Academic literature on the topic 'Induction hardening'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Induction hardening.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Induction hardening"
Knauf, S., K. Buchner, and R. Jenne. "Gearbox Production Using Distortion Controlled Inductive Fixture Hardening*." HTM Journal of Heat Treatment and Materials 77, no. 1 (February 1, 2022): 70–85. http://dx.doi.org/10.1515/htm-2022-0003.
Full textLi, Zhong Hua, Qian Tang, Di Yan, and Jie Wu. "Design of the Conjugate Cam Induction Hardening Mechanism and Establishment of the Motion Controlling Mathematical Model." Applied Mechanics and Materials 155-156 (February 2012): 726–30. http://dx.doi.org/10.4028/www.scientific.net/amm.155-156.726.
Full textHájek, Jiří, David Rot, and Jakub Jiřinec. "Distortion in Induction-Hardened Cylindrical Part." Defect and Diffusion Forum 395 (August 2019): 30–44. http://dx.doi.org/10.4028/www.scientific.net/ddf.395.30.
Full textAliferov, A., M. Forzan, and S. Lupi. "Milliseconds pulse induction hardening." International Journal of Microstructure and Materials Properties 13, no. 1/2 (2018): 73. http://dx.doi.org/10.1504/ijmmp.2018.093287.
Full textAliferov, A., S. Lupi, and M. Forzan. "Milliseconds pulse induction hardening." International Journal of Microstructure and Materials Properties 13, no. 1/2 (2018): 73. http://dx.doi.org/10.1504/ijmmp.2018.10014735.
Full textPavlushin, Aleksey V. "Optimization design and operating parameters of induction heat-ing system for hardening." Vestnik of Samara State Technical University. Technical Sciences Series 29, no. 3 (October 13, 2021): 38–51. http://dx.doi.org/10.14498/tech.2021.3.2.
Full textHoja, S., N. Haupt, M. Steinbacher, and R. Fechte-Heinen. "Martensitic Induction Hardening of Nitrided Layers*." HTM Journal of Heat Treatment and Materials 77, no. 6 (December 1, 2022): 393–408. http://dx.doi.org/10.1515/htm-2022-1027.
Full textBarglik, Jerzy. "Mathematical modeling of induction surface hardening." COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 35, no. 4 (July 4, 2016): 1403–17. http://dx.doi.org/10.1108/compel-09-2015-0323.
Full textIswanto, Iswanto. "Perbandingan Induction Hardening dengan Flame Hardening pada Sifat Fisik Baja ST 60." Mekanika: Majalah Ilmiah Mekanika 19, no. 2 (September 29, 2020): 90. http://dx.doi.org/10.20961/mekanika.v19i2.43203.
Full textAswad, Mokhalad F., Aseel J. Mohammed, and Sahar R. Faraj. "Induction Surface Hardening: a review." Journal of Physics: Conference Series 1973, no. 1 (August 1, 2021): 012087. http://dx.doi.org/10.1088/1742-6596/1973/1/012087.
Full textDissertations / Theses on the topic "Induction hardening"
Gaude-Fugarolas, Daniel. "Modelling of transformations during induction hardening and tempering." Thesis, University of Cambridge, 2002. https://www.repository.cam.ac.uk/handle/1810/218539.
Full textCandeo, Alessandro. "Induction hardening of components for the aerospace industry." Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422162.
Full textIl riscaldamento a induzione è stato diffusamente impiegato nel settore dei trattamenti termici di componenti per i settori automobilistico ed eolico, in particolare per la tempra di indurimento in una varietà di applicazioni. I principali vantaggi legati all'utilizzo di questa tecnologia risiedono nell'elevato grado di ripetibilità ottenibile nel prodotto trattato, unitamente alla elevata velocità ed automazione di trattamento, fattori entrambi in grado di garantire una produzione efficiente e dal ridotto impatto ambientale. Tuttavia, a causa degli elevati requisiti di qualità del prodotto nito e dei ristretti quantitativi prodotti, alcuni settori industriali rimangono ancor oggi legati ai tradizionali processi di cementazione in forno, che risultano piuttosto dispendiosi per la lunga durata del trattamento termico ed il numero di operazioni di rettica necessarie a valle dello stesso. L'impiego di metodologie di simulazione numerica al calcolatore permette un'accurata messa a punto del processo di tempra a induzione attraverso prove sperimentali mirate, che ne consentano una rapida implementazione a nuovi settori applicativi.
