Academic literature on the topic 'Inductor design'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Inductor design.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Inductor design"
Gao, Song. "Coupled Inductor Design of Contactless Power Transfer System." Advanced Materials Research 503-504 (April 2012): 1190–93. http://dx.doi.org/10.4028/www.scientific.net/amr.503-504.1190.
Full textLazarus, Nathan, Chris D. Meyer, and Sarah S. Bedair. "Stretchable Inductor Design." IEEE Transactions on Electron Devices 62, no. 7 (July 2015): 2270–77. http://dx.doi.org/10.1109/ted.2015.2431221.
Full textFarooq, Muhammad, Bilal Amin, Adnan Elahi, William Wijns, and Atif Shahzad. "Planar Elliptical Inductor Design for Wireless Implantable Medical Devices." Bioengineering 10, no. 2 (January 23, 2023): 151. http://dx.doi.org/10.3390/bioengineering10020151.
Full textStojanovic, Goran, Ljiljana Zivanov, and Mirjana Damnjanovic. "Optimal design of circular inductors." Facta universitatis - series: Electronics and Energetics 18, no. 1 (2005): 57–70. http://dx.doi.org/10.2298/fuee0501057s.
Full textNovickij, J., and N. Višniakov. "The Application of Composite Materials in Pulsed Inductor Design." Solid State Phenomena 113 (June 2006): 545–48. http://dx.doi.org/10.4028/www.scientific.net/ssp.113.545.
Full textMuneeswaran, Dhamodaran, Jegadeesan Subramani, Thanapal Pandi, Navaneethan Chenniappan, and Meenatchi Shanmugam. "Modelling of Different On-chip Inductors for Radio Frequency Integrated Circuits." Proceedings of the Bulgarian Academy of Sciences 75, no. 10 (October 30, 2022): 1491–98. http://dx.doi.org/10.7546/crabs.2022.10.12.
Full textStupin, A. O., D. V. Rogova, E. A. Nozdrenko, V. V. Kukartsev, A. I. Cherepanov, and A. E. Stashkevich. "Design of inductors for the installation of induction soldering of pipeline joints in the oil and gas industry." Journal of Physics: Conference Series 2094, no. 4 (November 1, 2021): 042017. http://dx.doi.org/10.1088/1742-6596/2094/4/042017.
Full textMin, Jinkun, Guangyu Zhu, Yidan Yuan, and Jingquan Liu. "COMSOL Simulation for Design of Induction Heating System in VULCAN Facility." Science and Technology of Nuclear Installations 2021 (August 19, 2021): 1–12. http://dx.doi.org/10.1155/2021/9922503.
Full textBoo, K. K., Ovinis Mark, and Nagarajan Thirumalaiswamy. "Thermal and Magnetisms Design of an Inductor Using Finite Element Method." Advanced Materials Research 622-623 (December 2012): 130–35. http://dx.doi.org/10.4028/www.scientific.net/amr.622-623.130.
Full textTacca, Hernan Emilio. "Ferrite Toroidal Inductor Design." IEEE Latin America Transactions 7, no. 6 (December 2009): 630–35. http://dx.doi.org/10.1109/tla.2009.5419359.
Full textDissertations / Theses on the topic "Inductor design"
Saeed, Rasha. "Design and characterisation of a high energy-density inductor." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/49726/.
Full textYang, Rachel S. (Rachel Shanting). "Low-loss inductor design for high-frequency power applications." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123006.
Full textThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 72-74).
Miniaturization of power electronics can improve the performance of many applications, such as renewable energy systems, data centers, and aerospace systems. Operation in the high frequency (HF) regime (3{ 30 MHz) has potential for miniaturizing power electronics, but designing small, efficient inductors at HF can be challenging. At these frequencies, losses due to skin and proximity effects are difficult to reduce, and gaps needed to keep B fields low in the core add fringing field loss. This thesis aims to improve the design of HF inductors. A low-loss inductor structure for HF applications and associated design guidelines that optimize for loss have been developed. The structure achieves low loss through quasi-distributed gaps and a new field shaping technique that achieves low winding loss through double-sided conduction. An example ~15 [mu]H inductor designed using the proposed guidelines achieved an experimental quality factor of 720 at 3MHz and 2A (peak) of ac current.
In some cases, litz wire may further improve the performance of the proposed structure. With litz wire, the example inductor achieved an improved quality factor of 980. The proposed structure also has great design and application flexibility. Core sets for this structure can be scaled by a factor-of-four in volume and still cover a large, continuous range of inductor requirements, e.g. power handling and inductances. A wide range of requirements can therefore be achieved with a small set of core pieces. The proposed inductor structure and design techniques thus have greater potential for commercial adoption to facilitate the design of low-loss HF inductors. The design techniques used in the proposed structure can also be extended to high-power radio-frequency (RF) applications, such as RF power amplifiers for industrial plasma generation. A modified version of the proposed structure, along with modified design guidelines, can achieve low loss in this operating space.
