Journal articles on the topic 'Indoor/outdoor path loss models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Indoor/outdoor path loss models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Shalaby, Abdulrahman M., and Noor Shamsiah Othman. "The Effect of Rainfall on the UAV Placement for 5G Spectrum in Malaysia." Electronics 11, no. 5 (2022): 681. http://dx.doi.org/10.3390/electronics11050681.
Full textAl-Saman, Ahmed, Michael Cheffena, Olakunle Elijah, Yousef A. Al-Gumaei, Sharul Kamal Abdul Rahim, and Tawfik Al-Hadhrami. "Survey of Millimeter-Wave Propagation Measurements and Models in Indoor Environments." Electronics 10, no. 14 (2021): 1653. http://dx.doi.org/10.3390/electronics10141653.
Full textBian, Chengzhen, Weiping Li, Mingxu Wang, Xinyi Wang, Yi Wei, and Wen Zhou. "Path Loss Measurement of Outdoor Wireless Channel in D-band." Sensors 22, no. 24 (2022): 9734. http://dx.doi.org/10.3390/s22249734.
Full textCastro, Guillermo, Rodolfo Feick, Mauricio Rodriguez, Reinaldo Valenzuela, and Dmitry Chizhik. "Outdoor-to-Indoor Empirical Path Loss Models: Analysis for Pico and Femto Cells in Street Canyons." IEEE Wireless Communications Letters 6, no. 4 (2017): 542–45. http://dx.doi.org/10.1109/lwc.2017.2715169.
Full textCama-Pinto, Alejandro, Gabriel Piñeres-Espitia, José Caicedo-Ortiz, Elkin Ramírez-Cerpa, Leonardo Betancur-Agudelo, and Francisco Gómez-Mula. "Received strength signal intensity performance analysis in wireless sensor network using Arduino platform and XBee wireless modules." International Journal of Distributed Sensor Networks 13, no. 7 (2017): 155014771772269. http://dx.doi.org/10.1177/1550147717722691.
Full textMacedo, Alex, Thiago Costa, Edemir de Matos, et al. "Channel Analysis for 3.5 GHz Frequency in Airport." Journal of Communication and Information Systems 38, no. 1 (2023): 115–20. http://dx.doi.org/10.14209/jcis.2023.13.
Full textDiago-Mosquera, Melissa Eugenia, Alejandro Aragón-Zavala, and Mauricio Rodriguez. "Testing a 5G Communication System: Kriging-Aided O2I Path Loss Modeling Based on 3.5 GHz Measurement Analysis." Sensors 21, no. 20 (2021): 6716. http://dx.doi.org/10.3390/s21206716.
Full textTalib, Mushtaq, Norazizah Binti Mohd Aripin, Noor Shamsiah Othman, and Adheed Hasan Sallomi. "Comprehensive Overview on Millimeter Wave Communications for 5G Networks Concentrating on Propagation Models for Different Urban Environments." Journal of Physics: Conference Series 2322, no. 1 (2022): 012095. http://dx.doi.org/10.1088/1742-6596/2322/1/012095.
Full textNeelakanta, Perambur, and Dolores De Groff. "Conceiving Inferential Prototypes of MIMO Channel Models via Buckingham’s Similitude Principle for 30+ GHz through THz Spectrum." Transactions on Networks and Communications 9, no. 3 (2021): 1–35. http://dx.doi.org/10.14738/tnc.93.10214.
Full textAnbazhagan, Rajesh, and Nakkeeran Rangaswamy. "Investigation on Mutual Contention Bandwidth Request Mechanisms in Two-Hop Relay Network with ITU-R Path Loss Models." ISRN Communications and Networking 2013 (May 29, 2013): 1–13. http://dx.doi.org/10.1155/2013/417132.
Full textAskhedkar, Anjali R., Bharat S. Chaudhari, Maha Abdelhaq, Raed Alsaqour, Rashid Saeed, and Marco Zennaro. "LoRa Communication Using TVWS Frequencies: Range and Data Rate." Future Internet 15, no. 8 (2023): 270. http://dx.doi.org/10.3390/fi15080270.
