Academic literature on the topic 'Industrial Chemistry/Chemical Engineering'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Industrial Chemistry/Chemical Engineering.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Industrial Chemistry/Chemical Engineering"
Santacesaria, Elio, Riccardo Tesser, and Vincenzo Russo. "Special Issue on “Industrial Chemistry Reactions: Kinetics, Mass Transfer and Industrial Reactor Design”." Processes 10, no. 2 (February 20, 2022): 411. http://dx.doi.org/10.3390/pr10020411.
Full textPaul, Donald R. "Industrial & Engineering Chemistry Research: Looking Back." Industrial & Engineering Chemistry Research 52, no. 51 (December 26, 2013): 18121–22. http://dx.doi.org/10.1021/ie403658e.
Full textReijenga, Jetse. "Chemical engineering and chemistry: education in a changing world." Chemical Industry 60, no. 1-2 (2006): 45–51. http://dx.doi.org/10.2298/hemind0602045r.
Full textWei, James. "Chemical Engineering Education in Post-Industrial America." Industrial & Engineering Chemistry Research 47, no. 1 (January 2008): 1–6. http://dx.doi.org/10.1021/ie0713238.
Full textNour, Abdurahman Hamid, and Siti Kholijah Abdulmudalip. "Chemical Engineering and Industrial Biotechnology (ICCEIB 2018)." Chemical Engineering & Technology 42, no. 9 (August 20, 2019): 1732. http://dx.doi.org/10.1002/ceat.201970095.
Full textSavage, Phillip E. "New Sections in Industrial & Engineering Chemistry Research." Industrial & Engineering Chemistry Research 53, no. 14 (April 9, 2014): 5623. http://dx.doi.org/10.1021/ie5011405.
Full textWare, Sylvia A. "Teaching chemistry from a societal perspective." Pure and Applied Chemistry 73, no. 7 (July 1, 2001): 1209–14. http://dx.doi.org/10.1351/pac200173071209.
Full textHong, Seung-Mo, Oh Young Kim, and Seok-Ho Hwang. "Chemistry of Polythiols and Their Industrial Applications." Materials 17, no. 6 (March 14, 2024): 1343. http://dx.doi.org/10.3390/ma17061343.
Full textSapre, Ajit V., and James R. Katzer. "Core of Chemical Reaction Engineering: One Industrial View." Industrial & Engineering Chemistry Research 34, no. 7 (July 1995): 2202–25. http://dx.doi.org/10.1021/ie00046a002.
Full textStenzel, Martina H., and Christopher Barner-Kowollik. "Polymer Science in Undergraduate Chemical Engineering and Industrial Chemistry Curricula: A Modular Approach." Journal of Chemical Education 83, no. 10 (October 2006): 1521. http://dx.doi.org/10.1021/ed083p1521.
Full textDissertations / Theses on the topic "Industrial Chemistry/Chemical Engineering"
Vreugdenhil, Andrew J. "Applications of vibrational spectroscopy to inorganic environmental and industrial systems." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=34477.
Full textTsioumanis, Nick. "A study on the flow characteristics of an industrial radiant tube burner." Thesis, Aston University, 2008. http://publications.aston.ac.uk/9806/.
Full textAli, Abdualbaset Ahmed. "Altering Wax Appearance Temperature Using Shear and Pressure." University of Toledo / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1575992511410478.
Full textKoch, Emma Wendy. "An investigation of the chemistry involved in the mixing of an industrial effluent with fine ash." Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52681.