Simulations show that an example ~600 nH inductor achieves a quality factor of 1900 at 13:56MHz and 78A (peak). Therefore, the developed design techniques and inductor structures are suitable for small, highly-efficient inductors at HF, and can thereby help realize high-frequency miniaturization of power electronics.
by Rachel S. Yang.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Butler, Stephen J. "Analysis and design of a low-ripple coupled-inductor boost topology." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-10312009-020328/.
Full textChen, Ji. "ON-CHIP SPIRAL INDUCTOR/TRANSFORMER DESIGN AND MODELING FOR RF APPLICATIONS." Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4115.
Full textPh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering
Surendra, Kanchana. "Modeling and Design of a Three-dimensional Inductor with Magnetic Core." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/34565.
Full textMaster of Science
Abou, Seido Maamoun Carleton University Dissertation Engineering Electronics. "Design and analysis of CMOS monolithic inductor-less voltage controlled oscillators." Ottawa, 1996.
Find full textFielder, Robert Stanley. "Computer Aided Design and Fabrication of Magnetic Composite Multilayer Inductors." Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/36115.
Full textMaster of Science
Ayhan, Mustafa Tufan. "Design And Implementation Of Coupled Inductor Cuk Converter Operating In Continuous Conduction Mode." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613927/index.pdf.
Full textsteady-state model, dynamic model and transfer functions of coupled-inductor Cuk converter topology are obtained via state-space averaging method. Third stage deals with determining the design criteria to be fulfilled by the implemented circuit. The selection of the circuit components and the design of the coupled-inductor providing ripple-free input current waveform are performed at this stage. Fourth stage introduces the experimental results of the implemented circuit operating in open loop mode. Besides, the controller design is carried out and the closed loop performance of the implemented circuit is presented in this stage.
Mishra, Dibyajat. "Modeling, design, fabrication and demonstration of multilayered ferromagnetic polymer-dielectric composites for ultra-thin high-denisty power inductors." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54333.
Full textTrulls, Fortuny Xavier. "Design of broadband inductor-less RF front-ends with high dynamic range for G.hn." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/463012.
Full textEl "sistema en un chip" (SoC) fue adoptado recientemente como una de las soluciones para reducir el coste de sistemas integrados. Cuando se empezó a utilizar la solución SoC, el producto final era más caro debido al bajo rendimiento de producción. Los avances en tecnología integrada a lo largo de los años han permitido la integración de más componentes en menos área con mejoras en rendimiento. Por lo tanto, SoCs pasó a ser una solución ampliamente utilizada para reducir el coste del producto final, integrando en un único chip las principales partes de un sistema: analógica, digital y memoria. A medida que las tecnologías integradas se reducían en tamaño para permitir una mayor densisdad de transistores y proveer mayor funcionalidad con la misma área, las partes RF analógicas del SoC pasaron a ser la limitación en la reducción de costes ya que los inductores ocupan mucha área y no escalan con la tecnología. Por lo tanto, las tendencias en investigación se mueven hacia el diseño de SoCs sin inductores que todavía reducen más el coste final del producto. También, a medida que la demanda en sistemas de comunicación domésticos de alta velocidad ha crecido a lo largo de la última década, se han desarrollado varios estándares para satisfacer los requisitos de cada aplicación, siendo las redes sin hilos (WLANs) basadas en el estándar IEEE 802.11 las más populares. Sin embargo, una pobre propagación de señal a través de las paredes hacen que las WLANs sean inadecuadas para aplicaciones de alta-velocidad como transmisión de vídeo de alta definición en tiempo real, resultando en el desarrollo de tecnologías con hilos utilizando la infraestructura existente en los domicilios. La recomendación ITU-T G.hn (G.9960 and G.9961) unifica las principales infraestructuras con hilos domésticas (cables coaxiales, línias de teléfono y línias de electricidad) en un sólo estándar para la transmisión de datos hasta 1 Gb/s. La recomendación G.hn define una red unificada sobre línias de electricidad, de teléfono y coaxiales con diferentes esquemas para banda base y RF. El esquema RF-coax en el cual se basa esta tesis, usa canales con un ancho de banda de 50 MHz y 100 MHz con 256 y 512 portadoras respectivamente. La frecuencia centra puede variar desde 350 MHz hasta 2450 MHz. La recomendación especifica un límite en la potencia de transmisión de 5 dBm para el esquema de 50 MHz y 8 dBm para el esquema de 100 MHz, de tal forma que la potencia máxima por portadora es la misma en ambos esquemas. Debido a la estructura de un entorno doméstico con hilos, los receptores deben ser capaces de procesar señales con amplitud muy grande o muy pequeña; cuando transmisor y receptor están conectados en la misma toma eléctrica no hay atenuación de canal y el ratio de señal a rudio más distorsión (SNDR) está dominado por la linealidad del receptor, mientras que cuando transmisor y receptor están separados por varias habitaciones la atenuación es elevada y el SNDR está dominado por la figura de ruido del receptor. Los elevados requisitos de rango dinámico para este tipo de receptores requieren el uso de topologías de ganancia configurable que pueden proporcionar tanto alta linealidad como bajo ruido para diferentes configuraciones. Por lo tanto, esta tesis está encarada a la investigación de topologías sin inductores de banda ancha y elevado rango dinámico para ser usadas a la entrada de un receptor G.hn cumpliendo con las especificaciones proporcionadas. Una gran parte de la tesis se ha centrado en el diseño del amplificador de entrada al ser la etapa más crítica, ya que la figura de ruido y linealidad del amplificador de entrada definen lás máximas especificaciones que el sistema puede conseguir. Se han fabricado 3 prototipos con un proceso CMOS de 65 nm: 2 amplificadores y un sistema completo con amplificador y mezclador.