Full textAzevedo, Joaquim Amândio, and Fábio Mendonça. "A Critical Review of the Propagation Models Employed in LoRa Systems." Sensors 24, no. 12 (2024): 3877. http://dx.doi.org/10.3390/s24123877.
Full textHachemi, Mohammed Hicham, Sidi Mohammed Hadj Irid, Miloud Benchehima, and Mourad Hadjila. "Pedestrian mobility management for heterogeneous networks." Indonesian Journal of Electrical Engineering and Computer Science 28, no. 3 (2022): 1530–40. https://doi.org/10.11591/ijeecs.v28.i3.pp1530-1540.
Full textAl-Samman, Ahmed M., Marwan Hadri Azmi, Y. A. Al-Gumaei, et al. "Millimeter Wave Propagation Measurements and Characteristics for 5G System." Applied Sciences 10, no. 1 (2020): 335. http://dx.doi.org/10.3390/app10010335.
Full textJanssen, Thomas, Noori BniLam, Michiel Aernouts, Rafael Berkvens, and Maarten Weyn. "LoRa 2.4 GHz Communication Link and Range." Sensors 20, no. 16 (2020): 4366. http://dx.doi.org/10.3390/s20164366.
Full textBashar Fakhri, Ahmed, Sadik Kamel Gharghan, and Saleem Latteef Mohammed. "Path-loss modelling for WSN deployment in indoor and outdoor environments for medical applications." International Journal of Engineering & Technology 7, no. 3 (2018): 1666. http://dx.doi.org/10.14419/ijet.v7i3.15409.
Full textLi, De-Wei, and Bryce Kendrick. "Functional and causal relationships between indoor and outdoor airborne fungi." Canadian Journal of Botany 74, no. 2 (1996): 194–209. http://dx.doi.org/10.1139/b96-024.
Full textYang, Zanru, Le Chung Tran, and Farzad Safaei. "Step Length Estimation Using the RSSI Method in Walking and Jogging Scenarios." Sensors 22, no. 4 (2022): 1640. http://dx.doi.org/10.3390/s22041640.
Full textHongmei, Zhao, Yao Hailong, and Guo Shuting. "Research on path loss and shadow fading of ultra wideband simulation channel." International Journal of Distributed Sensor Networks 12, no. 12 (2016): 155014771667984. http://dx.doi.org/10.1177/1550147716679847.
Full textZhong, Zhimeng, Jianyao Zhao, and Chao Li. "Outdoor-to-Indoor Channel Measurement and Coverage Analysis for 5G Typical Spectrums." International Journal of Antennas and Propagation 2019 (September 16, 2019): 1–10. http://dx.doi.org/10.1155/2019/3981678.
Full textSoontornpipit, Pichitpong. "Study of 403.5 MHz Path Loss Models for Indoor Wireless Communications with Implanted Medical Devices on the Human Body." ECTI Transactions on Electrical Engineering, Electronics, and Communications 10, no. 2 (2012): 173–78. http://dx.doi.org/10.37936/ecti-eec.2012102.170402.
Full textAbdullah, Saifuddin, and Dr Fuad Al-Najjar. "A Collective Statistical Analysis of Outdoor Path Loss Models." INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 3, no. 1 (2012): 6–10. http://dx.doi.org/10.24297/ijct.v3i1a.2720.
Full textZhao, Bo, Chao Zheng, Xinxin Ren, and Jianrong Dai. "An Optimization Method Combining RSSI and PDR Data to Estimate Distance between Smart Devices for COVID-19 Contact Tracing." Journal of Healthcare Engineering 2023 (February 9, 2023): 1–10. http://dx.doi.org/10.1155/2023/7711901.
Full textAnastasiou, Chrysovalantis, Constantinos Costa, Panos K. Chrysanthis, Cyrus Shahabi, and Demetrios Zeinalipour-Yazti. "ASTRO: Reducing COVID-19 Exposure through Contact Prediction and Avoidance." ACM Transactions on Spatial Algorithms and Systems 8, no. 2 (2022): 1–31. http://dx.doi.org/10.1145/3490492.
Full textChomba, B. K., D. B. O. Konditi, D. M. Nyaanga, and J. M. Githeko. "Effects of Varying Distance on Wireless Signal Propagation in Indoor and Outdoor Built Sites." International Journal of Engineering Research in Africa 6 (November 2011): 75–89. http://dx.doi.org/10.4028/www.scientific.net/jera.6.75.