Full textENGLISH ABSTRACT: Can salts present in an aqueous industrial effluent be retained by the [me ash that is produced as a by-product of gasification or by power stations utilising coal as the raw material? In order to answer this question, the actual chemistry that occurs during the mixing and settling process, needs to be understood. At the Sasol Secunda petrochemical plants in South Africa, ash is produced as a byproduct from the gasification of coal, and by the coal-fired power stations (steam plants). The [me portion of the ash (± 50J.lm in diameter) is disposed of through the use of a closed loop wet ash disposal system. The ash is transported as a slurry to the disposal sites (ash darns). The industrial effluent used to transport the ash consists mainly of the recycled ash effluent, known as clear ash effluent (CAE), as well as a variety of process waste streams containing high concentrations of salts. This mixture of ash and water is pumped to ash dams, where the ash is allowed to settle and is therefore separated from the effluent. From the ash darns the effluent flows into evaporation dams, and finally into CAE dams before being returned to the ash plant in Sasol 2 and 3 to be mixed once again with the ash. During this contact time of the ash with the water certain chemical reactions may occur. If one understands what chemical reactions occur during this process, and under what conditions they occur, then it will be possible to utilise the ash disposal system to its full potential, possibly enhancing the salt retention ability. An investigation was thus conducted into what processes actually occurs during the entire ash water contact period. The overall aim of the project was to obtain an understanding of the functioning of the [me ash disposal system so that its efficiency can be improved upon, and furthermore, so that the ash darns can be utilised more effectively in retaining salts. This investigation focussed on the chemical reactions that occur when an industrial effluent is mixed with fine ash, and consisted of four main aspects: • A literature survey on related issues. • An analysis and evaluation of the changes that occur in the actual disposal system. • Laboratory column experiments to investigate, in more detail, the different chemical reactions, which occur during the different stages of the disposal process. • The drilling of boreholes into the ash dams to obtain core material at a variety of depths and locations for analysis purposes. From this investigation it was concluded that salts are retained in the ash dams; based on the results obtained from the laboratory column experiments and the production rate of the fine ash from Sasol 2 and Sasol 3, the potential amount of salts that can be removed from the system (either due to precipitation or water retention in the ash dams) is approximately 95 tons/day. The salts that were found to be most pertinent to the wet ash disposal system utilised at Sasol, Secunda, are Ca, S04, Na, and Cl. Of these, Ca, S04 and Na were identified in literature to be the components most commonly associated with fly ash leachate. The Ca chemistry, which occurs in the ash disposal system, was explored extensively. Is was found that Ca, which is initially present in the fresh fine ash as lime, is leached from the ash into the effluent, where it reacts with carbon dioxide in the atmosphere, and is therefore removed from the system due to the precipitation of calcite. Sodium, S04, and Cl were all found to be retained in the ash; the S04 appears to be retained in a stable form within the ash, not merely due to hydraulic retention, which suggests that the ash system has the potential to act as a salt sink for S04 ions. The mechanism of salt retention in the ash darns was found to be predominantly by means of hydraulic retention, and therefore the salts have the potential to be flushed out of the ash dams into the underlying soil material. However, results from the core drilling exercise revealed that there doesn't appear to be a significant seepage of elements from the ash fill material into the underlying vertisol material. Some components (AI, Fe, Na, K, Mg, Cr, P, Ti and V) from the older, and inactive ash dam, do appear to have percolated into the underlying material. However, a significant amount of water, and therefore salts, are still retained in the ash dam. In terms of the mineralogical composition of the ash dams, a significant difference was observed between the mineral phases present in the ash fill material of an active and an inactive ash dam. Ettringite was detected throughout the borehole drilled into the inactive ash darn, and was not evident at all in the core material from the two boreholes drilled into the active dam, which suggests that this mineral is formed in the ash darns over a long time period. The minerals quartz and mullite were found in the fresh [me ash as well as in most of the core material obtained from the drilling exercise. The mineralogical composition of the ash fill samples, from the boreholes drilled into the centre of the active and inactive ash darns, was found to be very consistent with depth. This finding, combined with the fact that the chemical composition of the core samples varied more significantly in the borehole located near the edge of the active fine ash darn, indicated that the lateral position of the ash in the ash dam influences the chemical reactions that occur. Overall, from this investigation it was concluded that although the chemistry, involved in the mixing of an industrial effluent with fine ash, is extremely complex and site-specific, it is possible to determine the most significant changes which occur within a wet ash disposal system. Besides providing one with a better understanding of the working of the Secunda ash disposal system, the results of this investigation have also provided the framework for future research on this topic and related issues, i.e. the construction of a pilot scale ash darn set-up; further column experiments to investigate the extent to which S04 ions can be removed from the system; the influence of the addition of CO2 to the system; and more extensive core drilling in the vicinity of the ash darns.
