To see the other types of publications on this topic, follow the link: Induction motor with concentrated winding.

Dissertations / Theses on the topic 'Induction motor with concentrated winding'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 31 dissertations / theses for your research on the topic 'Induction motor with concentrated winding.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Trn, Ondřej. "Studie využití měděných tyčí a soustředěného vinutí v asynchronním motoru." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-403758.

Full text
Abstract:
This diploma thesis deals with the possibility of using a concentrated winding in an induction motor and the use of copper bars in a rotor cage. The first part of the thesis explains the basic theoretical knowledge of the operation and principle of the induction machine. In this theoretical part we will learn what is actually a concentrated winding and how it is placed on the stator. The second part is focused on the analytical design of the machine with classical distributed winding and with concentrated winding. The third theoretical part is an introduction to the issue of influencing the motor harmonics. The last final part of the thesis shows differences in operational properties of designed machines.
APA, Harvard, Vancouver, ISO, and other styles
2

Gao, Zhi. "Sensorless Stator Winding Temperature Estimation for Induction Machines." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/13966.

Full text
Abstract:
The organic materials used for stator winding insulation are subject to deterioration from thermal, electrical, and mechanical stresses. Stator winding insulation breakdown due to excessive thermal stress is one of the major causes of electric machine failures; therefore, prevention of such a failure is crucial for increasing machine reliability and minimizing financial loss due to motor failure. This work focuses on the development of an efficient and reliable stator winding temperature estimation scheme for small to medium size mains-fed induction machines. The motivation for the stator winding temperature estimation is to develop a sensorless temperature monitoring scheme and provide an accurate temperature estimate that is capable of responding to the changes in the motors cooling capability. A discussion on the two major types of temperature estimation techniques, thermal model-based and parameter-based temperature techniques, reveals that neither method can protect motors without sacrificing the estimation accuracy or motor performance. Based on the evaluation of the advantages and disadvantages of these two types of temperature estimation techniques, a new online stator winding temperature estimation scheme for small to medium size mains-fed induction machines is proposed in this work. The new stator winding temperature estimation scheme is based on a hybrid thermal model. By correlating the rotor temperature with the stator temperature, the hybrid thermal model unifies the thermal model-based and the parameter-based temperature estimation techniques. Experimental results validate the proposed scheme for stator winding temperature monitoring. The entire algorithm is fast, efficient and reliable, making it suitable for implementation in real time stator winding temperature monitoring.
APA, Harvard, Vancouver, ISO, and other styles
3

Cirstea, Marcian Nicolae. "An investigation into ASIC control of a 6-pulse cycloconverter for a quad winding induction motor." Thesis, Nottingham Trent University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Oliveira, Ãtila GirÃo de. "Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12285.

Full text
Abstract:
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior
This dissertation reports applications of artificial neural networks to detect stator winding interturn fault of three phase induction motor drived by frequency inverter. The artificial neural networks, like Simple and Multilayer Perceptron, served as off-line classifiers to short-circuit fault condition or healthy condition. In the training of Multilayer Perceptron, two different algorithms are used: the error back-propagation, which is a classic algorithm, and the extreme learning machine, as a relative new alternative for the classic back-propagation. The new one is more worthwhile because of its implementation easiness and higher speed of computation. The database used on the training and validation of the networks is created from an experimental setting, therefore it is composed by true data. The attributes used as failuresâ indicators are selected from certain frequencies of the spectrum, based on some theories of current signature analysis. In the second instance, the technique of principal components analysis is employed. The results obtained for the designed classifiers are shown, and some considerations are made on their use in real time embedded applications, which is the most important projection for future researches.
Este trabalho deriva da aplicaÃÃo de redes neurais artificiais para a detecÃÃo de curto-circuito entre espiras em motor de induÃÃo trifÃsico, acionado por inversor de frequÃncia. As redes neurais artificiais, do tipo Perceptron Simples e Multicamadas, sÃo usadas para detectar falhas de curto-circuito no bobinamento estatÃrico de motores de induÃÃo trifÃsicos de forma off-line. Para treinamento do Perceptron Multicamadas sÃo usados dois algoritmos distintos: o error back-propagation, que figura como o algoritmo clÃssico na literatura especializada, e o extreme learning machine, que à uma alternativa, relativamente recente, ao algoritmo clÃssico. Este algoritmo à uma opÃÃo atraente para o desenvolvimento rÃpido de classificadores. O banco de dados usado para treinamento e validaÃÃo das redes à obtido a partir de experimentaÃÃo laboratorial, portanto composto de dados reais. Os atributos utilizados para a detecÃÃo da falha sÃo componentes de frequÃncia do espectro harmÃnico da corrente estatÃrica do motor. O critÃrio de escolha destas componentes, a priori, à fundamentado em resultados de investigaÃÃes prÃvias da assinatura de corrente e, em segunda instÃncia, à aplicada a tÃcnica de anÃlise de componentes principais. SÃo apresentados os resultados obtidospelos classificadores projetados, e feitas algumas consideraÃÃes quanto à utilizaÃÃo destes em aplicaÃÃo embarcada e em tempo real, que à a principal projeÃÃo de futuros trabalhos a partir do atual.
APA, Harvard, Vancouver, ISO, and other styles
5

Deshmukh, Ram Raghotham Rao. "Voltage harmonics analysis and efficiency of three-phase induction motor with change in coil pitch of the stator winding." Thesis, Cardiff University, 2006. http://orca.cf.ac.uk/56143/.

