Journal articles on the topic 'Indoor propagation models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Indoor propagation models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bermudez, Hector Fabio, Ramón Sanchez-Iborra, Jose Luis Arciniegas, Wilmar Yesid Campo, and María Dolores Cano. "Indoor propagation models for emulated LTE networks." IET Communications 14, no. 3 (2020): 480–88. http://dx.doi.org/10.1049/iet-com.2019.0365.
Full textNoh, Sun-Kuk, and DongYou Choi. "Propagation Model in Indoor and Outdoor for the LTE Communications." International Journal of Antennas and Propagation 2019 (June 16, 2019): 1–6. http://dx.doi.org/10.1155/2019/3134613.
Full textAl-Saman, Ahmed, Michael Cheffena, Olakunle Elijah, Yousef A. Al-Gumaei, Sharul Kamal Abdul Rahim, and Tawfik Al-Hadhrami. "Survey of Millimeter-Wave Propagation Measurements and Models in Indoor Environments." Electronics 10, no. 14 (2021): 1653. http://dx.doi.org/10.3390/electronics10141653.
Full textMukti, Fransiska Sisilia. "Comparative study of four indoor empirical propagation models for campus wireless network." Jurnal Teknologi dan Sistem Komputer 7, no. 4 (2019): 154–60. http://dx.doi.org/10.14710/jtsiskom.7.4.2019.154-160.
Full textLipinski, Piotr, and Marcin Leplawy. "WiFi Electromagnetic Field Modelling for Indoor Localization." Open Physics 17, no. 1 (2019): 352–57. http://dx.doi.org/10.1515/phys-2019-0039.
Full textZhu, Shan, Bang Wang, Wen Yu Liu, and Hui Liang. "An Empirical Indoor Propagation Model for Underground Parking Area." Advanced Materials Research 433-440 (January 2012): 4865–68. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.4865.
Full textKuo-Hui Li, M. A. Ingram, and A. Van Nguyen. "Impact of clustering in statistical indoor propagation models on link capacity." IEEE Transactions on Communications 50, no. 4 (2002): 521–23. http://dx.doi.org/10.1109/26.996062.
Full textLei Jiang and Soon Yim Tan. "Geometrically Based Statistical Channel Models for Outdoor and Indoor Propagation Environments." IEEE Transactions on Vehicular Technology 56, no. 6 (2007): 3587–93. http://dx.doi.org/10.1109/tvt.2007.901055.
Full textAkram, Beenish Ayesha, and Ali Hammad Akbar. "Wi-Fi Fingerprinting Based Room Level Indoor Localization Framework Using Ensemble Classifiers." January 2019 38, no. 1 (2019): 151–74. http://dx.doi.org/10.22581/muet1982.1901.13.
Full textLoch-Dehbi, Sandra, Youness Dehbi, and Lutz Plümer. "Estimation of 3D Indoor Models with Constraint Propagation and Stochastic Reasoning in the Absence of Indoor Measurements." ISPRS International Journal of Geo-Information 6, no. 3 (2017): 90. http://dx.doi.org/10.3390/ijgi6030090.
Full textVarga, Gábor, and Róbert Schulcz. "Indoor radio location algorithm using empirical propagation models and probability distribution heuristics." Periodica Polytechnica Electrical Engineering 55, no. 1-2 (2011): 87. http://dx.doi.org/10.3311/pp.ee.2011-1-2.10.
Full textLópez O., Sandra Paulina, Juan David Osorio Betancur, and Andrés Navarro Cadavid. "Graphic Tool for Wireless Networks Modeling, based in Indoor Signal Propagation Models." Sistemas y Telemática 2, no. 4 (2006): 95. http://dx.doi.org/10.18046/syt.v2i4.939.
Full textAgrawal, Anuj. "Evolving CSP Algorithm in Predicting the Path Loss of Indoor Propagation Models." International Journal of Computer Applications Technology and Research 2, no. 2 (2013): 86–90. http://dx.doi.org/10.7753/ijcatr0202.1001.
Full textLim, C. P., J. L. Volakis, K. Sertel, R. W. Kindt, and A. Anastasopoulos. "Indoor Propagation Models Based on Rigorous Methods for Site-Specific Multipath Environments." IEEE Transactions on Antennas and Propagation 54, no. 6 (2006): 1718–25. http://dx.doi.org/10.1109/tap.2006.875493.