AFRIKAANSE OPSOMMING: Kan soute teenwoordig in 'n industriële uitvloeisel teruggehou word in fynas geproduseer as neweproduk van steenkoolkragsentrales? Om 'n antwoord op hierdie vraag te kry, moet die chemiese reaksies wat gebeur tydens die meng en wegdoening van die as en aswater verstaan word. By die Sasol petrochemiese aanlegte in Secunda, Suid Afrika, word fynas geproduseer as 'n neweproduk in die vergassing en die stoomopwekkingprosesse. Die fynas (50)lm diameter) word weggedoen deur 'n geslote nat asstelsel. Die industriële uitvloeisel wat gebruik word vir die vervoer van die as bestaan hoofsaaklik uit hergebruikte aswater (genoem CAE - clear ash effluent), asook 'n verskeidenheid ander prosesafvalstrome wat hoë konsentrasies soute bevat. Die mengsel van as en aswater word in 'n asflodder gepomp na die asdamme, waar die as besink en sodoende geskei word van die waterfase (aswater). Vanaf die asdamme vloei die aswater na verdampingsdamme, en daarna na die CAE damme, vanwaar die CAE weer na die Sasol aanleg teruggepomp word om weer met as gemeng te word. Gedurende die kontak tussen die CAE en as gebeur sekere chemiese reaksies. Indien hierdie reaksies verstaan word, en onder watter toestande dit plaasvind, kan die asdamstelsel tot volle kapasiteit benut word deur moontlik die soutretensie binne die asdam te verhoog. 'n Ondersoek is gedoen om te bepaal watter prosesse plaasvind gedurende kontak tussen die as en water. Die doel van die ondersoek was om 'n beter begrip te kry oor die funksionering van die fynas-wegdoeningstelsel en om te bepaal of die asdamme meer effektiefbedryfkan word om moontlik meer soute te akkommodeer. Die ondersoek het uit vier hoofaspekte bestaan: • Literatuuroorsig, • 'n Analise en evaluering van die veranderinge wat plaasvind oor die asdamstelsel, • Laboratoriumskaal kolomeksperimente om in meer besonderhede die chemiese reaksies wat 'n rol in die aswaterstelsel speel, te bepaal, en • Die boor van toetsgate op die bestaande asdamme om boorkerne te ontleed by bepaalde dieptes en liggings. Uit die ondersoek is bevind dat soute wel in die asdamme behou word. As die kolomtoetse as basis gebruik word, en die produksietempo van fynas vanaf Sasol 2 en 3, dan kan daar 'n potensiële 95 ton soute per dag deur die asstelsel verwyder word (deur hoofsaaklik waterretensie en presipitasie van soute). Die mees prominente soute wat in die Sasol asstelsel voorkom is Ca, S04, Na, en Cl. Vanhierdie soute, is Ca, S04, en Na deur die literatuur geïdentifiseer as komponente wat met vliegas loog geassosieer word. Die Ca chemie, wat in die asstelsel plaasvind, is in besonderhede ontleed. Dit is bevind dat Ca, teenwoordig in die vars fynas as kalk, vanuit die as in die aswater geloog word, waar dit dan met atmosferiese CO2 reageer en dan vanuit die stelselverwyder word deur die presipitasie van kalsiet. Natrium, S04 en Cl word in die as teruggehou. Dit wil voorkom asof die S04 in 'n stabiele vorm in die as teruugehou word, nie net deur die hidrouliese retensie nie en dat die asstelsel dalk as 'n potensiële sink vir S04 kan optree. Die meganisme van soutretensie in die asdamme is hoofsaaklik deur hidrouliese retensie, met die gevolg dat die soute potensieel in die onderliggende grond uitgewas kan word. Die resultate van die boorkernondersoek wys egter dat daar nie beduidende uitwassing van hierdie soute in die grond is nie. Dit wil voorkom of sekere komponente (Al, Fe, Na, K, Mg, Cr, P, Ti en V) van die ou en onaktiewe asdam in die grond geloog is. 'n Beduidende verskil was gevind tussen die minerale fases in die asmateriaal van die aktiewe en onaktiewe asdamme. Ettringiet was teenwoordig deur die hele diepte van die boorkern van die onaktiewe dam, maar was nie teenwoordig in beide boorkerns van die gate op die aktiewe asdam nie. Dit impliseer dat hierdie mineraaloor 'n langer tyd gevorm word. Kwarts en mulliet was deurentyd in al die boorkerne teenwoordig. Die mineralogie van die boorkern van die middel van die aktiewe asdam was baie konstant met diepte (in teenstelling met dié van die boorkern op die kant van die asdam) wat daarop dui dat die laterale posisie van die as in die asdam die chemiese reaksies wat mag plaasvind kan beïnvloed. Die ondersoek bevestig dat alhoewel die chemiese reaksies betrokke in die aswaterstelsel baie kompleks en liggingspesifiek is, die mees beduidende veranderinge wat in die asstelsel plaasvind, wel bepaal kan word. Die ondersoek het benewens 'n beter begrip van hoe die asdamme reageer, ook 'n raamwerk gegee vir verdere navorsing in hierdie veld, bv. die bou van 'n loodsskaal-asdam, verdere kolomtoetse om die vermoë van die asstelsel om S04 ione te verwyder te bepaal en die invloed van gemanipuleerde kalsiet presipitasie deur die byvoeging van CO2.