Full text
Abstract:
Variable speed drives employing induction motors have been widely used in industry for decades. Today there is a continually increasing demand for more precise and flexible speed control usually with close attention to energy efficiency. The inverter is used because of its reliability, flexibility and relatively low cost. However its output a.c. voltage is not sinusoidal so the core losses in the induction motors consequently increase. This research is centred on the design and testing of the stator winding configuration of three phase induction motors with various coil pitches and measure the dynamic performance under sinusoidal and PWM supplies. Measurements were carried out to determine the behavior of harmonic losses and the efficiency of four identical three-phase 746 W induction motors with stator coil pitches of 180 , 160 , 140 and 120 . The motors were fed from either a three-phase inverter or a three-phase sinusoidal voltage supply. The switching frequency was varied from 4 kHz to 16 kHz and the modulation frequency was varied between 30 Hz to 60 Hz. Simulations were carried out using OPERA 2D software under sinusoidal voltage supply. The phenomenon of chording by l/n* of pole pitch to suppress the n* harmonic was particularly followed by motors with 120 and 160 coil pitches under sinusoidal voltage supply. This phenomenon was also followed by 120 , 140 and 160 coil pitch motors under PWM voltage supply at all the switching frequencies and modulation * frequencies. The motor with 120 coil pitch showed a drastical increase in the lower order voltage harmonic components with simulation under sinusoidal supply when compared to full pitch motor. The total voltage harmonic distortion due to the third, fifth and ninth harmonics was less for the motor with 120 coil pitch under PWM voltage at higher switching frequencies and under over modulation condition. The efficiency of the same motor was higher at full load and over loads under all the switching frequencies and modulation frequencies. The measurement results and discussion enable motor manufacturers to consider 120 coil pitch motor under PWM voltage supply and 160 coil pitch motor under sinusoidal voltage supply for the 746 W induction motors as the increase in the efficiencies were 12% and 5% respectively when compared to full pitch motor.
APA, Harvard, Vancouver, ISO, and other styles
6

Feldman, R. G. "An improvement to standard polyphase induction motor efficiency tests using a precision measurement technique for online stator winding resistance measurement." Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493345.

Full text
Abstract:
This thesis provides an investigation into the online measurement of stator winding resistance and presents a procedure designed to be used and comply with standard polyphase induction motor efficiency tests.
APA, Harvard, Vancouver, ISO, and other styles
7

Martínez, Daniel. "Design of a Permanent-Magnet Synchronous Machine with Non-Overlapping Concentrated Windings for the Shell Eco Marathon Urban Prototype." Thesis, KTH, Elektrisk energiomvandling, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-109741.

Full text
Abstract:
This thesis deals with the design of a permanent-magnet synchronous inner rotor motor for an in-wheel application for the Shell Eco Marathon Urban concept vehicle. First of all, concepts related to permanent magnet motors are studied. Likewise, different features of permanent magnet motors are qualitatively evaluated in order to choose the most suitable. A radial flux motor is selected based on its solid, economic and acceptable characteristics. Next, a detailed study of concentrated windings is carried out. Through this investigation, undesirable configurations of pole and slot numbers due to unbalanced magnetic pull or a low fundamental winding factor will be avoided and how to determine the different winding layouts for different pole and slots configuration will be explained. As well, based on this study, and the magnetic and electric behavior of the machine, an analytical model is created. This model calculates the optimum size and characteristics of a machine in order to obtain lightweight design. After that, the design of a program based on a finite element method that simulates different situations for the machine is accomplished, dealing with the difficulties that entails the concentrated windings. Finally, through the use of this program, the machine calculated by the analytical model is analyzed, specially regarding that it does not surpass some important margin in order not to be demagnetized or not to surpass the maximum phase voltage supplied by the batteries.
APA, Harvard, Vancouver, ISO, and other styles
8

Babu, Hareesh. "Finite-element analysis of an induction motor with inter-turn short-circuit faults." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-290082.

Full text
Abstract:
Stator inter-turn short circuit (ITSC) faults are one of the common sources for induction machine failure affecting their reliable operation. In this thesis, a finite element (FE) model is developed to study the ITSC fault. The FE model is developed for a prototype induction machine that has the potential to emulate an ITSC fault in the stator. With the developed FE model of the prototype machine, a simulation study is performed to understand the behaviour of various electrical and magnetic quantities in time- and frequency-domain. The investigated quantities are potentially good signatures of the stator winding faults and they are therefore suitable to use in a condition monitoring system. The prototype machine with ITSC faults has been tested in an experimental setup and the results are compared to the simulation and also to analytical results. For the fault current it was found a good agreement between analytical results, FE simulations and experimental results. Moreover, the FE simulation results of the negative-sequence stator current amplitude present a minor mismatch with the analytical and experimental results. The reason for this mismatch is due to an inaccurate knowledge of the prototype machine geometrical parameters.
Kortslutning mellan varven i en asynkronmotors statorlindning (ITSC) är en av de vanligaste källorna för fel som påverkar dess drifttillförlitlighet. I detta examensarbete utvecklas en finit-element (FE) modell för att studera ITSC- fel. FE-modellen är utvecklad för en asynkronmotorprototyp som kan emulera ITSC-fel. Med den utvecklade modellen utförs en simuleringsstudie för att förstå beteendet hos olika elektriska och magnetiska egenskaper både i tids- och frekvensdomän. Dessa egenskaper är goda indikatorer av statorlindningsfel och kan därför med fördel användas i ett tillståndsövervakningssystem. Prototypmaskinen har testats experimentellt och de erhållna resultaten jämförs med FE-simuleringen och analysresultaten. Det analytiska resultatet, FEM- simuleringarna och den experimentella utvärderingen uppvisade god överrensstämmelse vad gäller felströmmen. Dock finns det en mindre avvikelse när det gäller amplituden hos statorströmmens negativa fasföljd. Orsaken till denna avvikelse är att prototypmaskinens geometri inte är helt känd.
APA, Harvard, Vancouver, ISO, and other styles
9

Kostov, Jiří. "Výpočet jednofázového asynchronního motoru." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-219928.

Full text
Abstract:
Diploma Thespis is focused on development, parameters and construction of one-phase induction motor underplayed by calculations. Emphasis was dealt to simplify motor development process by developed computer program. Program calculations were approved by parallel by hand calculations and by experimental measuring of real processed motor.
APA, Harvard, Vancouver, ISO, and other styles
10

Belica, Andrej. "Speciální asynchronní motory malého výkonu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242131.

Full text
Abstract:
Master thesis deals with design and construction of the most widely used engines currently. Overall, it is divided into five chapters, the first chapter deals with constructional features of various three-phase asynchronous motors, the second chapter briefly paid attention to single-phase motors. The next chapter focuses on the specific engine types, which differ from standard induction motors in its design implementation. This is an engine with full rotor, hysteresis, linear and with shaded field. Although asynchronous motors are considered the most reliable machines work in imperfect conditions, it leads to frequent breakdowns. This is covered in chapter four. Based on the findings from previous chapters the fifth chapter includes a preliminary draft of the asynchronous motor with a full rotor. The last chapter is devoted to the measurement on functional models.
APA, Harvard, Vancouver, ISO, and other styles
11

Cipín, Radoslav. "Moderní matematické metody syntézy a analýzy střídavých strojů." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-233566.

