2-2xO4 : phases type verre de spin." Paris 6, 1986. http://www.theses.fr/1986PA066519.
Full textBooks on the topic "Indium sulfure"
Menon-Choudhary, Deepa. Assessing policy choices for managing SO2 emissions from Indian power sector. New Delhi: Centre De Sciences Humaines, 2005.
Find full textInstitute, Sulphur, ed. Sulphur: Its role and place in balanced fertiliser use for Indian agriculture : a comprehensive review of plant nutrient sulphur in India--agronomics, economics, and fertilizer requirements. Washington, DC (1140 Connecticut Ave., N.W., Suite 612, Washington 20036): The Institute, 1994.
Find full textCobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide, and vanadium pentoxide. Lyon, France: International Agency for Research on Cancer, 2006.
Find full text(Contributor), WHO, ed. Cobalt in Hard-metals and Cobalt Sulfate, Gallium Arsenide, Indium Phosphide and Vanadium Pentoxide (IARC Monographs). World Health Organisation, 2006.
Find full textBook chapters on the topic "Indium sulfure"
Deng, Zhi-gan, Guang Fan, Chang Wei, Gang Fan, Min-ting Li, Xing-bin Li, and Cun-xiong Li. "Reductive Leaching of Indium-Bearing Zinc Leaching Residue in Sulfuric Acid and Sulfur Dioxide." In Rare Metal Technology 2020, 369–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36758-9_36.
Full textNongbri, Pyniarlang L., and Ralf Oelmüller. "Role of Piriformospora indica in Sulfur Metabolism in Arabidopsis thaliana." In Soil Biology, 295–307. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33802-1_18.
Full textCao, Hongyang, Jimin Wang, Binxiu Wu, Jian Wang, and Junhong Li. "Indium Extraction Process from Sulfuric Pressure Leaching Solution for Vacuum Furnace Germanium Slag." In Characterization of Minerals, Metals, and Materials 2013, 547–52. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118659045.ch63.
Full textLiu, Yan, Yang-yang Fan, Jun-fu Qi, Lei Tian, and Ting-an Zhang. "Research on Sulfur Conversion Behavior in Oxygen Pressure Acid Leaching Process of High Indium Sphalerite." In The Minerals, Metals & Materials Series, 199–208. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72131-6_18.
Full textSatra, Jit, and Bibhutosh Adhikary. "Enhancement of Visible Light Driven Photovoltaic Efficiency Upon Copper Incorporation to Silver Indium Sulfide Nanocrystals." In Advances in Energy Research, Vol. 1, 81–88. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2666-4_9.
Full textGaneshpurkar, Aditya, Ankit Ganeshpurkar, Abhishek Agnihotri, Vikas Pandey, Nikhar Vishwakarma, Divya Bansal, and Nazneen Dubey. "Chondroitin Sulfate Surface Engineered Docetaxel-Loaded Liposomes for Tumor Targeting: Design, Development, and Characterization." In Proceedings of All India Seminar on Biomedical Engineering 2012 (AISOBE 2012), 77–82. India: Springer India, 2012. http://dx.doi.org/10.1007/978-81-322-0970-6_9.
Full textSaravanan, Ramachandran, Ramachandran Karthik, and Annian Shanmugam. "Partial sequencing, structural characterization, and anticoagulant activity of heparan sulfate and sulfated chitosan from selected Indian marine mollusks." In Marine Glycobiology, 129–43. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315371399-10.
Full textComasseto, J. V., and A. S. Guarezemini. "Indium Alkanethiolates." In Sulfur, Selenium, and Tellurium, 1. Georg Thieme Verlag KG, 2008. http://dx.doi.org/10.1055/sos-sd-039-00495.
Full textComasseto, J. V., and A. S. Guarezemini. "Indium Alkaneselenolates." In Sulfur, Selenium, and Tellurium, 1. Georg Thieme Verlag KG, 2008. http://dx.doi.org/10.1055/sos-sd-039-01238.
Full textComasseto, J. V., and A. S. Guarezemini. "Indium Alkanetellurolates." In Sulfur, Selenium, and Tellurium, 1. Georg Thieme Verlag KG, 2008. http://dx.doi.org/10.1055/sos-sd-039-01529.
Full textConference papers on the topic "Indium sulfure"
Newell, M. Jason, Robert Engelken, J. Hall, M. A. Mughal, F. Felizco, J. Vangilder, S. Thapa, D. McNew, and Z. Hill. "Elemental sulfur-based electrodeposition of indium sulfide films." In 2011 37th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2011. http://dx.doi.org/10.1109/pvsc.2011.6186202.
Full textElfarrass, Samira, Bouchaib Hartiti, Abderraouf Ridah, and Philippe Thevenin. "Influence of silver doped indium sulfide on the structural and optical properties of spray pyrolyzed indium sulfide thin films." In 2016 International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2016. http://dx.doi.org/10.1109/irsec.2016.7983882.
Full textМагомадов, Р. М., and Р. Р. Юшаев. "INFLUENCE OF THE SEMICONDUCTOR CONDUCTIVITY ON THE VALUE OF THE SCHOTTKY BARRIER." In «АКТУАЛЬНЫЕ ВОПРОСЫ СОВРЕМЕННОЙ НАУКИ: ТЕОРИЯ, ТЕХНОЛОГИЯ, МЕТОДОЛОГИЯ И ПРАКТИКА». Международная научно-практическая онлайн-конференция, приуроченная к 60-ти летию член-корреспондента Академии наук ЧР, доктора технических наук, профессора Сайд-Альви Юсуповича Муртазаева. Crossref, 2021. http://dx.doi.org/10.34708/gstou.conf..2021.20.82.001.
Full textBasu, Arun, Mike Gradassi, Ron Sills, Theo Fleisch, and Raj Puri. "Use of DME as a Gas Turbine Fuel." In ASME Turbo Expo 2001: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-gt-0003.
Full textMughal, Maqsood Ali, M. J. Newell, Joshua Vangilder, Shyam Thapa, Kayla Wood, Robert Engelken, B. R. Carroll, and J. Bruce Johnson. "Morphological and compositional analysis of electrodeposited indium (III) sulfide (In2S3) films." In 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6925234.
Full textTadjarodi, Azadeh, and Amir Hossein Cheshmekhavar. "Preparation of Silver Indium Sulfide Nanorods by a Facile Microwave Approach." In The 16th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2012. http://dx.doi.org/10.3390/ecsoc-16-01127.
Full textYang, Chih Sheng, Chen Da Tsai, Lu Wei Huang, Cheng Yung Kuo, and Chie Gau. "Hybrid organic solar cells based on nanoparticles of copper indium sulfur and conjugated polymer." In 2010 International Symposium on Computer, Communication, Control and Automation (3CA). IEEE, 2010. http://dx.doi.org/10.1109/3ca.2010.5533742.
Full textBansode, Sanjay B., Ramesh S. Kapadnis, V. G. Wagh, Sampat S. Kale, and Habib M. Pathan. "Transport properties of indium sulfide thin films deposited by chemical bath deposition." In PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810297.
Full textVittoe, Robert L., Tung Ho, Sudhir Shrestha, Mangilal Agarwal, and Kody Varahramyan. "All Solution-Based Fabrication of CIGS Solar Cell." In ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/msec2013-1239.
Full textSankir, Nurdan Demirci, Erkan Aydin, and Esma Ugur. "Spray pyrolized copper indium gallium sulfide abosrober layers for thin film solar cells." In 2013 International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, 2013. http://dx.doi.org/10.1109/icrera.2013.6749818.
Full text