Academic literature on the topic 'Indoor mobile mapping system'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Indoor mobile mapping system.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Indoor mobile mapping system"
Park, Joon-Kyu, and Kap-Yong Jung. "Construction of Indoor Spatial Information using Indoor Mobile Mapping System." International Journal of Control and Automation 11, no. 9 (September 30, 2018): 57–66. http://dx.doi.org/10.14257/ijca.2018.11.9.06.
Full textYu, Peidong, Mengke Wang, and Huanjian Chen. "Integration and evaluation of SLAM-based backpack mobile mapping system." E3S Web of Conferences 206 (2020): 03014. http://dx.doi.org/10.1051/e3sconf/202020603014.
Full textTsai, G. J., K. W. Chiang, C. H. Chu, Y. L. Chen, N. El-Sheimy, and A. Habib. "THE PERFORMANCE ANALYSIS OF AN INDOOR MOBILE MAPPING SYSTEM WITH RGB-D SENSOR." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1/W4 (August 26, 2015): 183–88. http://dx.doi.org/10.5194/isprsarchives-xl-1-w4-183-2015.
Full textKaram, Samer, George Vosselman, Michael Peter, Siavash Hosseinyalamdary, and Ville Lehtola. "Design, Calibration, and Evaluation of a Backpack Indoor Mobile Mapping System." Remote Sensing 11, no. 8 (April 13, 2019): 905. http://dx.doi.org/10.3390/rs11080905.
Full textRuslan, Nurfadhilah, Nabilah Naharudin, Abdul Hakim Salleh, Maisarah Abdul Halim, and Zulkiflee Abd Latif. "Indoor Model for Walking Environment using Mobile Mapping System." IOP Conference Series: Earth and Environmental Science 767, no. 1 (May 1, 2021): 012026. http://dx.doi.org/10.1088/1755-1315/767/1/012026.
Full textIwaszczuk, D., Z. Koppanyi, J. Pfrang, and C. Toth. "EVALUATION OF A MOBILE MULTI-SENSOR SYSTEM FOR SEAMLESS OUTDOOR AND INDOOR MAPPING." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-1/W2 (September 12, 2019): 31–35. http://dx.doi.org/10.5194/isprs-archives-xlii-1-w2-31-2019.
Full textNüchter, A., D. Borrmann, P. Koch, M. Kühn, and S. May. "A MAN-PORTABLE, IMU-FREE MOBILE MAPPING SYSTEM." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-3/W5 (August 19, 2015): 17–23. http://dx.doi.org/10.5194/isprsannals-ii-3-w5-17-2015.
Full textOtero, Roi, Susana Lagüela, Iván Garrido, and Pedro Arias. "Mobile indoor mapping technologies: A review." Automation in Construction 120 (December 2020): 103399. http://dx.doi.org/10.1016/j.autcon.2020.103399.
Full textWen, C., Y. Xia, Y. Lian, Y. Dai, J. Tan, C. Wang, and J. Li. "MOBILE LASER SCANNING SYSTEMS FOR GPS/GNSS-DENIED ENVIRONMENT MAPPING." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-1 (September 26, 2018): 457–60. http://dx.doi.org/10.5194/isprs-archives-xlii-1-457-2018.
Full textMaboudi, M., D. Bánhidi, and M. Gerke. "INVESTIGATION OF GEOMETRIC PERFORMANCE OF AN INDOOR MOBILE MAPPING SYSTEM." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2 (May 30, 2018): 637–42. http://dx.doi.org/10.5194/isprs-archives-xlii-2-637-2018.
Full textDissertations / Theses on the topic "Indoor mobile mapping system"
Gomes, Pedro Miguel de Barros. "LADAR based mapping and obstacle detection system for service robots." Master's thesis, Faculdade de Ciências e Tecnologia, 2010. http://hdl.handle.net/10362/4589.
Full textWhen travelling in unfamiliar environments, a mobile service robot needs to acquire information about his surroundings in order to detect and avoid obstacles and arrive safely at his destination. This dissertation presents a solution for the problem of mapping and obstacle detection in indoor/outdoor structured3 environments, with particular application on service robots equipped with a LADAR. Since this system was designed for structured environments, offroad terrains are outside the scope of this work. Also, the use of any a priori knowledge about LADAR’s surroundings is discarded, i.e. the developed mapping and obstacle detection system works in unknown environments. In this solution, it is assumed that the robot, which carries the LADAR and the mapping and obstacle detection system, is based on a planar surface which is considered to be the ground plane. The LADAR is positioned in a way suitable for a three dimensional world and an AHRS sensor is used to increase the robustness of the system to variations on robot’s attitude, which, in turn, can cause false positives on obstacle detection. The results from the experimental tests conducted in real environments through the incorporation on a physical robot suggest that the developed solution can be a good option for service robots driving in indoor/outdoor structured environments.