Full text
Abstract:
The doctoral thesis is divided into three main parts with a focus on induction motors. The first part deals with the electromagnetic design and analysis of windings of AC ma-chines. There is introduced the density of conductors, which describes the distribution of the windings in the slots. There is derived general formula for calculation of the total winding factor applicable to any type of winding. The second part of this work deals with the acceleration method of the induction motors torque-speed characteristics measurement. The measured characteristics are used for exact identification of the equivalent circuit parameters of induction motor. The third section is focused on a very precise identification of the equivalent circuit parameters of induction motor in the form of -circuit. The identification is based on mutual comparison of measured and calculated torque-speed and current-speed characteristics.
APA, Harvard, Vancouver, ISO, and other styles
12

Mikmek, Vladislav. "Vliv vinutí na vlastnosti asynchronního motoru." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413054.

Full text
Abstract:
This thesis deals with the analysis of a three-phase winding of an induction engine. After the theoretical introduction concerning different types of windings, two types of their analysis and the importance of the winding factor, two methods of analysis and design tools are explained: Görges diagram and Tingley scheme. This scheme is then used for the design of all possible variants of winding for a certain number of stator slots and the theoretical shape of magnetic field is analysed. The next step is a deeper software analysis of the engines with variants of windings with different coil pitches and number of conductors per slot. Especially the finite element method is used in this part. The obtained values and their characteristics of the simulated engines are compared numerically and graphically. Then the changes of important values for different windings are described. The optimal winding according to chosen requirements is chosen.
APA, Harvard, Vancouver, ISO, and other styles
13

Victor, Valci Ferreira. "Viabilidade da Utiliza??o de M?quinas de Indu??o Convencionais como Motores sem Mancais Mec?nicos." Universidade Federal do Rio Grande do Norte, 2012. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15456.

Full text
Abstract:
Made available in DSpace on 2014-12-17T14:56:08Z (GMT). No. of bitstreams: 1 ValciFV_TESE.pdf: 3670403 bytes, checksum: d8b060478983488207d8885853eac60d (MD5) Previous issue date: 2012-11-05
Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior
Electrical Motors transform electrical energy into mechanic energy in a relatively easy way. In some specific applications, there is a need for electrical motors to function with noncontaminated fluids, in high speed systems, under inhospitable conditions, or yet, in local of difficult access and considerable depth. In these cases, the motors with mechanical bearings are not adequate as their wear give rise to maintenance. A possible solution for these problems stems from two different alternatives: motors with magnetic bearings, that increase the length of the machine (not convenient), and the bearingless motors that aggregate compactness. Induction motors have been used more and more in research, as they confer more robustness to bearingless motors compared to other types of machines building with others motors. The research that has already been carried out with bearingless induction motors utilized prototypes that had their structures of stator/rotor modified, that differ most of the times from the conventional induction motors. The goal of this work is to study the viability of the use of conventional induction Motors for the beringless motors applications, pointing out the types of Motors of this category that can be more useful. The study uses the Finite Elements Method (FEM). As a means of validation, a conventional induction motor with squirrel-cage rotor was successfully used for the beringless motor application of the divided winding type, confirming the proposed thesis. The controlling system was implemented in a Digital Signal Processor (DSP)
Motores el?tricos transformam energia el?trica em energia mec?nica com relativa facilidade. Em algumas aplica??es particulares, necessita-se de motores el?tricos para trabalhar com flu?dos sem contamina??o, em regime de altas velocidades, em condi??es in?spitas, ou, ainda, em locais de dif?cil acesso e ? profundidade bastante consider?vel. Nestes casos, os motores com mancais mec?nicos, cujo desgaste ocasiona a necessidade de manuten??es, n?o s?o adequados. Uma solu??o poss?vel para este problema adv?m de duas alternativas: motores com mancais magn?ticos, que t?m o inconveniente de aumentar o comprimento da m?quina, e motores-mancais, que agregam compacidade. Motores de indu??o t?m sido cada vez mais utilizados em pesquisas, pois conferem maior robustez aos motores-mancais comparados a esses tipos de m?quinas constru?das com outros motores. As pesquisas j? realizadas com motores-mancais de indu??o utilizaram prot?tipos, cujas estruturas do estator e/ou rotor foram modificadas, diferindo em grande parte dos motores de indu??o convencionais. ? objetivo deste trabalho, estudar a viabilidade do uso dos motores de indu??o convencionais para a aplica??o de motores-mancais, apontando os tipos de motores dessa categoria que mais se ad?quam. O estudo utiliza o M?todo dos Elementos Finitos FEM. Como comprova??o, um motor de indu??o convencional com rotor gaiola de esquilo foi utilizado com sucesso para a aplica??o de motor-mancal do tipo enrolamento dividido, ratificando a tese proposta. O sistema de controle foi implementado em um Processador Digital de Sinais DSP
APA, Harvard, Vancouver, ISO, and other styles
14

Janáček, Martin. "Energetické parametry jednofázových asynchronních motorů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242197.

Full text
Abstract:
The master's thesis deals and introduces a single-phase inductions machines, the principle of operation, types of design and operating conditions. This thesis includes analysis of individual losses in the machine and reduce the possibility of different ways. After a theoretical proposal for reducing losses are measured by mass-produced single-phase induction machine. Further machine modifications proposed for reducing losses in the stator windings and designed a prototype machine with the adjustment of the magnetic circuit to reduce iron losses made by ATAS elektromotory Nachod a.s. The results are supplemented by a simulation using software Maxwell RMxprt and finite element method (FEM). Finally, they are compared to each machines modifications mainly in terms of energy consumption.
APA, Harvard, Vancouver, ISO, and other styles
15

Marault, Jérôme. "Conception de machines asynchrones triphasées à bobinages statoriques dentaires." Thesis, Lille, 2021. http://www.theses.fr/2021LILUI007.