Spezzapria, Mattia. "Multiphysyical Finite Element Simulation of Contour Induction Hardening of Gears." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424333.
Full textIl riscaldamento a induzione è stato diffusamente impiegato nel settore dei trattamenti termici di componenti per i settori automobilistico ed aerospaziale, in particolare per la tempra di una vasta varietà di applicazioni. I principali vantaggi legati all’utilizzo di questa tecnologia risiedono nell’elevato grado di ripetibilità ottenibile nel prodotto trattato, unitamente alla elevata velocità ed automazione di trattamento, fattori entrambi in grado di garantire una produzione efficiente e dal ridotto impatto ambientale. Oggigiorno, i metodi numerici si stanno affermando sempre più come principale metodo di analisi, in modo da ottimizzare i principali parametri di processo, anche grazie alla possibilità di accoppiare diverse fisiche tra di loro, risultato che fino a pochi anni fa non sarebbe stato possibile. Scopo di questo lavoro è l’analisi e la modellazione numerica del processo di tempra ad induzione su ruote dentate per l’industria aerospaziale. Nel corso della tesi si mostrerà come, partendo dai modelli elettromagnetici e termici accoppiati, già diffusamente sviluppati negli anni sia a livello di ricerca che a livello industriale, è possibile anche calcolare le trasformazioni di fase che avvengono nell’acciaio nel corso del riscaldamento e del raffreddamento. L’algoritmo sviluppato verrà poi applicato dapprima su di un caso semplice 2D, per poi incrementare la difficoltà (sia computazionale che di processo), applicandolo ad un trattamento di tempra ad induzione di una ruota dentata. I risultati numerici così ottenuti verranno verificati sperimentalmente.
Pasic, Anel. "The influence of the cooling rate during induction hardening on residual stresses and fatigue strength." Thesis, KTH, Hållfasthetslära (Avd.), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-103718.
Full textJavaheri, V. (Vahid). "Design, thermomechanical processing and induction hardening of a new medium-carbon steel microalloyed with niobium." Doctoral thesis, Oulun yliopisto, 2019. http://urn.fi/urn:isbn:9789526223582.
Full textTiivistelmä Tämä väitöskirja on tehty osana Euroopan teollisuustohtori (European Industrial Doctorate, EID) -ohjelmaa projektissa eli Matematiikka ja materiaalitiede teräksen valmistuksessa ja käytössä (Mathematics and Materials Science for Steel Production and Manufacturing, MIMESIS). Ohjelmassa on viisi partneria: EFD Induction Norjasta; SSAB, Outokumpu ja Oulun yliopisto Suomesta; ja Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Saksasta. Työn päätavoitteina oli kehittää teräksen koostumusta ja prosessointireittiä, jotka soveltuvat lietteen kuljetusputken valmistukseen induktiokarkaisun avulla, sekä karakterisoida prosessin eri vaiheiden aikana tapahtuvat faasimuutokset ja mikrorakenteet. Uusi teräskoostumus suunniteltiin metallurgisten periaatteiden pohjalta hyödyntämällä laskennallista termodynamiikkaa ja kinetiikkaa. Suunniteltu teräs on niobilla mikroseostettu, matalaseosteinen ja keskihiilinen, eli painoprosentteina 0,40 C, 0,20 Si, 0,25 Mn, 0,50 Mo, 0,90 Cr ja 0,012 Nb. Teräs valettiin, valssattiin ja jäähdytettiin termomekaanisesti laboratoriovalssaimella kahdeksi bainiittiseksi mikrorakenteeksi ja lopulta altistettiin lämpösykleille, joiden ennustettiin olevan tyypillisiä sisäisesti induktiokarkaistulle teräsputkelle. Simuloidun tuotantoprosessin eri vaiheissa havaitut faasimuutokset ja mikrorakenteet on karakterisoitu. Sen lisäksi on kehitetty algoritmit, jotka mahdollistavat mikrorakenteen ja kovuuden optimoinnin putken seinämän paksuuden läpi
Le, Moal Patrick. "Fatigue optimization of an induction hardened shaft under combined loading." Thesis, Virginia Tech, 1996. http://hdl.handle.net/10919/44959.