Full textAyadi, M., and A. Ben Zineb. "Body Shadowing and Furniture Effects for Accuracy Improvement of Indoor Wave Propagation Models." IEEE Transactions on Wireless Communications 13, no. 11 (2014): 5999–6006. http://dx.doi.org/10.1109/twc.2014.2339275.
Full textMorocho-Yaguana, Marco, Patricia Ludeña-González, Francisco Sandoval, Betty Poma-Vélez, and Alexandra Erreyes-Dota. "An Optimized Propagation Model based on Measurement Data for Indoor Environments." Journal of Telecommunications and Information Technology 2 (June 29, 2018): 69–75. http://dx.doi.org/10.26636/jtit.2018.117217.
Full textFerreira, Joao, Ricardo Resende, and Stuart Martinho. "Beacons and BIM Models for Indoor Guidance and Location." Sensors 18, no. 12 (2018): 4374. http://dx.doi.org/10.3390/s18124374.
Full textHuang, Liang, and Zai Yi Liao. "Physical-Rule Based Adaptive Neuro-Fuzzy Inferential Sensor vs. GA-BP Based Prediction Model in Indoor Temperature Predicting." Advanced Materials Research 594-597 (November 2012): 2179–85. http://dx.doi.org/10.4028/www.scientific.net/amr.594-597.2179.
Full textPascual-García, Juan, Maria-Teresa Martinez-Ingles, Davy P. Gaillot, Leandro Juan-Llácer, and Jose-Maria Molina-Garcia-Pardo. "LoS Theoretical and Experimental MIMO Study from 1–40 GHz in Indoor Environments." Electronics 9, no. 10 (2020): 1688. http://dx.doi.org/10.3390/electronics9101688.
Full textAbboubi, Adil El, Fouzia Elbahhar, Marc Heddebaut, and Yassin Elhillali. "Energy Consumption Models For MISO-UWB and TR-MISO-UWB Systems." International Journal of Electronics and Telecommunications 63, no. 3 (2017): 285–91. http://dx.doi.org/10.1515/eletel-2017-0038.
Full textQiu, K. Y., H. Huang, and A. El-Rabbany. "GEOMAGNETIC FIELD-BASED INDOOR POSITIONING USING BACK-PROPAGATION NEURAL NETWORKS." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B1-2020 (August 6, 2020): 557–63. http://dx.doi.org/10.5194/isprs-archives-xliii-b1-2020-557-2020.
Full textKoutitas, George, Varun Kumar Siddaraju, and Vangelis Metsis. "In Situ Wireless Channel Visualization Using Augmented Reality and Ray Tracing." Sensors 20, no. 3 (2020): 690. http://dx.doi.org/10.3390/s20030690.
Full textIndra Prasetya, AAN Agung, N. Gunantara, and P. K. Sudiarta. "ANALISIS PROPAGASI INDOOR WLAN 802.11g PADA GEDUNG DISHUBKOMINFO KABUPATEN BADUNG." Jurnal SPEKTRUM 4, no. 2 (2018): 130. http://dx.doi.org/10.24843/spektrum.2017.v04.i02.p17.
Full textDing, Youli, Xianwei Zheng, Yan Zhou, Hanjiang Xiong, and and Jianya Gong. "Low-Cost and Efficient Indoor 3D Reconstruction Through Annotated Hierarchical Structure-from-Motion." Remote Sensing 11, no. 1 (2018): 58. http://dx.doi.org/10.3390/rs11010058.
Full textMiramirkhani, Farshad, and Murat Uysal. "Channel modelling for indoor visible light communications." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2169 (2020): 20190187. http://dx.doi.org/10.1098/rsta.2019.0187.
Full textAvella-Cely, Sandy Enrique, Juan Carlos Muñoz-Pérez, Herman Antonio Fernández-González, Lorenzo Rubio-Arjona, Juan Ribera Reig-Pascual, and Vicent Miguel Rodrigo-Peñarrocha. "Path Loss Characterization in an Indoor Laboratory Environment at 3.7 GHz in in Line-Of-Sight Condition." Revista Facultad de Ingeniería 29, no. 54 (2020): e12015. http://dx.doi.org/10.19053/01211129.v29.n54.2020.12015.