Full text
Abstract:
Les machines asynchrones (MAS) à cage d’écureuil sont des machines électriques fiables, robustes et à faible coût de fabrication. Pour des raisons historiques et de fiabilité, elles sont principalement dotées de bobinages statoriques distribués. Toutefois, même si ces derniers assurent un fonctionnement très satisfaisant, ils ont des têtes de bobines de longueurs significatives, ce qui engendre des pertes Joule non négligeables. Dernièrement, différents bobinages dentaires avec des têtes de bobines réduites, ont été utilisés dans des machines synchrones avec des performances intéressantes. En plus de réduire les pertes Joule statoriques, ces bobinages permettent de concevoir des machines plus compactes et tolérantes aux défauts. Leur utilisation est moins répandue dans les MAS à cage de par les problèmes induits par les harmoniques spatiaux dans la force magnétomotrice qui en est issue. Les travaux de la thèse ont pour objectif la conciliation de l’utilisation de ces bobinages dans des MAS avec de meilleures performances. Une analyse détaillée est d’abord menée pour appréhender précisément les phénomènes physiques liés à l’utilisation des bobinages dentaires dans les machines asynchrones aussi bien en régime permanent que lors du démarrage. Un modèle analytique paramétrique de machine asynchrone à cage d’écureuil a ensuite été développé. Ce modèle permet de concevoir des bobinages dentaires avec un contenu harmonique spatial maitrisé mais également des rotors avec différents nombres de barres équidistantes ou non. Sur la base de cet outil, des optimisations ont alors été menées tant sur le stator et son bobinage que sur la structure rotorique montrant qu’il est possible d’aboutir à des structures ‘atypiques’ avec des performances satisfaisantes. Enfin, dans une optique de validation, une MAS à bobinage dentaire avec une cage rotorique innovante a été développée et ses performances en termes de couple développé ont été évaluées au travers de simulations numériques et d’essais réalisés sur un prototype
Squirrel cage induction machines (IM) are reliable, robust and low cost manufacturing electrical machines. For historical and reliability reasons, they are mainly equipped with distributed stator windings. However, even if the latter ensure very satisfactory operation, they have significant end-coils lengths, which generate non-negligible Joule losses. Recently, different fractional slot concentrated windings (FSCW) with reduced end-coils have been used in synchronous machines with interesting performances. In addition to reducing stator Joule losses, these windings enable to design machines that are more compact and fault tolerant. Their use is less common in IM due to the problems induced by spatial harmonics in the magneto motive force when supplied. The aim of this work is to find the best way to use FSCW windings in IM while ensuring good performances. A detailed analysis is first carried out to precisely understand the physical phenomena associated with the use of FSCW in induction machines both in steady state and during start-up. A parametric analytical model of a squirrel cage induction machine was then developed. This model enables to design FSCW windings with a controlled spatial harmonic content but also rotors with different numbers of bars that are equidistant or not. On the basis of this tool, optimizations were carried out both on the stator and its winding and on the rotor structure, showing that it is possible to achieve "uncommon" structures with satisfactory performance. Finally, a fractional slot concentrated winding IM with an innovative rotor cage was developed. Its performance in terms of the developed torque was evaluated through numerical simulations and tests carried out on a prototype
APA, Harvard, Vancouver, ISO, and other styles
16

Cipín, Radoslav. "Matematické modely transformátorů a asynchronních motorů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217586.

Full text
Abstract:
The fist part of this work is dealt with the construction of the mathematical models of voltage and current transformers. There are created and simulated models of voltage and current transformer with the nonlinear magnetization characteristics. The second part of this work is dealt with equivalent circuit of the induction motor in the form of Gamma-circuit. The speed-torque characteristic and the dependence of stator current on the slip are calculated from this equivalent circuit. The third part of this work is dealt with electromagnetic design of the alternating current machines by the help of a classic way and a new way.
APA, Harvard, Vancouver, ISO, and other styles
17

Chvatík, Štěpán. "Asynchronní motor s vnějším rotorem." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-377075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kouevidjin, Modobozi. "Evaluation des performances énergétiques d'une nouvelle génération d'éolienne off-shore." Thesis, Artois, 2015. http://www.theses.fr/2015ARTO0208/document.

Full text
Abstract:
L’alternateur étudié dans cette thèse équipe une éolienne flottante à axe vertical. Il s’agit d’unemachine synchrone de 2MW, polyphasée, bobinée sur plots, à pas fractionnaire, à aimants et à prisedirecte. L’objectif majeur de la thèse est la caractérisation de cet alternateur afin d’en évaluer lesperformances. Une modélisation analytique de la perméance d'entrefer et de la force magnétomotriceont conduit à l'étude de l'induction d'entrefer dont le contenu harmonique s'est révélé êtreparticulièrement riche. La caractérisation a également porté sur la détermination des inductancespropres et mutuelles, avec un calage du modèle effectué en exploitant des mesures expérimentalesfaites à l’arrêt. La particularité de la machine étudiée nous a amené à considérer un enroulement fictiféquivalent dans le but de déterminer les inductances cycliques, nécessaires à l'établissement du schémamonophasé équivalent. De plus, le fonctionnement back to back de la machine a été étudié et simulé. Ilpermet de faire des tests de la machine elle-même mais aussi des éléments de la chaîne de conversion,sans l'utilisation d'une deuxième machine ou des pâles pour entraîner le rotor du prototype. Il offre enplus la possibilité de tester différents type de fonctionnements et d'évaluer la puissance que peutproduire la machine : différents scénario de fonctionnement ont été simulés et les paramètresnécessaires aux essais sur site ont été définis. Le fonctionnement back to back a fait l’objetd’investigation sur une machine synchrone classique. Les difficultés de fonctionnement ontnotamment pu être mises en évidence avec une modélisation analytique des phénomènesélectromagnétique qui s'y produisent et des essais expérimentaux
The studied alternator equips a vertical axis offshore wind turbine. It is a 2MW fractional slotconcentrated winding permanent magnet synchronous polyphase machine, directly connected to bladeturbine. The principal purpose of this thesis consists in characterizing the alternator in order toevaluate its performances. The air gap permeance and the magnemotive force analytical modelingleads to study the air gap flux density and its harmonic content, which is particularly rich. Thecharacterization has also concerned the self and mutual inductance determination, which has requiredstalling the model by exploiting experimental measurements done at standstill. The particularity of thestudied machine leads us to consider an equivalent fictitious winding in order to determine the cyclicalinductances, necessary for the single-phase equivalent scheme establishment. Moreover, the machineback to back functioning has been studied and simulated. This functioning allows testing the machineitself and the other conversion chain subsystems, without using a second machine or blades to drivethe prototype rotor. It offers the possibility to test different types of operating points and to estimatethe power that can produce the studied machine: different operating points scenarios have beensimulated and parameters for tests have been defined. The back to back functioning of a classicalsynchronous machine has been also investigated, with an analytical modeling of the electromagneticphenomena and experimental tests
APA, Harvard, Vancouver, ISO, and other styles
19

Minks, Ondřej. "Materiály pro vinutí elektrických strojů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-241958.

