Journal articles on the topic 'Induction channel furnaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Induction channel furnaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bondar, O. I., Yu M. Goryslavets, and A. F. Zharkin. "INTENSIFICATION OF HEAT AND MASS TRANSFER IN INDUCTION CHANNEL FURNACES." Tekhnichna Elektrodynamika 2022, no. 3 (2022): 49–55. http://dx.doi.org/10.15407/techned2022.03.049.
Full textChoi, Yulim, Hyeonho Kwun, Dohee Kim, Eunju Lee, and Hyerim Bae. "Residual Life Prediction for Induction Furnace by Sequential Encoder with s-Convolutional LSTM." Processes 9, no. 7 (2021): 1121. http://dx.doi.org/10.3390/pr9071121.
Full textGoryslavets, Yu M., O. I. Gluhenky, and V. I. Zalozny. "MODELING OF ELECTROMAGNETIC PROCESSES IN INDUCTION CHANNEL FURNACES TAKING INTO ACCOUNT METAL FRAMES." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2023, no. 64 (2022): 64–69. http://dx.doi.org/10.15407/publishing2023.64.064.
Full textGhojel, J. I. "Thermal analysis of twin-channel induction furnaces." Metallurgical and Materials Transactions B 34, no. 5 (2003): 679–84. http://dx.doi.org/10.1007/s11663-003-0039-4.
Full textMühlbauer, A., R. Fricke, H. Wicker, and F. Feldmann. "Channel geometry and fluid flow behaviour in channel induction furnaces." Materials Science and Technology 4, no. 11 (1988): 1001–5. http://dx.doi.org/10.1179/mst.1988.4.11.1001.
Full textGoryslavets, Yu M., O. I. Glukhenkyi, and V. I. Zaloznyi. "INFLUENCE OF ELECTROPHYSICAL PARAMETERS OF MATERIALS ON ELECTRICAL LOSSES IN METAL FRAMES OF INDUCTION CHANNEL FURNACES." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2023, no. 66 (2023): 90–95. http://dx.doi.org/10.15407/publishing2023.66.090.
Full textShcherba, М. А. "COUPLED ELECTROMAGNETIC AND THERMAL PROCESSES IN THERMAL INSULATION OF INDUCTION CHANNEL FURNACES DURING CHANGES OF ITS DEFECTS CONFIGURATION." Tekhnichna Elektrodynamika 2018, no. 2 (2018): 17–24. http://dx.doi.org/10.15407/techned2018.02.017.
Full textWhiteley, Peter. "A Historical Perspective of Aluminium Casthouse Furnace Developments." Materials Science Forum 693 (July 2011): 73–79. http://dx.doi.org/10.4028/www.scientific.net/msf.693.73.
Full textShcherba, M. А. "NUMERICAL SIMULATION OF ELECTROMAGNETIC AND THERMAL FIELDS IN INDUCTION CHANNEL FURNACES WITH DEFECTS OF LINING." Tekhnichna Elektrodynamika 2018, no. 4 (2018): 33–36. http://dx.doi.org/10.15407/techned2018.04.033.
Full textZhukov, Leonid, and Dmytro Petrenko. "Continuous light-guide control of melts temperature in induction furnaces." System Research in Energy 2024, no. 1 (2024): 54–64. http://dx.doi.org/10.15407/srenergy2024.01.054.
Full textZhao, Tao, Jie-min Zhou, Jia-zheng Xiong, and Yong Li. "Numerical analysis on Joule heating of double-loop channel induction furnaces." Journal of Central South University of Technology 16, no. 5 (2009): 851–56. http://dx.doi.org/10.1007/s11771-009-0141-0.
Full textValuev, N. I., A. I. Golovin, and V. I. Rekun. "A refractory concrete mixture for lining the induction units of channel furnaces." Refractories 29, no. 11-12 (1988): 698–99. http://dx.doi.org/10.1007/bf01280338.
Full textGhojel, J. I., and R. N. Ibrahim. "Computer simulation of the thermal regime of double-loop channel induction furnaces." Journal of Materials Processing Technology 153-154 (November 2004): 386–91. http://dx.doi.org/10.1016/j.jmatprotec.2004.04.123.