Althaus, Philipp. "Indoor Navigation for Mobile Robots : Control and Representations." Doctoral thesis, KTH, Numerical Analysis and Computer Science, NADA, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3644.
Full textThis thesis deals with various aspects of indoor navigationfor mobile robots. For a system that moves around in ahousehold or office environment,two major problems must betackled. First, an appropriate control scheme has to bedesigned in order to navigate the platform. Second, the form ofrepresentations of the environment must be chosen.
Behaviour based approaches have become the dominantmethodologies for designing control schemes for robotnavigation. One of them is the dynamical systems approach,which is based on the mathematical theory of nonlineardynamics. It provides a sound theoretical framework for bothbehaviour design and behaviour coordination. In the workpresented in this thesis, the approach has been used for thefirst time to construct a navigation system for realistic tasksin large-scale real-world environments. In particular, thecoordination scheme was exploited in order to combinecontinuous sensory signals and discrete events for decisionmaking processes. In addition, this coordination frameworkassures a continuous control signal at all times and permitsthe robot to deal with unexpected events.
In order to act in the real world, the control system makesuse of representations of the environment. On the one hand,local geometrical representations parameterise the behaviours.On the other hand, context information and a predefined worldmodel enable the coordination scheme to switchbetweensubtasks. These representations constitute symbols, on thebasis of which the system makes decisions. These symbols mustbe anchored in the real world, requiring the capability ofrelating to sensory data. A general framework for theseanchoring processes in hybrid deliberative architectures isproposed. A distinction of anchoring on two different levels ofabstraction reduces the complexity of the problemsignificantly.
A topological map was chosen as a world model. Through theadvanced behaviour coordination system and a proper choice ofrepresentations,the complexity of this map can be kept at aminimum. This allows the development of simple algorithms forautomatic map acquisition. When the robot is guided through theenvironment, it creates such a map of the area online. Theresulting map is precise enough for subsequent use innavigation.
In addition, initial studies on navigation in human-robotinteraction tasks are presented. These kinds of tasks posedifferent constraints on a robotic system than, for example,delivery missions. It is shown that the methods developed inthis thesis can easily be applied to interactive navigation.Results show a personal robot maintaining formations with agroup of persons during social interaction.
Keywords:mobile robots, robot navigation, indoornavigation, behaviour based robotics, hybrid deliberativesystems, dynamical systems approach, topological maps, symbolanchoring, autonomous mapping, human-robot interaction
Nováková, Věra. "Vypracování metodik pro tvorbu informačního modelu budovy." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2014. http://www.nusl.cz/ntk/nusl-227099.
Full textCeroni, Rodrigo. "Mobile Mapping System." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016.
Find full textMcCoig, Kenneth. "A MOBILE ROBOTIC COMPUTING PLATFORM FOR THREE-DIMENSIONAL INDOOR MAPPI." Master's thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2372.
Full textM.S.Cp.E.
Department of Electrical and Computer Engineering
Engineering and Computer Science
Computer Engineering
Dag, Antymos. "Autonomous Indoor Navigation System for Mobile Robots." Thesis, Linköpings universitet, Programvara och system, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-129419.
Full textVallivaara, I. (Ilari). "Simultaneous localization and mapping using the indoor magnetic field." Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526217741.
Full textTiivistelmä Maan magneettikenttään perustuvat kompassit ovat ohjanneet merenkäyntiä vuosisatojen ajan. Rakennusten metallirakenteet aiheuttavat paikallisia häiriöitä tähän magneettikenttään, minkä vuoksi kompasseja on pidetty epäluotettavina sisätiloissa. Vasta viimeisen vuosikymmenen aikana on huomattu, että koska nämä häiriöt ovat ajallisesti pysyviä ja paikallisesti hyvin erottelevia, niistä voidaan muodostaa jokaiselle rakennukselle yksilöllinen häiriöihin perustuva magneettinen kartta, jota voidaan käyttää sisätiloissa paikantamiseen. Suurin osa tämänhetkisistä magneettikarttojen sovelluksista perustuu kartan käsin keräämiseen, mikä on sekä työlästä että tarjoaa mahdollisuuden inhimillisiin virheisiin. Tämä väitöstutkimus tarttuu ongelmaan laittamalla robotin hoitamaan kartoitustyön ja näyttää, että robotti pystyy itsenäisesti keräämään magneettisen kartan hyödyntäen pelkästään magnetometriä ja renkaiden antamia matkalukemia. Ratkaisu perustuu faktoroituun partikkelisuodattimeen (RBPF), joka approksimoi täsmällistä rekursiivista bayesilaista ratkaisua. Robotin keräämien karttojen tarkkuus mahdollistaa paikannuksen n. 10 senttimetrin tarkkuudella. Vähäisten sensori- ja muiden vaatimusten takia menetelmä soveltuu erityisen hyvin koti- ja parvirobotiikkaan, joissa hinta on usein ratkaiseva tekijä. Tutkimuksessa esitellään lisäksi uusia apumenetelmiä tehokkaaseen näytteistykseen ja epävarmuuden hallintaan. Näiden käyttöala ei rajoitu pelkästään magneettipaikannukseen- ja kartoitukseen. Robotiikan sovellusten lisäksi tutkimusta motivoi voimakkaasti kasvava tarve älylaitteissa toimivalle sisätilapaikannukselle. Tämä avaa uusia mahdollisuuksia paikannukselle ympäristöissä, joissa GPS ei perinteisesti toimi
Miu, Allen Ka Lun 1977. "Design and implementation of an indoor mobile navigation system." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/16810.