Full text
Abstract:
This work deals with the option of substitute aluminum for copper as winding material in induction motor in several variants and compare them. The advantages and disadvantages of these materials for the application are mentioned. The default element is the machine with power 29 kW, 2p = 4, which is the basis for other variants. It is about the verification of the default copper wire machine with cataloging data and then verification of several aluminum wire variants of the machine. Veryfying the machine designs is performed on the basis of three programs - RMxprt, ANSYS Maxwell and Matlab. In all of these programs, the machine calculations were realized for copper and aluminum winding in point close to the nominal. Final results are evaluated. There are also heat and ventilation calculations of the machine.
APA, Harvard, Vancouver, ISO, and other styles
20

La, Delfa Patricio. "Contribution à la conception silencieuse par démarches directe et inverse de machines synchrones à aimants permanents et bobinage dentaire." Thesis, Ecole centrale de Lille, 2017. http://www.theses.fr/2017ECLI0036/document.

Full text
Abstract:
Cette thèse porte sur la conception silencieuse par démarches inverses de machines synchrones à aimants permanents dotées de bobinages dentaires. Notre travail se focalise sur l’analyse des raies de forces radiales à l’origine du bruit magnétique. En premier lieu, un modèle direct électromagnétique, nous a permis de déterminer le spectre spatio-temporel de la force radiale dans l’entrefer. Ce dernier nous offre la possibilité d’obtenir pas à pas et de manière analytique l’induction radiale dans l’entrefer, résultat du produit de la force magnétomotrice totale et de la perméance d’entrefer globale. Plusieurs machines dotées d’un bobinage dentaire et distribué ont été évaluées, comparées à des simulations par éléments finis et corroborés par une analyse modale opérationnelle sur un prototype existant au laboratoire. Puis la démarche inverse de conception est abordée par le biais de deux outils « analytiques prédictifs » donnant les origines des ordres faibles spatio-temporels de la force radiale dans l’entrefer. Enfin, la résolution du problème inverse est conduite au moyen d’une boucle itérative d’optimisation donnant parmi un échantillon de solutions, une fonction de bobinage, visant à atténuer ou supprimer une raie potentiellement risquée en termes de nuisances acoustiques
This thesis deals the quiet design by inverses approaches of synchronous machines with permanent magnets concentrated windings. Our work focuses on the analysis of magnetic noise origin of air gap radial force orders. Firstly a direct electromagnetic model allowed us to determine the spatio-temporal spectrum of air gap radial pressure. The latter offers us the possibility of obtaining step by step and in an analytical way the radial induction in the gap, result of the product of the total magnetomotive force and global air gap permeance. Several machines equipped with a concentrated winding and distributed were evaluated, compared to simulations by finite elements and corroborated by an operational deflection shape on an existing prototype in the laboratory. In the second time two inverse approaches named predictive methodology identified the radial pressure low order origin. Finally, the resolution of the inverse problem is carried out by means of an iterative optimization loop giving among a sample of solutions, a winding function, aimed at attenuating or eliminating a potential risky line in terms of acoustic nuisances
APA, Harvard, Vancouver, ISO, and other styles
21

Vácha, Pavel. "Výpočet jednofázového asynchronního motoru." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-219186.

Full text
Abstract:
The master´s thesis deal with the thesis of a single-phase induction motor that is more and more used all over the world. Its aim is assembling the information about this type of motor and its calculation. The content of the first part is the theoretical analysis of a single-phase induction motor and acquirement ways of the stroke moment. Than the work contains a project of basic schema of the single-phase induction motor with an auxiliary phase. The practical part is devoted to an elaboration of demonstration example of the single-phase induction motor with concrete parameters calculation, its method was projected before. Than there is practising successived measuring on the motor of the same parameters made firm EMP s.r.o. Slavkov by Brno in this part. In the conclusion there is the evaluation of the whole process with reached results.
APA, Harvard, Vancouver, ISO, and other styles
22

Halfar, Tomáš. "Zlepšení energetických parametrů asynchronních strojů malého výkonu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-219929.

Full text
Abstract:
The master’s thesis Improvement power parameter of small induction motors deals with issues of lowering the losses of small induction motors. The first part introduces with design and principles of operation of induction motors. Also introduces to theoretical problematic of losses, their lowering and measuring. In the practical part there are results of the measuring the losses in the induction motor ATAS Elektromotory Náchod a.s. T22VT512 (71-0512). There are proposed methods of increasing the efficiency of induction motor due to measuring and their verification in the Maxwell software. The last part is dedicated to measuring the losses of prototype motor from ATAS and comparison of results with previous motor.
APA, Harvard, Vancouver, ISO, and other styles
23

Novotný, Jiří. "Analýza možností zvýšení účinnosti asynchronních motorů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220919.

Full text
Abstract:
In the first part of the master’s thesis dealing with the increasing efficiency of induction motors there are briefly presented basic information about induction motors, followed by an overview of the losses of induction motors. The next part deals with the ways to increase efficiency of induction motors without increasing tooling costs. The practical part consists of four measurements of four induction motors, with their various mechanical adjustments to make comparing benefits of these modifications possible. The measured results are compared by a finite element method in Maxwell 2D Design program, in which the same motors are simulated as measured. Theoretical knowledge about the increase of efficiency is practically applied while being implemented in the simulations.
APA, Harvard, Vancouver, ISO, and other styles
24

Štaffa, Jiří. "Ztráty jednofázového asynchronního motoru s trvale připojeným kondenzátorem." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221263.

Full text
Abstract:
This project deals with increasing efficiency of one phase induction motor with permanent split capacitor. We can whole thesis divide into two parts, the first one is basic and the second is interested in analysis and measurement. First part handles with construction of single phase induction motor, explanation of function principle, start and run of motor. Calculating of efficiency including type of losses, which reduce efficiency. Second part concerns analysis losses including moment load characteristic, motor measurement while rotor is locked, with no load operation, measuring mechanical and additional losses. Further there will be measured useful values for creation model for simulation (reactance of windings etc.). Than will be the model created in ANSYS Maxwell with module RMxprt. After analytic calculation in RMxprt and using Finite Element Method (FEM) load characteristics will be compared together. This comparison gives us information about accuracy of model for simulation. Simulation and measurement will be carried out on another engine with high quality ferromagnetic material used for magnetic circuit of motor. Further will be done simulation of motor with modifications shown in previous chapter for high efficiency.
APA, Harvard, Vancouver, ISO, and other styles
25

Toliyat, Hamid A. "Analysis of concentrated winding induction and reluctance machines for adjustable speed drive applications." 1991. http://catalog.hathitrust.org/api/volumes/oclc/24458806.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Chen, Chien-Lin, and 陳建霖. "An Improved Design of Induction Motor for EV with Hairpin Winding." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/02599948006067409596.