Full textAn integrated procedure, combining finite element modeling and fatigue analysis methods, is developed and applied to the fatigue optimization of a notched, induction hardened, steel shaft subjected to combined bending and torsional loading. Finite element analysis is used first to develop unit-load factors for generating stress-time histories, and then, employing thermo-elastic techniques, to determine the residual stresses resulting from induction hardening. These stress fields are combined using elastic superposition, and incorporated in a fatigue analysis procedure to predict failure location and lifetime. Through systematic variation of geometry, processing, and loading parameters, performance surfaces are generated from which optimum case depths for maximizing shaft fatigue performance are determined. General implications of such procedures to the product development process are discussed.
Master of Science
Petzold, Thomas [Verfasser], Dietmar [Akademischer Betreuer] Hömberg, and Alfred [Akademischer Betreuer] Schmidt. "Modelling, analysis and simulation of multifrequency induction hardening / Thomas Petzold. Gutachter: Dietmar Hömberg ; Alfred Schmidt. Betreuer: Dietmar Hömberg." Berlin : Technische Universität Berlin, 2014. http://d-nb.info/1066162824/34.
Full textPettersson, Natalie. "Investigation of material removal techniques for residual stress profile determination on induction hardened steel." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-62618.
Full textHoseini, Saba. "Experimental simulation of gear hobbing through a face milling concept in CNC-machine." Thesis, KTH, Materialvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-126804.
Full textLind, Fredrik. "Polymerkoncentrationens inverkan på härdresultatet av seghärdningsstål." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-65989.
Full textOvako Sweden AB have problems with cracks during the process of hardening of steel. Studies show that the additives of polymer in the cooling water gives a slower and more even cooling process, which reduce the risk of crack onset. To decide the amount of polymer that is suitable to put in the cooling water at the hardening of their low-alloy steel segment of quenched and tempered steel, so studies have been conducted on two types of steel. The difference in hardening results between different tested concentration levels were small, but at higher polymer concentration the hardness was distributed slightly more evenly throughout the cross section.
Books on the topic "Induction hardening"
Nacke, Bernard, and Egbert Baake. Induction heating: Heating, hardening, annealing, brazing, welding. Essen, Germany: Vulkan-Verlag, 2016.
Find full textTom, Bell, Cohen J. B. 1932-, Funatani Kiyoshi, Totten George E, ASM International, ASM Heat Treating Society, ASM Heat Treating Society. Conference and Exposition, and Professor Jerome B. Cohen Memorial Symposium on Residual Stresses in the Heat Treatment Industry (2000 : St. Louis, Mo.), eds. Heat treating: Including advances in surface engineering, an international symposium in honor of Professor Tom Bell, and Professor Jerome B. Cohen Memorial Symposium on Residual Stresses in the Heat Treatment Industry : proceedings of the 20th conference, 9-12 October 2000, St. Louis, Missouri. Materials Park, OH: ASM International, 2000.
Find full textExposition, ASM Heat Treating Society Conference and. Heat treating and surface engineering: Proceedings of the 22nd Heat Treating Society Conference and the 2nd International Surface Engineering Congress : 15-17 September, 2003, Indiana Convention Center, Indianapolis, Indiana, USA. Materials Park, Ohio: ASM International, 2003.