Full textIncludes bibliographical references (p. 59-60).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
This thesis describes the design and implementation of CricketNav, an indoor mobile navigation system using the Cricket indoor location sensing infrastructure developed at the MIT Laboratory for Computer Science as part of Project Oxygen. CricketNav navigates users to the desired destination by displaying a navigation arrow on a map. Both the direction and the position of the navigation arrow are updated in real-time as CricketNav steers the users through a dynamically computed path. To support CricketNav, we developed a modular data processing architecture for the Cricket location system, and an API for accessing location information. We implemented a least-squares position estimation algorithm in Cricket and evaluated its performance. We also developed a rich and compact representation of spatial information, and an automated process to extract this information from architectural CAD floorplans.
by Allen Ka Lun Miu.
S.M.
Taylor, Trevor. "Mapping of indoor environments by robots using low-cost vision sensors." Queensland University of Technology, 2009. http://eprints.qut.edu.au/26282/.
Full textGhandchi, Bahram, and Taha Saleh. "Indoor Mobile Positioning system (MPS) classification in different wireless technology domain." Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-17377.
Full textBooks on the topic "Indoor mobile mapping system"
Bayoud, Fadi Atef. Development of a robotic mobile mapping system by vision-aided inertial navigation: A geomatics approach. Zürich: Institut für Geodäsie und Photogrammetrie, Eidgenössische Technische Hochschule Zürich, 2006.
Find full textDevelopment of a robotic mobile mapping system by vision-aided inertial navigation: A geomatics approach. Zürich: Institut für Geodäsie und Photogrammetrie, Eidgenössische Technische Hochschule Zürich, 2006.
Find full textAllan, Alasdair. Geolocation in IOS: Mobile Positioning and Mapping on iPhone and iPad. O'Reilly Media, Incorporated, 2012.
Find full textSanfeliu, Alberto, and Juan Andrade Cetto. Environment Learning for Indoor Mobile Robots: A Stochastic State Estimation Approach to Simultaneous Localization and Map Building. Springer, 2010.
Find full text3d Robotic Mapping The Simultaneous Localization And Mapping Problem With Six Degrees Of Freedom. Springer, 2009.
Find full textAndrade-Cetto, Juan, and Alberto Sanfeliu. Environment Learning for Indoor Mobile Robots: A Stochastic State Estimation Approach to Simultaneous Localization and Map Building (Springer Tracts in Advanced Robotics). Springer, 2006.
Find full textFastSLAM: A Scalable Method for the Simultaneous Localization and Mapping Problem in Robotics (Springer Tracts in Advanced Robotics). Springer, 2007.
Find full textBook chapters on the topic "Indoor mobile mapping system"
Chiang, Kai Wei, Guang-Je Tsai, and Jhih Cing Zeng. "Mobile Mapping Technologies." In Urban Informatics, 439–65. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8983-6_25.
Full textPerente, Osman Kerem, and Tacha Serif. "Server-Based Indoor Location Detection System." In Mobile Web and Intelligent Information Systems, 142–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97163-6_12.
Full textOvchinnikov, I. A., and K. Y. Kudryavtsev. "Indoor Positioning System Based on Mobile Devices." In Advanced Technologies in Robotics and Intelligent Systems, 285–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33491-8_34.
Full textZhao, Lijun, Yu Liu, Xinkai Jiang, Ke Wang, and Zigeng Zhou. "Indoor Environment RGB-DT Mapping for Security Mobile Robots." In Intelligent Robotics and Applications, 131–41. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27538-9_12.
Full textSato, Fumiaki. "Indoor Navigation System Based on Augmented Reality Markers." In Innovative Mobile and Internet Services in Ubiquitous Computing, 266–74. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61542-4_25.
Full textAcosta-Amaya, Gustavo Alonso, Andrés Felipe Acosta-Gil, Julián López-Velásquez, and Jovani Alberto Jiménez-Builes. "Map-Bot: Mapping Model of Indoor Work Environments in Mobile Robotics." In Studies in Computational Intelligence, 75–95. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71115-3_4.