Full textGhojel, J. I., and R. N. Ibrahim. "WITHDRAWN: Computer simulation of the thermal regime of double-loop channel induction furnaces." Journal of Materials Processing Technology 155-156 (November 2004): 2093–98. http://dx.doi.org/10.1016/j.jmatprotec.2004.04.356.
Full textSnegirev, A. I., and A. K. Bezdomov. "Influence of a magnetic circuit on the macrostructure of rammed linings in induction channel furnaces." Refractories 27, no. 3-4 (1986): 240–42. http://dx.doi.org/10.1007/bf01387556.
Full textEnenko, V. P., I. A. Chernov, V. I. Sizov, and V. N. Tonkov. "The Use of a Corundum Mixture for the Lining of Channel-Type Iron-Soaking Induction Furnaces." Refractories and Industrial Ceramics 44, no. 5 (2003): 289–91. http://dx.doi.org/10.1023/b:refr.0000009031.71845.5e.
Full textBondar, O. I., O. I. Glukhenky, Yu M. Goryslavets, and O. P. Zapadynchuk. "NUMERICAL MODELLING OF INDUCTION CHANNEL FURNACE THERMAL STATE." Tekhnichna Elektrodynamika 2021, no. 3 (2021): 44–49. http://dx.doi.org/10.15407/techned2021.03.044.
Full textGoryslavets, Yu M., and T. O. Penkovyi. "SIMULATION OF A REVERBERATORY MELTING FURNACE EQUIPPED WITH A VORTEX CHAM-BER WITH A CURVE INDUCTOR." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2023, no. 65 (2023): 91–98. http://dx.doi.org/10.15407/publishing2023.65.091.
Full textPrimachenko, V. V., L. A. Babkina, I. V. Khonchik, L. N. Nikulina, А. S. Tinigin, and T. G. Tishina. "Investigation of the amount influence of corundum-zirconium-silicate material on the properties of ramming mullite-corundum mass and samples from it." Scientific research on refractories and technical ceramics 118 (July 11, 2018): 56–68. http://dx.doi.org/10.35857/2663-3566.118.06.
Full textFedin, Maksim A., Aleksandr B. Kuvaldin, Aleksey O. Kuleshov, Svyatoslav V. Akhmetyanov, and Sergey S. Kondrashov. "An Adaptive Power Controller of the Induction Crucible Furnace with a Conducting Ferromagnetic Crucible." Vestnik MEI 2, no. 2 (2021): 76–87. http://dx.doi.org/10.24160/1993-6982-2021-2-76-87.
Full textBaake, E., A. Jakovics, S. Pavlovs, and M. Kirpo. "Influence of the channel design on the heat and mass exchange of induction channel furnace." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 30, no. 5 (2011): 1637–50. http://dx.doi.org/10.1108/03321641111152793.
Full textVives, Charles, and René Ricou. "Magnetohydrodynamic flows in a channel-induction furnace." Metallurgical Transactions B 22, no. 2 (1991): 193–209. http://dx.doi.org/10.1007/bf02652484.
Full textPenkovyi, T. O., O. I. Bondar, and Yu M. Goryslavets. "HREE-DIMENSIONAL SIMULATION OF ELECTROMAGNETIC AND HYDRODYNAMIC PROCESSES IN A REVERBERATORY FURNACE FOR ALUMINUM WITH AN ELECTRIC VORTEX CHAMBER." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2024, no. 69 (2024): 12–18. https://doi.org/10.15407/publishing2024.69.012.
Full textPrijanovič Tonkovič, M., and J. Lamut. "Build-up formation in an induction channel furnace." Materiali in tehnologije 54, no. 2 (2020): 167–71. http://dx.doi.org/10.17222/mit.2019.233.
Full textBondar, O. I., O. I. Glukhenkyi, and Yu M. Goryslavets. "ELECTROMAGNETIC PARAMETERS OF TWO-PHASE INDUCTION CHANNEL FURNACE." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2020, no. 56 (2020): 72–76. http://dx.doi.org/10.15407/publishing2020.56.072.
Full textJin, S. L., D. Gruber, H. Harmuth, J. Soudier, P. Meunier, and H. Lemaistre. "Optimisation of monolithic lining concepts of channel induction furnace." International Journal of Cast Metals Research 27, no. 6 (2014): 336–40. http://dx.doi.org/10.1179/1743133614y.0000000111.