Full text
Abstract:
碩士
國立臺灣大學
機械工程學研究所
105
The goal of this research is to improve the efficiency , torque ripple , and power density of induction motor for electric vehicle. By the design of Hairpin winding which is benefit for increasing slot fill factor and reducing the loss and through the parameter optimization method, to achieve the purpose of performance improvement. First, experimenting and analyzing the prototype to discover improvable targets. Next, applying electromagnetic field simulation software to access all the factors including eddy effect and magnetic saturation, the magnetic impact from Hairpin. Moreover, reforming factors like slot shape of stator , slot number of stator and rotor ,and air gap for better results. Then, applying optimization software to find the best condition that fulfills the limitations and expectations for the purpose of reforming magnetic circuit.
APA, Harvard, Vancouver, ISO, and other styles
27

Xu, Ming-Sheng, and 許明生. "Extending the speed range of induction motor using wye-delta winding changeover." Thesis, 1993. http://ndltd.ncl.edu.tw/handle/77311659331732136691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Huang, Kai-Ting, and 黃凱廷. "A Winding and Energizing Method for Stator of Pole-Change Induction Motor." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/21264750554449513923.

Full text
Abstract:
碩士
國立交通大學
機械工程學系
100
According to the electrical engineering theory, the speed of induction motors is associated with 3 parameters: pole numbers, supply frequency and slip rate. Changing speed by operating number of induction motor poles is called a pole-changing control. Changing speed by adjusting supply frequency of induction motor is called a frequency-changing control. Due to zero slip loss both methods are highly effective. On the other hand, because the difference of slips between speed changing before and after will lead to energy loss, changing speed by adjusting slip rate belongs to a low efficient method. The study proposes an effective method which can change pole numbers between 6 and 18, 6 and 12, 2N and 6N. Most windings are shared in use to save space and cost. This study simulates magnetic circuits of stators of designed pole-change induction motors by using an ANSYS Maxwell software, and investigating stator and rotor properties. Furthermore, this study generalizes the designing processes of pole-change induction motors.
APA, Harvard, Vancouver, ISO, and other styles
29

Siva, Kumar K. "Multilevel Voltage Space Vector Generation For Induction Motor Drives Using Conventional Two-Level Inverters And H-Bridge Cells." Thesis, 2010. http://etd.iisc.ernet.in/handle/2005/1422.

Full text
Abstract:
Multilevel voltage source inverters have been receiving more and more attention from the industry and academia as a choice for high voltage and high power applications. The high voltage multilevel inverters can be constructed with existing low voltage semiconductor switches, which already have a mature technology for handling low voltages, thus improving the reliability of the overall inverter system. These multilevel inverters generate the output voltage in the form of multi-stepped waveform with smaller amplitude. This will result in less dv/dt at the motor inputs and electromagnetic interference (EMI) caused by switching is considerably less. Because of the multi-stepped waveform, the instantaneous error in the output voltage will be always less compared to the conventional two-level inverter output voltage. It will reduce the unwanted harmonic content in the output voltage, which will enable to switch the inverter at lower frequencies. Many interesting multi level inverter topologies are proposed by various research groups across the world from industry and academic institutions. But apart from the conventional 3-level NPC and H-bridge topology, others are not yet highly preferred for general high power drives applications. In this respect, two different five-level inverter topologies and one three-level inverter topology for high power induction motor drive applications are proposed in this work. Existing knowledge from published literature shows that, the three-level voltage space vector diagram can be generated for an open-end winding induction motor by feeding the motor phase windings with two two-level inverters from both sides. In such a configuration, each inverter is capable of assuming 8 switching states independent of the other. Therefore a total of 64 switching combinations are possible, whereas the conventional NPC inverter have 27 possible switching combinations. The main drawback for this configuration is that, it requires a harmonic filter or isolated voltage source to suppress the common mode currents through the motor phase winding. In general, the harmonic filters are not desirable because, it is expensive and bulky in nature. Some topologies have been presented, in the past, to suppress the common mode voltage on the motor phase windings when the both inverters are fed with a single voltage source. But these schemes under utilize the dc-link voltage or use the extra power circuit. The scheme presented in chapter-3 eliminates the requirement of harmonic filter or isolated voltage source to block the common mode current in the motor phase windings. Both the two-level inverters, in this scheme, are fed with the same voltage source with a magnitude of Vdc/2 where Vdc is the voltage magnitude requires for the NPC three-level inverter. In this scheme, the identical voltage profile winding coils (pole pair winding coils), in the four pole induction motor, are disconnected electrically and reconnected in two star groups. The isolated neutrals, provided by the two star groups, will not allow the triplen currents to flow in the motor phase windings. To apply identical fundamental voltage on disconnected pole pair winding, decoupled space vector PWM is used. This PWM technique eliminates the first center band harmonics thereby it will allow the inverters to operate at lower switching frequency. This scheme doesn’t require any additional power circuit to block the triplen currents and also it will not underutilize the dc-bus voltage. A five-level inverter topology for four pole induction motor is presented in chapter-3. In this topology, the disconnected pole pair winding coils are effectively utilized to generate a five-level voltage space vector diagram for a four pole induction motor. The disconnected pole pair winding coils are fed from both sides with conventional two-level inverters. Thereby the problems like capacitor voltage balancing issues are completely eliminated. Three isolated voltage sources, with a voltage magnitude of Vdc/4, are used to block the triplen current in the motor phase windings. This scheme is also capable of generating 61 space vector locations similar to conventional NPC five-level inverter. However, this scheme has 1000 switching combinations to realize 61 space vector locations whereas the NPC five-level inverter has 125 switching combinations. In case of any switch failure, using the switching state redundancy, the proposed topology can be operated as a three-level inverter in lower modulation index. But this topology requires six additional bi-directional switches with a maximum voltage blocking capacity of Vdc/8. However, it doesn’t require any complicated control algorithm to generate the gating pulses for bidirectional switches. The above presented two schemes don’t require any special design modification for the induction machine. Although the schemes are presented for four pole induction motor, this technique can be easily extend to the induction motor with more than four poles and thereby the number of voltage levels on the phase winding can be further increased. An alternate five-level inverter topology for an open-end winding induction motor is presented in chapter-4. This topology doesn’t require to disconnect the pole pair winding coils like in the previous propositions. The open-end winding induction motor is fed from one end with a two-level inverter in series with a capacitor fed H-bridge cell, while the other end is connected to a conventional two-level inverter to get a five voltage levels on the motor phase windings. This scheme is also capable of generating a voltage space vector diagram identical to that of a conventional five-level inverter. A total of 2744 switching combinations are possible to generate the 61 space vector locations. With such huge number switching state redundancies, it is possible to balance the H-bridge capacitor voltage for full modulation range. In addition to that, the proposed topology eliminates eighteen clamping diode having different voltage ratings compared to the NPC inverter. The proposed topology can be operated as a three-level inverter for full modulation range, in case of any switch failure in the capacitor fed H-bridge cell. All the proposed topologies are experimentally verified on a 5 h.p. four pole induction motor using V/f control. The PWM signals for the inverters are generated using the TMS320F2812 and GAL22V10B/SPARTAN XC3S200 FPGA platforms. Though the proposed inverter topologies are suggested for high-voltage and high-power industrial IM drive applications, due to laboratory constraints the experimental results are taken on the 5h.p prototypes. But all the proposed schemes are general in nature and can be easily implemented for high-voltage high-power drive applications with appropriate device ratings.
APA, Harvard, Vancouver, ISO, and other styles
30