Full textNaik, Udaykumar, and Vishram N. Bapat. "Adaptive Empirical Path Loss Prediction Models for Indoor WLAN." Wireless Personal Communications 79, no. 2 (2014): 1003–16. http://dx.doi.org/10.1007/s11277-014-1914-9.
Full textYang, Zanru, Le Chung Tran, Farzad Safaei, Anh Tuyen Le, and Attaphongse Taparugssanagorn. "Real-Time Step Length Estimation in Indoor and Outdoor Scenarios." Sensors 22, no. 21 (2022): 8472. http://dx.doi.org/10.3390/s22218472.
Full textSamad, Md Abdus, Dong-You Choi, and Kwonhue Choi. "Path loss measurement and modeling of 5G network in emergency indoor stairwell at 3.7 and 28 GHz." PLOS ONE 18, no. 3 (2023): e0282781. http://dx.doi.org/10.1371/journal.pone.0282781.
Full textSriploy, Pongnarin, Peerapong Uthansakul, and Monthippa Uthansakul. "The Optimum Number of Nodes and Radius for Distributed Beamforming Networks." ECTI Transactions on Electrical Engineering, Electronics, and Communications 12, no. 2 (2014): 35–47. http://dx.doi.org/10.37936/ecti-eec.2014122.170821.
Full textLi, Qiang, Hongxin Zhang, Yang Lu, Tianyi Zheng, and Yinghua Lv. "A new method for path-loss modeling." International Journal of Microwave and Wireless Technologies 11, no. 08 (2019): 739–46. http://dx.doi.org/10.1017/s1759078719000084.
Full textOladimeji, Tolulope T., Pradeep Kumar, and Mohamed K. Elmezughi. "Path Loss Measurements and Model Analysis in an Indoor Corridor Environment at 28 GHz and 38 GHz." Sensors 22, no. 19 (2022): 7642. http://dx.doi.org/10.3390/s22197642.
Full textK, Periyakaruppan, Manohari D, Kavitha M S, and Chellaprabha B. "OPTIMIZATION OF MANET WITH MIMO FOR FOREST APPLICATION USING ADVANCED ANTENNA MODELS." ICTACT Journal on Microelectronics 8, no. 1 (2022): 1318–22. http://dx.doi.org/10.21917/ijme.2022.0227.
Full textSamimi, Mathew K., Theodore S. Rappaport, and George R. MacCartney. "Probabilistic Omnidirectional Path Loss Models for Millimeter-Wave Outdoor Communications." IEEE Wireless Communications Letters 4, no. 4 (2015): 357–60. http://dx.doi.org/10.1109/lwc.2015.2417559.
Full textQasem, Nidal, and Mohammad Alkhawatrah. "60 GHz millimeter-wave indoor propagation path loss models for modified indoor environments." International Journal of Electrical and Computer Engineering (IJECE) 14, no. 3 (2024): 2737. http://dx.doi.org/10.11591/ijece.v14i3.pp2737-2752.
Full textNidal, Qasem, and Alkhawatrah Mohammad. "60 GHz millimeter-wave indoor propagation path loss models for modified indoor environments." International Journal of Electrical and Computer Engineering (IJECE) 14, no. 3 (2024): 2737–52. https://doi.org/10.11591/ijece.v14i3.pp2737-2752.
Full textAbdul-Samed, Baqir, and Ammar Aldair. "Outdoor & Indoor Quadrotor Mission." 3D SCEEER Conference sceeer, no. 3d (2020): 1–12. http://dx.doi.org/10.37917/ijeee.sceeer.3rd.01.
Full textAvella-Cely, Sandy Enrique, Juan Carlos Muñoz-Pérez, Herman Antonio Fernández-González, Lorenzo Rubio-Arjona, Juan Ribera Reig-Pascual, and Vicent Miguel Rodrigo-Peñarrocha. "Path Loss Characterization in an Indoor Laboratory Environment at 3.7 GHz in in Line-Of-Sight Condition." Revista Facultad de Ingeniería 29, no. 54 (2020): e12015. http://dx.doi.org/10.19053/01211129.v29.n54.2020.12015.