Full textShcherba, A. A., O. D. Podoltsev, Y. V. Peretiatko, V. M. Zolotarov, and R. V. Bilianin. "CALCULATION OF ELECTROTHERMAL PROCESSES IN THE INDUCTION CHANNEL FURNACE IN THE STEADY-STATE OPERATION BASED ON THE THEORY OF THERMAL CIRCUITS." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2021, no. 60 (2021): 5–11. http://dx.doi.org/10.15407/publishing2021.60.005.
Full textPenkovyi, T. O., A. A. Khalatov, and Y. M. Goryslavets. "SIMULATION OF HYDRODYNAMIC AND THERMAL PROCESSES IN A REVERBERATORY FURNACE WITH A VORTEX FLOW CHAMBER." Thermophysics and Thermal Power Engineering 45, no. 1 (2023): 84–90. https://doi.org/10.31472/ttpe.1.2023.10.
Full textMoros, A., and J. C. R. Hunt. "Recirculating flows in the cross-section of a channel induction furnace." International Journal of Heat and Mass Transfer 31, no. 7 (1988): 1497–515. http://dx.doi.org/10.1016/0017-9310(88)90258-x.
Full textPodoltsev, A. D., V. M. Zolotaryov, M. A. Shcherba, and R. V. Belyanin. "CALCULATION OF THE EQUIVALENT ELECTRICAL PARAMETERS OF THE INDUCTOR OF INDUCTION CHANNEL FURNACE WITH DEFECTS IN ITS LINING." Electrical Engineering & Electromechanics, no. 4 (August 13, 2018): 29–34. http://dx.doi.org/10.20998/2074-272x.2018.4.05.
Full textLueben, Mathias. "Influence of the Magnesium Treatment in a Georg Fischer Converter." Materials Science Forum 925 (June 2018): 133–39. http://dx.doi.org/10.4028/www.scientific.net/msf.925.133.
Full textTran Thi Hang, N., and U. Lüdtke. "Numerical Simulation of Induction Channel Furnace to Investigate Efficiency for low Frequencies." IOP Conference Series: Materials Science and Engineering 355 (May 2018): 012012. http://dx.doi.org/10.1088/1757-899x/355/1/012012.
Full textChernyshev, Yu F., and N. I. Ostroukhova. "Designing a band for a detachable unit of an induction channel furnace." Refractories 33, no. 5-6 (1992): 314–17. http://dx.doi.org/10.1007/bf01290266.
Full textPeretyatko, Julia, Yevhenii Trotsenko, Artem Nesterko, and Mandar Madhukar Dixit. "CALCULATION OF VOLTAGE TRANSFORMER PARAMETERS FOR MATHEMATICAL MODEL OF INDUCTION CHANNEL FURNACE." Transactions of Kremenchuk Mykhailo Ostrohradskyi National University, no. 4 (2022): 45–52. http://dx.doi.org/10.32782/1995-0519.2022.4.6.
Full textBaake, E., A. Jakovičs, S. Pavlovs, and M. Kirpo. "Long-term computations of turbulent flow and temperature field in the induction channel furnace with various channel design." Magnetohydrodynamics 46, no. 4 (2010): 461–74. http://dx.doi.org/10.22364/mhd.46.4.15.
Full textJin, S., H. Harmuth, and D. Gruber. "Thermal and thermomechanical evaluations of channel induction furnace applying strong insulation containing lightweight aggregates." Ironmaking & Steelmaking 45, no. 6 (2017): 514–18. http://dx.doi.org/10.1080/03019233.2017.1291153.
Full textDou, Weixue, Zexi Yang, Ziming Wang, and Qiang Yue. "Molten Steel Flow, Heat Transfer and Inclusion Distribution in a Single-Strand Continuous Casting Tundish with Induction Heating." Metals 11, no. 10 (2021): 1536. http://dx.doi.org/10.3390/met11101536.
Full textGhojel, Jamil I. "Modelling of electromagnetically excited turbulent flow of molten metal in a twin-channel induction furnace." Progress in Computational Fluid Dynamics, An International Journal 6, no. 7 (2006): 435. http://dx.doi.org/10.1504/pcfd.2006.010969.