Find full textIskierka, Sławomir. Analiza numeryczna procesu hartowania indukcyjnego z uwzględnieniem wzajemnych wpływów zjawisk elektromagnetycznysh, termicznych i mechanicznych. Częstochowa: Wydaw. Politechniki Częstochowskiej, 1997.
Find full textAlan, Turza, Chaplin Mike, United States. National Aeronautics and Space Administration., and U.S. Army Research Laboratory., eds. The surface fatigue life of contour induction hardened AISI 1552 gears. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textAlan, Turza, Chaplin Mike, United States. National Aeronautics and Space Administration., and U.S. Army Research Laboratory., eds. The surface fatigue life of contour induction hardened AISI 1552 gears. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textArmillotta, Maria L. Photoperiodic induction of budset and its effect on hardening-off in Pinus banksiana Lamb. seedlings. Sudbury, Ont: Laurentian University, Department of Biology, 1988.
Find full textLynn, Ferguson B., ASM Heat Treating Society, and ASM International, eds. Heat treating 2011: Proceedings of the 26th ASM Heat Treating Society Conference : October 31-November 2, 2011, Duke Energy Convention Center, Cincinnati, Ohio, USA. Materials Park, Ohio: ASM International, 2011.
Find full textExposition, ASM Heat Treating Society Conference and. Heat treating: Including the 1997 International Induction Heat Treating Symposium : proceedings of the 17th Heat Treating Society Conference and Exposition and the 1st International Induction Heat Treating Symposium, 15-18 September 1997, Indianapolis, Indiana. Materials Park, OH: ASM International, Heat Treating Society, 1998.
Find full textExposition, ASM Heat Treating Society Conference and. Heat treating: Proceedings of the 23rd Heat Treating Society Conference, September 25-28, 2005, David L. Lawrence Convention Center, Pittsburgh, Pennsylvania, USA. Materials Park, Ohio: ASM International, 2006.
Find full textBook chapters on the topic "Induction hardening"
Grum, Janez. "Induction Surface Hardening." In Encyclopedia of Thermal Stresses, 2444–58. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_834.
Full textHirao, Masahiko, and Hirotsugu Ogi. "Measurement of Induction-Hardening Depth." In EMATs for Science and Industry, 271–80. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3743-1_13.
Full textHirao, Masahiko, and Hirotsugu Ogi. "Measurement of Induction Hardening Depth." In Electromagnetic Acoustic Transducers, 271–80. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56036-4_13.
Full textLiu, Qingzhe, Thomas Petzold, Dawid Nadolski, and Roland Pulch. "Simulation of Thermomechanical Behavior Subjected to Induction Hardening." In Scientific Computing in Electrical Engineering, 133–42. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30399-4_14.
Full textGrum, J. "Residual Stresses after Induction Surface Hardening and Grinding." In AMST ’99, 763–70. Vienna: Springer Vienna, 1999. http://dx.doi.org/10.1007/978-3-7091-2508-3_87.
Full textHömberg, Dietmar, Thomas Petzold, and Elisabetta Rocca. "Multi-frequency Induction Hardening: A Challenge for Industrial Mathematics." In The Impact of Applications on Mathematics, 257–64. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54907-9_19.
Full textBarka, N., Philippe Bocher, J. Brousseau, M. Galopin, and S. Sundararajan. "Modeling and Sensitivity Study of the Induction Hardening Process." In THERMEC 2006 Supplement, 525–30. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-429-4.525.
Full textMiyachika, Kouitsu, Takao Koide, Satoshi Oda, Naoki Motooka, Keiichi Uemoto, Yoshihisa Matsumoto, Chiaki Namba, Hidefumi Mada, and Hajime Tsuboi. "Simulation of Induction Hardening Process of Sintered Metal Shafts." In Solid State Phenomena, 381–86. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908451-25-6.381.