Full textPinem, Maksum, Muhammad Zulfin, S. Suherman, Panangian M. Sihombing, and Sri Indah Rezkika. "Characterization of Outdoor to Indoor Propagation in Urban Area by Using A Combination of COST231 Walfisch-Ikegami and COST231 Multiwall Models in 1800 Mhz and 2100 Mhz." International Journal of Engineering & Technology 7, no. 3.2 (2018): 698. http://dx.doi.org/10.14419/ijet.v7i3.2.15347.
Full textQasem, Nidal. "Enhancing the Capacity of the Indoor 60 GHz Band Via Modified Indoor Environments Using Ring Frequency Selective Surface Wallpapers and Path Loss Models." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 5 (2018): 3003. http://dx.doi.org/10.11591/ijece.v8i5.pp3003-3020.
Full textPimienta-del-Valle, Domingo, Luis Mendo, José Manuel Riera, and Pedro Garcia-del-Pino. "Indoor LOS Propagation Measurements and Modeling at 26, 32, and 39 GHz Millimeter-Wave Frequency Bands." Electronics 9, no. 11 (2020): 1867. http://dx.doi.org/10.3390/electronics9111867.
Full textMakara, Árpád László, and László Csurgai-Horváth. "Improved Model for Indoor Propagation Loss in the 5G FR2 Frequency Band." Infocommunications journal 13, no. 1 (2021): 2–10. http://dx.doi.org/10.36244/icj.2021.1.1.
Full textArtemenko, Oleksandr, Alina Rubina, Adarsh Harishchandra Nayak, Sanjeeth Baptist Menezes, and Andreas Mitschele-Thiel. "Evaluation of different signal propagation models for a mixed indoor-outdoor scenario using empirical data." ICST Transactions on Mobile Communications and Applications 2, no. 7 (2016): 151519. http://dx.doi.org/10.4108/eai.20-6-2016.151519.
Full textJarvelainen, Jan, Matti Kurkela, and Katsuyuki Haneda. "Impacts of Room Structure Models on the Accuracy of 60 GHz Indoor Radio Propagation Prediction." IEEE Antennas and Wireless Propagation Letters 14 (2015): 1137–40. http://dx.doi.org/10.1109/lawp.2015.2390917.
Full textCuinas, Inigo, and Manuel Garcia Sanchez. "A Comparison of Empirical and Ray-Tracing Models for Indoor Radio-Wave Propagation [Wireless Corner]." IEEE Antennas and Propagation Magazine 62, no. 2 (2020): 107–15. http://dx.doi.org/10.1109/map.2020.2969253.
Full textCaso, Giuseppe, and Luca De Nardis. "Virtual and Oriented WiFi Fingerprinting Indoor Positioning based on Multi-Wall Multi-Floor Propagation Models." Mobile Networks and Applications 22, no. 5 (2016): 825–33. http://dx.doi.org/10.1007/s11036-016-0749-x.
Full textAl-Samman, Ahmed Mohammed, Tharek Abd. Rahman, Tawfik Al-Hadhrami, et al. "Comparative Study of Indoor Propagation Model Below and Above 6 GHz for 5G Wireless Networks." Electronics 8, no. 1 (2019): 44. http://dx.doi.org/10.3390/electronics8010044.
Full textRuiz-Avilés, J. M., S. Luna-Ramírez, M. Toril, et al. "Design of a Computationally Efficient Dynamic System-Level Simulator for Enterprise LTE Femtocell Scenarios." Journal of Electrical and Computer Engineering 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/802606.
Full textDouiri, Nisrine, Majdi Khoudeir, and Christian Olivier. "ROUGHNESS CHARACTERIZATION OF AN INDOOR ENVIRONMENT." Image Analysis & Stereology 20, no. 3 (2011): 225. http://dx.doi.org/10.5566/ias.v20.p225-229.
Full textPhaiboon, Supachai, P. Phokharatkul, and Suripon Somkuarnpanit. "NEW UPPER AND LOWER BOUNDS LINE OF SIGHT PATH LOSS MODELS FOR MOBILE PROPAGATION IN BUILDINGS." ASEAN Journal on Science and Technology for Development 24, no. 4 (2017): 407–18. http://dx.doi.org/10.29037/ajstd.214.