Full textKaya , Abdil, Brecht De Beelde, Wout Joseph, Maarten Weyn, and Rafael Berkvens. "Geodesic Path Model for Indoor Propagation Loss Prediction of Narrowband Channels." Sensors 22, no. 13 (2022): 4903. http://dx.doi.org/10.3390/s22134903.
Full textMizuno, Yuta, Kentaro Nishimori, and Ryotaro Taniguchi. "A study on outdoor to indoor penetration path loss at 2 and 5 GHz." IEICE Communications Express 8, no. 12 (2019): 623–27. http://dx.doi.org/10.1587/comex.2019gcl0056.
Full textPhaiboon, Supachai, P. Phokharatkul, and Suripon Somkuarnpanit. "NEW UPPER AND LOWER BOUNDS LINE OF SIGHT PATH LOSS MODELS FOR MOBILE PROPAGATION IN BUILDINGS." ASEAN Journal on Science and Technology for Development 24, no. 4 (2017): 407–18. http://dx.doi.org/10.29037/ajstd.214.
Full textNurrahman, Winaldi, Abdullah Zainuddin, and Made sutha Yadnya. "ANALISIS STATISTIK LEVEL DAYA SINYAL PROVIDER TELKOMSEL DAN XL DI JURUSAN TEKNIK ELEKTRO UNIVERSITAS MATARAM MENGGUNAKAN METODE WALK TEST." DIELEKTRIKA 10, no. 1 (2023): 51–63. http://dx.doi.org/10.29303/dielektrika.v10i1.326.
Full textUllah, Ubaid, Usman Rauf Kamboh, Ferdous Hossain, and Muhammad Danish. "Outdoor-to-Indoor and Indoor-to-Indoor Propagation Path Loss Modeling Using Smart 3D Ray Tracing Algorithm at 28 GHz mmWave." Arabian Journal for Science and Engineering 45, no. 12 (2020): 10223–32. http://dx.doi.org/10.1007/s13369-020-04661-w.
Full textKamboh, Usman Rauf, Muhammad Rehman Shahid, Hamza Aldabbas, et al. "Radio Network Forensic with mmWave Using the Dominant Path Algorithm." Security and Communication Networks 2022 (January 12, 2022): 1–15. http://dx.doi.org/10.1155/2022/9692892.
Full textNoh, Sun-Kuk, and DongYou Choi. "Propagation Model in Indoor and Outdoor for the LTE Communications." International Journal of Antennas and Propagation 2019 (June 16, 2019): 1–6. http://dx.doi.org/10.1155/2019/3134613.
Full textMohamed, Ibrahim. "Guide for Precise Path Loss Estimation in Indoor Environments." International Science and Technology Journal 36, no. 2 (2025): 1–10. https://doi.org/10.62341/imge0407.
Full textFernández Anitzine, Ignacio, Juan Antonio Romo Argota, and Fernado Pérez Fontán. "Influence of Training Set Selection in Artificial Neural Network-Based Propagation Path Loss Predictions." International Journal of Antennas and Propagation 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/351487.
Full textYang, Zanru, Le Chung Tran, and Farzad Safaei. "Step Length Measurements Using the Received Signal Strength Indicator." Sensors 21, no. 2 (2021): 382. http://dx.doi.org/10.3390/s21020382.
Full textYang, Zanru, Le Chung Tran, and Farzad Safaei. "Step Length Measurements Using the Received Signal Strength Indicator." Sensors 21, no. 2 (2021): 382. http://dx.doi.org/10.3390/s21020382.
Full textYan, Ke, Ruizhi Chen, Guangyi Guo, and Liang Chen. "Locating Smartphone Indoors by Using Tightly Coupling Bluetooth Ranging and Accelerometer Measurements." Remote Sensing 14, no. 14 (2022): 3468. http://dx.doi.org/10.3390/rs14143468.
Full textAlwarafy, Abdulmalik, Ahmed Iyanda Sulyman, Abdulhameed Alsanie, Saleh A. Alshebeili, and Hatim M. Behairy. "Path-Loss Channel Models for Receiver Spatial Diversity Systems at 2.4 GHz." International Journal of Antennas and Propagation 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/6790504.
Full text