Books on the topic "Inductor design"
Rincón-Mora, Gabriel Alfonso. Switched Inductor Power IC Design. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-95899-2.
Full textMcLyman, Colonel William T. Transformer and inductor design handbook. 3rd ed. New York: Marcel Dekker, 2004.
Find full textSadeghian, Ali Reza. A knowledge-based expert system for inductor design. Ottawa: National Library of Canada, 1993.
Find full textMcLyman, Colonel William T. Transformer and inductor design software for the Macintosh. New York: M. Dekker, 1985.
Find full textCasey, Ronan. A nonlinear inductor model for SPICE3e2. Dublin: University College Dublin, 1995.
Find full textSmirnov, Aleksandr. Electric drive with contactless synchronous motors. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1192105.
Full textNerg, Janne. Numerical modelling and design of static induction heating coils. Lappeenranta, Finland: Lappeenranta University of Technology, 2000.
Find full textMarino, Riccardo, Patrizio Tomei, and Cristiano M. Verrelli. Induction Motor Control Design. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-284-1.
Full textBook chapters on the topic "Inductor design"
Erickson, Robert W., and Dragan Maksimović. "Inductor Design." In Fundamentals of Power Electronics, 539–64. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/0-306-48048-4_14.
Full textErickson, Robert W., and Dragan Maksimović. "Inductor Design." In Fundamentals of Power Electronics, 459–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43881-4_11.
Full textErickson, Robert W. "Filter Inductor Design." In Fundamentals of Power Electronics, 497–511. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-7646-4_13.
Full textFluke, John C. "Inductor Modeling." In Controlling Conducted Emissions by Design, 65–81. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-7024-6_4.
Full textCraninckx, J., and M. Steyaert. "Planar-Inductor VCOs." In Wireless CMOS Frequency Synthesizer Design, 121–59. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-2870-5_5.
Full textHaobijam, Genemala, and Roy Paily Palathinkal. "Multilayer Pyramidal Symmetric Inductor." In Design and Analysis of Spiral Inductors, 53–85. New Delhi: Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1515-8_3.
Full textRincón-Mora, Gabriel Alfonso. "Field-Effect Transistors." In Switched Inductor Power IC Design, 45–102. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95899-2_2.
Full textRincón-Mora, Gabriel Alfonso. "Power Losses." In Switched Inductor Power IC Design, 167–240. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95899-2_4.
Full textRincón-Mora, Gabriel Alfonso. "Diodes and BJTs." In Switched Inductor Power IC Design, 1–44. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95899-2_1.
Full textRincón-Mora, Gabriel Alfonso. "Control Loops." In Switched Inductor Power IC Design, 373–429. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95899-2_7.
Full textConference papers on the topic "Inductor design"
Chang, Chao-Liang, Uei-Ming Jow, Chao-Ta Huang, Hsiang-Chi Liu, Jr-Yuan Jeng, Yung-Yu Hsu, Chih-Min Yao, Ming-Hsiao Lee, Kung-Yu Tzeng, and Yu-Ching Shih. "Optimum Design of Inductors Used for Wireless Power Transmission Micro-Module." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59934.
Full textJin, Lin, Albert Chee W. Lu, Lai L. Wai, Wei Fan, Aik Chong Tan, and Kai Chong Chan. "Design Optimization of Off-Chip Inductors." In ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35223.