Full textXu, Dong-hui, and Zhen-Bang Kuang. "Numerical Analysis of Residual Stress due to Surface Induction Hardening." In Computational Mechanics ’95, 1959–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79654-8_326.
Full textChen, Bo, Da-peng Wang, Hang-yu Li, Kai Cui, and Bo Jiang. "Investigation on Induction Hardening Treatment of Cylindrical Drive Gear Shaft." In Lecture Notes in Electrical Engineering, 589–604. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3527-2_50.
Full textConference papers on the topic "Induction hardening"
Stuehr, William I. "Understanding the Induction Hardening Circuit." In HT 2017. ASM International, 2017. http://dx.doi.org/10.31399/asm.cp.ht2017p0264.
Full textMidea, Sandra J., and David Lynch. "Induction Hardening Inductors and Process Development." In HT 2017. ASM International, 2017. http://dx.doi.org/10.31399/asm.cp.ht2017p0197.
Full textRudnev, Valery, William West, Aaron Goodwin, and Steve Fillip. "Breakthrough in Induction Hardening Shafts." In HT 2015. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.ht2015p0141.
Full textMidea, Sandra J. "Metallurgical Case Studies of Induction Hardening." In HT 2017. ASM International, 2017. http://dx.doi.org/10.31399/asm.cp.ht2017p0258.
Full textFaulkner, Chuck. "Aqueous Quenchants for Induction Hardening." In HT 2017. ASM International, 2017. http://dx.doi.org/10.31399/asm.cp.ht2017p0126.
Full textGe, Yunwang, Rongqiang Hu, Zongjie Zhang, and Qingtong Shen. "Optimization Control of Induction hardening Process." In 2006 International Conference on Mechatronics and Automation. IEEE, 2006. http://dx.doi.org/10.1109/icma.2006.257783.
Full textLi, Zhichao (Charlie), Andrew Freborg, and Lynn Ferguson. "Effect of Preheat on Improving Beneficial Surface Residual Stresses During Induction Hardening Process." In ASME 2016 11th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/msec2016-8583.
Full textLi, Zhichao (Charlie), and B. Lynn Ferguson. "Induction Hardening Process With Preheat to Eliminate Cracking and Improve Quality of a Large Part With Various Wall Thickness." In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-2721.
Full textMunteanu, Daniel, Tibor Bedo, Daniel Cristea, Camelia Gabor, Mihai Alin Pop, Ioan Milosan, and Sorin Ioan Munteanu. "Induction Hardening for Large Bearing Rings—Case Study and Process Optimization." In HT 2017. ASM International, 2017. http://dx.doi.org/10.31399/asm.cp.ht2017p0242.
Full textRot, David, Jakub Jirinec, Jiri Kozeny, Antonin Podhrazky, Jiri Hajek, and Stanislav Jirinec. "Induction system for hardening of small parts." In 2018 19th International Scientific Conference on Electric Power Engineering (EPE). IEEE, 2018. http://dx.doi.org/10.1109/epe.2018.8396006.
Full textReports on the topic "Induction hardening"
Author, Not Given. Intelligent systems for induction hardening processes. Final report. Office of Scientific and Technical Information (OSTI), October 1996. http://dx.doi.org/10.2172/10129834.
Full textAuthor, Not Given. Intelligent systems for induction hardening processes (24 month report). Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/10129752.
Full textKelley, J. B., and R. D. Skocypec. Control technology for surface treatment of materials using induction hardening. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/494129.
Full textAquil Ahmad. Prototyping Energy Efficient Thermo-Magnetic & Induction Hardening for Heat Treat & Net Shape Forming Applications. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1047536.
Full textLudtka, Gail, D. Nicholson, and A. Ahmad. Prototyping Energy Efficient Thermo-Magnetic and Induction Hardening for Heat Treat and Net Shape Forming Applications. Office of Scientific and Technical Information (OSTI), March 2012. http://dx.doi.org/10.2172/1036019.
Full text