Yang, Xiangxin. "Sol-gel synthesized nanomaterials for environmental applications." Diss., Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/884.
Full textKirsanova, Maria. "ZnSe/CdS Core/Shell Nanostructures and Their Catalytic Properties." Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1342565590.
Full textDao, Duy Quang. "TECHNOLOGIES DE RECOMBUSTION AVANCEE DES OXYDES D'AZOTE : ETUDES EXPERIMENTALE ET CINETIQUE SUR PILOTE SEMI-INDUSTRIEL." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2010. http://tel.archives-ouvertes.fr/tel-00650087.
Full textNemer, Randa J. "Anaerobic-aerobic treatment of chemical industrial effluents." Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=26410.
Full textZibi, Lindizwe Mthanjiswa. "Industrial brine characterisation and modelling." Master's thesis, University of Cape Town, 2010. http://hdl.handle.net/11427/11279.
Full textIncludes bibliographical references.
Industrial wastewater contains many soluble inorganic and organic components and solid particles. This study focused on inorganic industrial hypersaline brines. Chemical engineering presents a variety of mechanical, thermal, biological and chemical processes capable of treating hypersaline brines to the standard required by legislation. However, some of these technologies are inefficient, costly and outdated and are not applicable in solving modern brine accumulation problems.
Ras, Cornelia. "An industrial ecology approach to salt-related environmental sustainability issues in a large industrial complex." Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/10737.
Full textIncludes bibliographical references (p.93-106).
This thesis aims to demonstrate the application of industrial ecology (IE) theory to understand environmental sustainability problems relating to the accumulation of saline wastes and to study the potential for integrated technology interventions which take multi-party engagements and effects into account.
Books on the topic "Industrial Chemistry/Chemical Engineering"
American Chemical Society. Industrial & engineering chemistry research. Washington, D.C: American Chemical Society, 1987.
Find full textA, Heaton C., ed. An introduction to industrial chemistry. 3rd ed. London: Blackie Academic & Professional, 1996.
Find full textA, Heaton C., ed. An Introduction to industrial chemistry. 2nd ed. Glasgow: Blackie Academic, 1991.
Find full text1933-, Bohnet Matthias, ed. Ullmann's encyclopedia of industrial chemistry. 6th ed. Weinheim: Wiley-VCH, 2003.
Find full textTed, Lister, and Royal Society of Chemistry (Great Britain). Education Division., eds. Industrial chemistry case studies: Industrial processes in the 1990s. London: Royal Society of Chemistry, 1998.
Find full textInc, Synapse Information Resources, ed. Industrial chemical thesaurus. 5th ed. Endicott, N.Y: Synapse Information Resources, 2009.
Find full textBarbara, Elvers, Hawkins Stephen, Schulz Gail, and Ullmann Fritz 1875-1939, eds. Ullmann's encyclopedia of industrial chemistry. 5th ed. Weinheim: VCH, 1992.
Find full textWolfgang, Gerhartz, Yamamoto Y. Stephen, Campbell F. Thomas, Pfefferkorn Rudolf, Rounsaville James F, and Ullmann Fritz 1875-1939, eds. Ullmann's encyclopedia of industrial chemistry. 5th ed. Weinheim, Federal Republic of Germany: VCH, 1985.
Find full textHaghi, A. K. Chemistry and chemical engineering research progress. New York: Nova Science Publishers, 2010.
Find full textBook chapters on the topic "Industrial Chemistry/Chemical Engineering"
Szczepanski, Richard. "Chemical Engineering." In An Introduction to Industrial Chemistry, 160–231. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-0613-9_8.
Full textSzczepanski, R. "Chemical Engineering." In an introduction to Industrial Chemistry, 161–232. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-6438-6_7.
Full textEconomou, Ioannis, Panagiotis Krokidas, Vasileios Michalis, Othonas Moultos, Ioannis Tsimpanogiannis, and Niki Vergadou. "13 The Role of Molecular Thermodynamics in Developing Industrial Processes and Novel Products That Meet the Needs for a Sustainable Future." In Green Chemistry and Chemical Engineering, 633–60. 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487–2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153209-14.
Full textZoeller, Joseph R. "Evolving Production of the Acetyls (Acetic Acid, Acetaldehyde, Acetic Anhydride, and Vinyl Acetate): A Mirror for the Evolution of the Chemical Industry." In Innovations in Industrial and Engineering Chemistry, 365–87. Washington, DC: American Chemical Society, 2008. http://dx.doi.org/10.1021/bk-2009-1000.ch010.
Full textChenier, Philip J. "The Chemical Industry and Pollution." In Survey of Industrial Chemistry, 475–94. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0603-4_25.