Full textSiemiątkowska, Barbara, Bogdan Harasymowicz-Boggio, Maciej Przybylski, Monika Różańska-Walczuk, Mateusz Wiśniowski, and Michał Kowalski. "BIM Based Indoor Navigation System of Hermes Mobile Robot." In Romansy 19 – Robot Design, Dynamics and Control, 375–82. Vienna: Springer Vienna, 2013. http://dx.doi.org/10.1007/978-3-7091-1379-0_46.
Full textVochin, Marius, Alexandru Vulpe, Ioana Marcu, and George Suciu. "Low-Power Intelligent Displaying System with Indoor Mobile Location Capability." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 146–53. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23976-3_15.
Full textAn, Hyeon-woo, and Nammee Moon. "Indoor Positioning System Using Pyramidal Beacon in Mobile Augmented Reality." In Advances in Computer Science and Ubiquitous Computing, 17–23. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9343-7_3.
Full textWang, Yizhuo, Xuan Xu, Xinyu Wang, and He Xu. "A Novel Indoor Navigation System Based on RFID and LBS Technology." In Innovative Mobile and Internet Services in Ubiquitous Computing, 728–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93554-6_71.
Full textConference papers on the topic "Indoor mobile mapping system"
Lee, Keun Wang, and Joon Kyu Park. "Application of Mobile Mapping System for Indoor Geospatial Information Visualization." In Green and Smart Technology 2015. Science & Engineering Research Support soCiety, 2015. http://dx.doi.org/10.14257/astl.2015.120.96.
Full textHashemifar, Zakieh, Kyung Won Lee, Nils Napp, and Karthik Dantu. "Geometric Mapping for Sustained Indoor Autonomy." In MobiSys '18: The 16th Annual International Conference on Mobile Systems, Applications, and Services. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3215525.3215531.
Full textDanielle Delos Santos, Duke, Alron Jan Lam, Jules Macatangay, Ivan Paner, and Courtney Anne Ngo. "Breadcrumb: An indoor simultaneous localization and mapping system for mobile devices." In 2016 IEEE Sensors Applications Symposium (SAS). IEEE, 2016. http://dx.doi.org/10.1109/sas.2016.7479900.
Full textYu-Cheol Lee and Seung-Hwan Park. "3D map building method with mobile mapping system in indoor environments." In 2013 16th International Conference on Advanced Robotics (ICAR 2013). IEEE, 2013. http://dx.doi.org/10.1109/icar.2013.6766588.
Full textShamseldin, Tamer, Ankit Manerikar, Magdy Elbahnasawy, and Ayman Habib. "SLAM-based Pseudo-GNSS/INS localization system for indoor LiDAR mobile mapping systems." In 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS). IEEE, 2018. http://dx.doi.org/10.1109/plans.2018.8373382.
Full textWakim, Rachel, and Jay A. Weitzen. "An autonomous system for high-resolution mapping of indoor wireless coverage." In 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). IEEE, 2017. http://dx.doi.org/10.1109/pimrc.2017.8292327.
Full textChang, Yu-Chen, Tsung-Te Lai, Hao-Hua Chu, and Polly Huang. "PipeProbe: Mapping Spatial Layout of Indoor Water Pipelines." In 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware. IEEE, 2009. http://dx.doi.org/10.1109/mdm.2009.69.
Full textPammer, Viktoria, and Klaus Witrisal. "Ultra Wideband Communication System as Sensor Technology for 3D Mapping." In 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications. IEEE, 2006. http://dx.doi.org/10.1109/pimrc.2006.254477.
Full textZhang, Ying, Juan Liu, Gabriel Hoffmann, Mark Quilling, Kenneth Payne, Prasanta Bose, and Andrew Zimdars. "Real-time indoor mapping for mobile robots with limited sensing." In 2010 IEEE 7th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS). IEEE, 2010. http://dx.doi.org/10.1109/mass.2010.5663778.
Full textGaletto, Maurizio, Luca Mastrogiacomo, Barbara Pralio, and Cristina Spagnolo. "Indoor Environmental Mapping by Means of Autonomous Guided Agents." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-25224.
Full textReports on the topic "Indoor mobile mapping system"
Habib, Ayman, Yun-Jou Lin, Radhika Ravi, Tamer Shamseldin, and Magdy Elbahnasawy. LiDAR-Based Mobile Mapping System for Lane Width Estimation in Work Zone. Purdue University, January 2019. http://dx.doi.org/10.5703/1288284316730.
Full textBrodie, Katherine, Brittany Bruder, Richard Slocum, and Nicholas Spore. Simultaneous mapping of coastal topography and bathymetry from a lightweight multicamera UAS. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41440.
Full textIndoor radiation mapping using the Laser Assisted Ranging and Data System (LARADS). Innovative technology summary report. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/335212.
Full text