Full textSheikh, Muhammad Usman, Kimmo Hiltunen, and Jukka Lempiainen. "Enhanced Outdoor to Indoor Propagation Models and Impact of Different Ray Tracing Approaches at Higher Frequencies." Advances in Science, Technology and Engineering Systems Journal 3, no. 2 (2018): 58–68. http://dx.doi.org/10.25046/aj030207.
Full textBatalha, Iury Da Silva, Andrea V. R. Lopes, Jasmine P. L. Araujo, et al. "Indoor Corridor and Office Propagation Measurements and Channel Models at 8, 9, 10 and 11 GHz." IEEE Access 7 (2019): 55005–21. http://dx.doi.org/10.1109/access.2019.2911866.
Full textShabbir, Noman, Lauri Kütt, Muhammad M. Alam, et al. "Vision towards 5G: Comparison of radio propagation models for licensed and unlicensed indoor femtocell sensor networks." Physical Communication 47 (August 2021): 101371. http://dx.doi.org/10.1016/j.phycom.2021.101371.
Full textNeelakanta, Perambur, and Dolores De Groff. "Conceiving Inferential Prototypes of MIMO Channel Models via Buckingham’s Similitude Principle for 30+ GHz through THz Spectrum." Transactions on Networks and Communications 9, no. 3 (2021): 1–35. http://dx.doi.org/10.14738/tnc.93.10214.
Full textAlwarafy, Abdulmalik, Ahmed Iyanda Sulyman, Abdulhameed Alsanie, Saleh A. Alshebeili, and Hatim M. Behairy. "Path-Loss Channel Models for Receiver Spatial Diversity Systems at 2.4 GHz." International Journal of Antennas and Propagation 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/6790504.
Full textRubio, Lorenzo, Rafael P. Torres, Vicent M. Rodrigo Peñarrocha, et al. "Contribution to the Channel Path Loss and Time-Dispersion Characterization in an Office Environment at 26 GHz." Electronics 8, no. 11 (2019): 1261. http://dx.doi.org/10.3390/electronics8111261.
Full textHu, Chufeng, and Nanjing Li. "Calculation of Differential Propagation Constant Determined by Plant Morphology Using Polarimetric Measurement." International Journal of Antennas and Propagation 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/718242.
Full textAkram, Beenish Ayesha, Ali Hammad Akbar, and Ki-Hyung Kim. "CEnsLoc: Infrastructure-Less Indoor Localization Methodology Using GMM Clustering-Based Classification Ensembles." Mobile Information Systems 2018 (October 1, 2018): 1–11. http://dx.doi.org/10.1155/2018/3287810.
Full textKausar, A. S. M. Zahid, Ahmed Wasif Reza, Lau Chun Wo, and Harikrishnan Ramiah. "A Comprehensive Propagation Prediction Model Comprising Microfacet Based Scattering and Probability Based Coverage Optimization Algorithm." Scientific World Journal 2014 (2014): 1–17. http://dx.doi.org/10.1155/2014/601729.
Full textBruno, Luigi, Paolo Addesso, and Rocco Restaino. "Indoor Positioning in Wireless Local Area Networks with Online Path-Loss Parameter Estimation." Scientific World Journal 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/986714.
Full textFayadh, Rashid Ali, Mohd Fareq Abd Malek, Hilal Adnan Fadhil, and Norshafinash Saudin. "Performance Evaluation of Adaptive Indoor Matched Rake Receiver Using Multiple-Combining Techniques." Applied Mechanics and Materials 699 (November 2014): 921–30. http://dx.doi.org/10.4028/www.scientific.net/amm.699.921.
Full textMajed, Mohammed Bahjat, Tharek Abd Rahman, Omar Abdul Aziz, Mohammad Nour Hindia, and Effariza Hanafi. "Channel Characterization and Path Loss Modeling in Indoor Environment at 4.5, 28, and 38 GHz for 5G Cellular Networks." International Journal of Antennas and Propagation 2018 (September 20, 2018): 1–14. http://dx.doi.org/10.1155/2018/9142367.
Full text