Full textVolkov, I. V., O. D. Podoltsev, and I. M. Kucheriava. "ELECTROMAGNETIC, THERMAL AND HYDRODYNAMIC PROCESSES AT INDUCTION HEATING OF OUTPUT CHANNEL OF GLASS MELTING FURNACE." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2018, no. 51 (2018): 113–20. http://dx.doi.org/10.15407/publishing2018.51.113.
Full textChen, Huan Ming, Min Luo, Xin Li, Xin Xin Lin, and Dong Yang. "Investigation on the Wettability between Nb-Al Alloy and Porous Al2O3 Ceramics Prepared by Freeze Casting." Advanced Materials Research 299-300 (July 2011): 687–91. http://dx.doi.org/10.4028/www.scientific.net/amr.299-300.687.
Full textGoryslavets, Yu M., O. I. Glukhenky, and O. I. Bondar. "CIRCULATION OF THE METAL MELT IN THE INDUCTION CHANNEL FURNACE AT A PHASE CONTROL OF SUPPLY VOLTAGE." Tekhnichna Elektrodynamika 2020, no. 3 (2020): 79–82. http://dx.doi.org/10.15407/techned2020.03.079.
Full textBabkin, V. G., N. I. Ostroukhova, I. A. Pikhutin, and Yu F. Chernyshov. "State of strain in the lining of a channel induction furnace examined by a finite-element method." Refractories 31, no. 3-4 (1990): 182–85. http://dx.doi.org/10.1007/bf01282361.
Full textValldor, Martin, and Rainer Pöttgen. "Synthesis and Structure of NbPdSi." Zeitschrift für Naturforschung B 61, no. 3 (2006): 339–41. http://dx.doi.org/10.1515/znb-2006-0316.
Full textChen, H. M., M. Luo, H. C. Wang, et al. "Investigation on the Freeze Casting Porous Al2O3 Ceramic Bodies Infiltrated with Nb-Ti-Al-Cr Alloy by Pressureless Infiltration." Applied Mechanics and Materials 152-154 (January 2012): 188–92. http://dx.doi.org/10.4028/www.scientific.net/amm.152-154.188.
Full textShcherba, A. A., O. D. Podoltsev, I. M. Kucheriava, V. M. Zolotarev, and R. V. Bilianin. "MODELING AND CONTROL OF LONG-TERM ELECTROMAGNETIC AND THERMAL PROCESSES IN INDUCTION CHANNEL FURNACE FOR COPPER ROD PRODUCTION." Tekhnichna Elektrodynamika 2017, no. 4 (2017): 55–64. http://dx.doi.org/10.15407/techned2017.04.055.
Full textAlferenok, A. A., and A. B. Kuvaldin. "Numerical simulation of the heat-and-mass transfer in the channel of an induction furnace for making cast iron." Russian Metallurgy (Metally) 2009, no. 8 (2009): 741–47. http://dx.doi.org/10.1134/s003602950908014x.
Full textDoğan, Ahmet, Ute Ch Rodewald, and Rainer Pöttgen. "Solid State Syntheses and Structure of LaPdCd2 and PrNi0.951(4)Cd2." Zeitschrift für Naturforschung B 62, no. 4 (2007): 610–12. http://dx.doi.org/10.1515/znb-2007-0422.
Full textEsmailzadeh, Saeid, Rolf-Dieter Hoffmann, and Rainer Pöttgen. "The Modulated Structure of SrAuSn2." Zeitschrift für Naturforschung B 59, no. 11-12 (2004): 1451–57. http://dx.doi.org/10.1515/znb-2004-11-1213.
Full textReach, Amelia, Flora Tseng, Ram Seshadri, and Jeff Sakamoto. "Selective Phase Stabilization in Microwave-Prepared Nasicon Solid Electrolytes through Potassium Ion Exchange." ECS Meeting Abstracts MA2025-01, no. 2 (2025): 134. https://doi.org/10.1149/ma2025-012134mtgabs.
Full textT, Kimstach, Uzlov K, Repyakh S, Mazorchuk V, Usenko R, and Ivanova L. "Physical and foundry propertiesof Cu-Sn-Al system alloys." 6, 2021, no. 6, 2021 (December 1, 2021): 31–38. http://dx.doi.org/10.34185/tpm.6.2021.05.
Full text