Figarado, Sheron. "Multilevel Inverter Topologies With Reduced Power Circuit Complexity For Medium Voltage High Power Induction Motor Drives By Cascading Conventional Two-Level And Three-Level Inveters." Thesis, 2009. http://hdl.handle.net/2005/1061.

Full text
Abstract:
Multilevel inverters have advantages over two-level inverters such as reduced THD, ability to operate at low switching frequencies, reduced switching losses etc. Moreover, higher voltage levels can be handled with devices of lower voltage rating. The main disadvantage with the multilevel configurations compared to the two-level inverter configuration is the increase in the number of power devices required and the circuit complexity, which necessitates complex control schemes that add to the cost. Also, the reliability of the converters comes down as the number of devices increases. Reduction in complexity and modularity are desirable characteristics for the multilevel inverters. Open-end winding Induction Motor (IM) drive configurations are shown to have advantages over the motor drive schemes with isolated neutral. The DC-link requirement in case of open-end winding structures comes down to half the voltage rating of the conventional NPC inverters. The DC- link requirement in case of open-end winding structures comes down to half compared to that of the conventional NPC inverters. The number of switching states is higher in the case of open-end winding configuration compared to multiplicity of switching states of conventional NPC inverters, which gives a control flexibility that can be used for optimizing the hardware requirements. Taking advantage of the flexibility given by open-end winding configuration, this thesis proposes schemes which have reduced power circuit complexity. Non-sinusoidal voltage fed IM drives suffer from the problems related to the common mode voltage (CMV) generated by the inverters. This CMV causes bearing currents and shaft voltages which in turn cause increased conducted EMI, ground loop currents and premature bearing failure. A three-level scheme was proposed for an open-end winding Induction machine in the literature, which completely eliminate the CMV variation from the pole voltages as well as the phase voltages. This configuration uses 24 controlled switches and two isolated DC-sources. In this thesis, three-level inverter schemes with CMV elimination and reduced power device count for an open-end winding IM drive are proposed. The first scheme gets the reduction in switch count by sharing the top inverter of the three-level scheme and the second scheme achieves the same by sharing the bottom inverter. This way, the number of controlled switches comes down to 18 from 24. Another problem with multilevel inverters is the large number of isolated DC-sources required to achieve the multilevel inversion. Reducing the number of isolated supplies and using capacitors to split the voltage levels poses the problem of capacitor voltage balancing. A four-level inverter with both CMV elimination and capacitor voltage balancing for an open-end winding IM drive is proposed in this thesis. The motor is fed by two four-level inverters from both the sides. A closed loop capacitor voltage balancing scheme is implemented and the redundancies in the switching states are used for achieving the capacitor voltage balancing and thereby reducing the total number of DC-link to two. The control scheme is independent of the load power factor and maintains the balance in the entire modulation range. A five-level inverter scheme is proposed for an open-end winding IM drive in this thesis. It requires only two isolated DC-sources to achieve the five-level inversion. The motor is fed by one NPC three-level inverter from one side and a two-level inverter from the other. The inverters on either side share the DC-sources. Common mode voltage in the phases are made zero in an average sense using sine-triangle modulation in the proposed scheme so that the common mode currents through the phases are suppressed. The maximum fundamental voltage that can be obtained at the phase is limited to 0.5Vdc. DC-link requirement of the inverter scheme is half of that of conventional five-level inverter scheme because of the open-end winding structure. The two-level inverter, which should withstand half the DC-link voltage, is always in square wave operation and hence the switching losses are very less. All the schemes are simulated extensively in MATLAB/Simulink and experimentally verified on laboratory prototypes under V/f control. TI Motor control DSP and Xilinx CPLD/FPGA are used for generation of the PWM signals for the schemes. The inverters are switched at around 1.25 kHz to keep the switching losses low. Due to laboratory constraints, the experimental verification is done on low power prototypes. Nonetheless, the generality of the schemes allow them to be used for medium voltage high power applications.
APA, Harvard, Vancouver, ISO, and other styles
31

Mondal, Gopal. "Reduced Switch Count Multi-Level Inverter Structures With Common Mode Voltage Elimination And DC-Link Capacitor Voltage Balancing For IM Drives." Thesis, 2008. http://hdl.handle.net/2005/804.