Full textMuñoz, Hiram Martinez. "Analysis of Errors in Simulation Modeling." In HT2021. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.ht2021exabp0053.
Full textCheng, K. W. E. "High frequency inductor design for an aerospace application." In IEE Colloquium on Capacitors and Inductors for Power Electronics. IEE, 1996. http://dx.doi.org/10.1049/ic:19960345.
Full textShane, G. M., and S. D. Sudhoff. "Permanent magnet inductor design." In 2011 IEEE Electric Ship Technologies Symposium (ESTS). IEEE, 2011. http://dx.doi.org/10.1109/ests.2011.5770892.
Full textMrozek, Krzysztof, Roman Staniek, and Marek Szostak. "Research on External and Internal Induction Heating Effectiveness of Injection Molds by Means of Thermovision Measurements." In ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20317.
Full textQiu, Jizheng, and Charles R. Sullivan. "Inductor design for VHF tapped-inductor dc-dc power converters." In 2011 IEEE Applied Power Electronics Conference and Exposition - APEC 2011. IEEE, 2011. http://dx.doi.org/10.1109/apec.2011.5744588.
Full textAmirpour, Mostafa, Saeed Akbari, Ebrahim Abbaspour Sani, and Mohammad N. Azarmanesh. "Varactor based tunable inductor design." In 2015 23rd Iranian Conference on Electrical Engineering (ICEE). IEEE, 2015. http://dx.doi.org/10.1109/iraniancee.2015.7146443.
Full textMatsuki, H., H. Miyazawa, K. Nadehara, M. Yamaguchi, K. Murakami, and T. Yamamoto. "Design of miniaturized cloth inductor." In International Magnetics Conference. IEEE, 1989. http://dx.doi.org/10.1109/intmag.1989.690273.
Full textCuk, Slobodan, and Zhe Zhang. "Coupled-inductor analysis and design." In 1986 17th Annual IEEE Power Electronics Specialists Conference. IEEE, 1986. http://dx.doi.org/10.1109/pesc.1986.7415621.
Full textReports on the topic "Inductor design"
Witt, D. C. Americium-Curium Stabilization - 5'' Cylindrical Induction Melter System Design Basis. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/14750.
Full textEkdahl, Carl August. Scaling of induction-cell transverse impedance: effect on accelerator design. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1296655.
Full textKirkendall, B. A., J. P. Lewis, S. L. Hunter, and P. E. Harben. Progress in crosswell induction imaging for EOR: field system design and field testing. Office of Scientific and Technical Information (OSTI), March 1999. http://dx.doi.org/10.2172/14661.
Full textFink, Bruce K., Shridhar Yarlagadda, John W. Gillespie, and Jr. Design of a Resistive Susceptor for Uniform Heating During Induction Bonding of Composites. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada373381.
Full textWilson, Thomas E., Avraham A. Levy, and Tzvi Tzfira. Controlling Early Stages of DNA Repair for Gene-targeting Enhancement in Plants. United States Department of Agriculture, March 2012. http://dx.doi.org/10.32747/2012.7697124.bard.
Full textLipo, T. A., D. Panda, and D. Zarko. Design and Test of DC Voltage Link Conversion System and Brushless Doubly-Fed Induction Generator for Variable-Speed Wind Energy Applications: August 1999--May 2003. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/861213.
Full textOr, Etti, David Galbraith, and Anne Fennell. Exploring mechanisms involved in grape bud dormancy: Large-scale analysis of expression reprogramming following controlled dormancy induction and dormancy release. United States Department of Agriculture, December 2002. http://dx.doi.org/10.32747/2002.7587232.bard.
Full textHIFS-VNL, Peter Seidl, P. Seidl, J. Barnard, F. Bieniosek, J. Coleman, D. Grote, et al. Use beam steering dipoles to minimize aberrations associated with off-centered transit through the induction bunching module. Design an improved NDCX-I drift compression section to make best use of the new bunching module to optimize planned initial NDCX-I target experiments. Office of Scientific and Technical Information (OSTI), March 2008. http://dx.doi.org/10.2172/936604.
Full textLers, Amnon, and Pamela J. Green. LX Senescence-Induced Ribonuclease in Tomato: Function and Regulation. United States Department of Agriculture, September 2003. http://dx.doi.org/10.32747/2003.7586455.bard.
Full textFlaishman, Moshe, Herb Aldwinckle, Shulamit Manulis, and Mickael Malnoy. Efficient screening of antibacterial genes by juvenile phase free technology for developing resistance to fire blight in pear and apple trees. United States Department of Agriculture, December 2008. http://dx.doi.org/10.32747/2008.7613881.bard.
Full text