Full textGordon, D. Lynn, Jordan L. Arthur, Verlene Lovell, and Lee F. McKenzie. "Chemical Explosives." In Handbook of Industrial Chemistry and Biotechnology, 1033–62. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52287-6_17.
Full textCranney, Don H., and Walter B. Sudweeks. "Chemical Explosives." In Handbook of Industrial Chemistry and Biotechnology, 1473–95. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-4259-2_37.
Full textChenier, Philip J. "Introduction to the Chemical Industry: An Overview." In Survey of Industrial Chemistry, 1–22. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0603-4_1.
Full textSörensen, Kenneth, and Christine Vanovermeire. "Sustainable Chemical Logistics." In Management Principles of Sustainable Industrial Chemistry, 161–80. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527649488.ch11.
Full textSörensen, Kenneth, Gerrit K. Janssens, Mohamed Lasgaa, and Frank Witlox. "Sustainable Chemical Warehousing." In Management Principles of Sustainable Industrial Chemistry, 199–214. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527649488.ch13.
Full textConference papers on the topic "Industrial Chemistry/Chemical Engineering"
Adamson, Richard, and Mark J. Willis. "Optimization of Industrial Gas Networks with Production Scheduling." In Annual International Conference on Chemistry, Chemical Engineering and Chemical Process ( CCECP 2016 ). Global Science & Technology Forum ( GSTF ), 2016. http://dx.doi.org/10.5176/2301-3761_ccecp16.10.
Full textK Deokar, Sunil, and Sachin A Mandavgane. "Comparative analysis of isotherm models for 2,4-D removal by rice husk ash: an industrial waste." In Annual International Conference on Chemistry, Chemical Engineering and Chemical Process. Global Science & Technology Forum (GSTF), 2015. http://dx.doi.org/10.5176/2301-3761_ccecp15.32.
Full textAzhdari, Maryam, and Nasir Mehranbod. "Application of Bayesian belief networks to fault detection and diagnosis of industrial processes." In 2010 International Conference on Chemistry and Chemical Engineering (ICCCE). IEEE, 2010. http://dx.doi.org/10.1109/iccceng.2010.5560369.
Full textErrede, D. "359. Implementing Prudent Practices in Chemistry and Chemical Engineering Laboratories." In AIHce 1996 - Health Care Industries Papers. AIHA, 1999. http://dx.doi.org/10.3320/1.2765037.
Full textParthasiwi, Laurentius Damar, Dhimas Agung Kurniawan, Natali Gupita Abhirama, Hanifrahmawan Sudibyo, and Yano Surya Pradana. "Evaluation of potential raw material for industrial scale bioethanol production in Indonesia." In 2ND INTERNATIONAL CONFERENCE ON CHEMISTRY, CHEMICAL PROCESS AND ENGINEERING (IC3PE). Author(s), 2018. http://dx.doi.org/10.1063/1.5064999.
Full textTioni, Estevan, and Pascal Rousseaux. "BRINGING TOGETHER MICROWAVE ASSISTED SYNTHESIS AND CHEMICAL ENGINEERING PRINCIPLES." In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9901.
Full textKubacki, Arkadiusz, and Arkadiusz Jakubowski. "Controlling the industrial robot model with the hybrid BCI based on EOG and eye tracking." In 2ND INTERNATIONAL CONFERENCE ON CHEMISTRY, CHEMICAL PROCESS AND ENGINEERING (IC3PE). Author(s), 2018. http://dx.doi.org/10.1063/1.5066494.
Full textDenison, M., S. Borodai, R. Fox, and M. Bockelie. "Multi-Environment Probability Density Function Method for Modeling Turbulent Combustion in Industrial Equipment." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12061.
Full textKlimovich, Sergei, Yuriy Gorbachev, and Valeria Krzhizhanovskaya. "Simulation of Surface Chemistry in CVD Technologies: A Detailed Deposition Model With Surface Diffusion." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28455.
Full textLedoh, Sherlly M. F., Lery Yunus, and Theo da Cunha. "Electrodegradation of screen printing industries’ wastewater containing pigment yellow 83 using carbon electrode." In 3RD INTERNATIONAL CONFERENCE ON CHEMISTRY, CHEMICAL PROCESS AND ENGINEERING (IC3PE). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0064241.
Full textReports on the topic "Industrial Chemistry/Chemical Engineering"
Iushkina, Nadezhda. Diamonds in the New Century: innovations and prospects. Intellectual Archive, September 2023. http://dx.doi.org/10.32370/iaj.2941.
Full text