Full text
Abstract:
Multilevel inverter technology has emerged recently as a very important alternative in the area of high-power medium-voltage energy control. Voltage operation above semiconductor device limits, lower common mode voltages, near sinusoidal outputs together with small dv/dt’s, are some of the characteristics that have made this power converters popular for industry and modern research. However, the existing solutions suffer from some inherent drawbacks like common mode voltage problem, DC-link capacitor voltage fluctuation etc. Cascaded multi-level inverter with open-end winding induction motor structure promises significant improvements for high power medium-voltage applications. This dissertation investigates such cascaded multi-level inverters for open-end winding induction motor drive with reduced switch count. Similar to the conventional two-level inverters, other multi-level inverters with PWM control generate alternating common mode voltage (CMV). The alternating common mode voltage coupled through the parasitic capacitors in the machine and results in excessive bearing current and shaft voltage. The unwanted shaft voltage may cross the limit of insulation breakdown voltage and cause motor failure. This alternating common mode voltage adds to the total leakage current through ground conductor and acts as a source of conducted EMI which can interfere with other electronic equipments around. As the number of level increase in the inverter, different voltage levels are made available by using DC-link capacitor banks, instead of using different isolated power supplies. The intermediate-circuit capacitor voltages which are not directly supplied by the power sources are inherently unstable and require a suitable control method for converter operation, preferably without influence on the load power factor. Apart from normal operation, the sudden fault conditions may occur in the system and it is necessary to implement the control strategy considering this condition also. A five-level inverter topology with cascaded power circuit structure is proposed in this dissertation with the strategy to eliminate the common mode voltage and also to maintain the balance in the DC-link capacitor voltages. The proposed scheme is based on a dual five-level inverter for open-end winding induction motor. The principle achievement of this work is the reduction of power circuit complexity in the five-level inverter compared to a previously proposed five-level inverter structure for open-end winding IM drive with common mode voltage elimination. The reduction in the number of power switching devices is achieved by sharing the two two-level inverters for both the inverter structures. The resultant inverter structure can produce a nine-level voltage vector structure with the presence of alternating common mode voltage. The inverter structure is formed by cascading conventional two-level inverters together with NPC three-level inverters. Thus it offers modular and simpler power bus structure. As the power circuit is realised by cascading conventional two-level and NPC three-level inverters the number of power diodes requirements also reduced compared to the conventional NPC five-level inverters. The present proposed structure is implemented for the open-end winding induction motor and the power circuit offers more number of switching state redundancies compared to any conventional five-level inverter. The inverter structure required half the DC-link voltage compared to the DC-link voltage required for the conventional five-level inverter structure for induction motor drive and this reduces the voltage stress on the individual power devices. The common mode voltage is eliminated by selecting only the switching states which do not generate any common mode voltage in pole voltages hence there will be no common mode voltage at the motor phase also. The technique of using the switching state selection for the common mode voltage elimination, cancels out the requirement of the filter for the same purpose. As the inverter output is achieved without the presence of common mode voltage, the dual inverter can be fed from the common DC-link sources, without generating any zero sequence current. Hence the proposed dual five-level inverter structure requires only four isolated DC supplies. The multi-level inverters supplied by single power supply, have inherent unbalance in the DC-link capacitor voltages. This unbalance in the DC-link capacitor voltages causes lower order harmonics at the inverter output, resulting in torque pulsation and increased voltage stress on the power switching devices. A five-level inverter with reduced power circuit complexity is proposed to achieve the dual task of eliminating common mode voltage and DC-link capacitor voltage balancing. The method includes the analysis of current through the DC-link capacitors, depending on the switching state selections. The conditions to maintain all the four DC-link capacitor voltages are analysed. In an ideal condition when there is no fault in the power circuit the balance in the capacitor voltages can be maintained by selecting switching states in consecutive intervals, which have opposite effect on the capacitor voltages. This is called the open loop control of DC-link capacitor voltage balancing, since the capacitor voltages are not sensed during the selection of the switching states. The switching states with zero common mode voltages are selected for the purpose of keeping the capacitor voltages in balanced condition during no fault condition. The use of any extra hardware is avoided. The proposed open loop control of DC-link capacitor voltage balancing is capable of keeping the DC-link capacitor voltages equal in the entire modulation region irrespective of the load powerfactor. The problem with the proposed open loop control strategy is that, it can not take any corrective action if there is any initial unbalance in the capacitor voltages or if any unbalance occurs in the capacitor voltages during operation of the circuit,. To get the corrective action in the capacitor voltages due occurrence of any fault in the circuit, the strategy is further improved and a closed loop control strategy for the DC-link capacitor voltages is established. All the possible fault conditions in the four capacitors are identified and the available switching states are effectively used for the corrective action in each fault condition. The strategy is implemented such a way that the voltage balancing can be achieved without affecting the output fundamental voltage. The proposed five-level inverter structure presented in this thesis is based on a previous work, where a five-level inverter structure is proposed for the open-end winding induction motor. In that previous work 48 switches are used for the realization of the power circuit. It is observed that all the available switching states in this previous work are not used for any of the performance requirement of CMV elimination or DC-link voltage balancing. So, in this proposed work, the power circuit is optimized by reducing some of the switches, keeping the performance of the inverter same as the power circuit proposed in the previous work. The five-level inverter proposed in this thesis used 36 switches and the number of switching states is also reduced. But, the available switching states are sufficient for the CMV elimination and DC-link capacitor voltage balancing. The advantage of the modular circuit structure of this proposed five-level inverter is further investigated and the inverter structure is modified to a seven-level inverter structure for the open end winding induction motor. The proposed power circuit of the seven-level inverter uses only 48 switches, which is less compared to any seven-level inverter structure for the open end winding induction motor with common mode voltage elimination. The power circuit is reduced by sharing four two-level inverters to both the individual seven-level inverters in both the sides of the of the open end winding induction motor. The cascaded structure eliminates the necessity of the power diodes as required by the conventional NPC multilevel inverters. The proposed seven-level inverter is capable of producing a thirteen-level voltage vector hexagonal structure with the presence of common mode voltage. The common mode voltage elimination is achieved by selecting only the switching states with zero common mode voltage from both the inverters and the combined inverter structure produce a seven-level voltage vector structure with zero common mode voltage. The switching frequency is also reduced for the seven-level inverter compared to the proposed five-level inverter. The advantage of this kind of power circuit structure is that the number of power diode requirement is same in both five-level and seven-level inverters. Since there is no common mode voltage in the output voltages, the dual seven-level inverter structure can be implemented with the common DC-link voltage sources for both the sides. Six isolated power supplies are sufficient for both the seven-level inverters. The available switching states in this proposed seven-level inverter are further analysed to implement the open loop and closed loop capacitor voltage balancing and this allow the power circuit to run with only three isolated DC supplies. All the proposed work presented in this thesis are initially simulated in SIMULINK toolbox and then implemented in a form of laboratory prototype. A 2.5KW open end winding induction motor is used for the implementation of these proposed works. But all these work general in nature and can be implemented for high power drive applications with proper device ratings.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography