Journal articles on the topic 'Industrial electrolysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Industrial electrolysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Therkildsen, Kasper T. "(Invited) Affordable Green Hydrogen from Alkaline Water Electrolysis: An Industrial Perspective." ECS Meeting Abstracts MA2024-01, no. 34 (2024): 1692. http://dx.doi.org/10.1149/ma2024-01341692mtgabs.
Full textMolina, Victor M., Domingo González-Arjona, Emilio Roldán, and Manuel Dominguez. "Electrochemical Reduction of Tetrachloromethane. Electrolytic Conversion to Chloroform." Collection of Czechoslovak Chemical Communications 67, no. 3 (2002): 279–92. http://dx.doi.org/10.1135/cccc20020279.
Full textBoyd, Tony, Clive Brereton, Jeremy Moulson, Warren Wolfs, and Luke GLynn. "Application of Industrial-Scale Lithium Sulphate Electrolysis in Battery Recycling." ECS Meeting Abstracts MA2023-02, no. 24 (2023): 1333. http://dx.doi.org/10.1149/ma2023-02241333mtgabs.
Full textGonzález-Cobos, Jesús, Bárbara Rodríguez-García, Mabel Torréns, et al. "An Autonomous Device for Solar Hydrogen Production from Sea Water." Water 14, no. 3 (2022): 453. http://dx.doi.org/10.3390/w14030453.
Full textPrits, Alise-Valentine, Martin Maide, Ronald Väli, et al. "Bridging the Gap between Laboratory and Industrial Scale Electrochemical Characterisation of Raney Ni Electrodes for Alkaline Water Electrolysis." ECS Meeting Abstracts MA2024-01, no. 34 (2024): 1816. http://dx.doi.org/10.1149/ma2024-01341816mtgabs.
Full textArakcheev, Evgeny N., V. E. Brunman, M. V. Brunman, A. V. Konyashin, V. A. Dyachenko, and A. P. Petkova. "Complex technology for water and wastewater disinfection and its industrial realization in prototype unit." Hygiene and sanitation 96, no. 2 (2019): 137–43. http://dx.doi.org/10.18821/0016-9900-2017-96-2-137-143.
Full textUlleberg, Øystein, Isabel Llamas, and Amalie Møller. "(Invited) Modeling of Industrial Scale PEM Water Electrolysis Systems." ECS Meeting Abstracts MA2025-01, no. 38 (2025): 1989. https://doi.org/10.1149/ma2025-01381989mtgabs.
Full textShoikhedbrod, Michael. "Electroflotation Treatment of Industrial Wastewater in a Specially Designed Electroflotator Powered by a Solar Panel." Journal of Applied Sciences and Advancement 1, no. 1 (2024): 1–11. http://dx.doi.org/10.48001/joasa.2024.111-11.
Full textShoikhedbrod, Michael. "Electroflotation Treatment of Industrial Wastewater in a Specially Designed Electroflotator Powered by a Solar Panel." Journal of Management and Applied Sciences 1, no. 1 (2024): 1–11. http://dx.doi.org/10.48001/jomas.2024.111-11.
Full textFerreira, Ana P. R. A., Raisa C. P. Oliveira, Maria Margarida Mateus, and Diogo M. F. Santos. "A Review of the Use of Electrolytic Cells for Energy and Environmental Applications." Energies 16, no. 4 (2023): 1593. http://dx.doi.org/10.3390/en16041593.
Full textNAZAROV, V. D., M. V. NAZAROV, and M. R. KhABIBULLINA. "ELECTROFLOTATION IN INDUSTRIAL WASTEWATER PURIFICATION." Urban construction and architecture 1, no. 2 (2011): 72–79. http://dx.doi.org/10.17673/vestnik.2011.02.17.
Full textŞahin, Mustafa Ergin. "An Overview of Different Water Electrolyzer Types for Hydrogen Production." Energies 17, no. 19 (2024): 4944. http://dx.doi.org/10.3390/en17194944.
Full textRégis, Gisela, and Ederio Dino Bidoia. "Electrolytic treatment applied to the industrial effluent containing persistent wastes monitored by Bartha respirometric assays." Brazilian Archives of Biology and Technology 48, no. 2 (2005): 319–25. http://dx.doi.org/10.1590/s1516-89132005000200020.
Full textGrotheer, Morris, Richard C. Alkire, Richard Varjian, Venkat Srinivasan, and John W. Weidner. "Industrial Electrolysis and Electrochemical Engineering." Electrochemical Society Interface 15, no. 1 (2006): 52–54. http://dx.doi.org/10.1149/2.f15061if.
Full textHriţcu, Daniel, Margareta Lupu-Poliac, Mihai Hatmanu, Elena Raluca Baciu, Constantin Baciu, and Ali Izet. "Considerations on the Specific Phenomena in Metal Heating when Using Electrolytic Plasma." Key Engineering Materials 660 (August 2015): 150–54. http://dx.doi.org/10.4028/www.scientific.net/kem.660.150.
Full textFenton, James M. "Is One of the E’s in IEEE for Environmental?" Electrochemical Society Interface 7, no. 1 (1998): 30–32. http://dx.doi.org/10.1149/2.f07981if.
Full textKlinger, Andre, Oscar Strobl, Nemanja Martic, et al. "(Invited) Membrane Based Water Electrolysis - Material Properties and Their Implications in Industrial Applications." ECS Meeting Abstracts MA2025-01, no. 38 (2025): 1930. https://doi.org/10.1149/ma2025-01381930mtgabs.
Full textShen, Jian, Guotao Yang, Tianshui Li, et al. "Facile Immersing Synthesis of Pt Single Atoms Supported on Sulfide for Bifunctional toward Seawater Electrolysis." Catalysts 14, no. 8 (2024): 477. http://dx.doi.org/10.3390/catal14080477.
Full textKuz’min, R. N., N. P. Savenkova, and A. Yu Mokin. "Mathematical modeling of industrial aluminum electrolysis." Journal of Mathematical Sciences 172, no. 6 (2011): 794–801. http://dx.doi.org/10.1007/s10958-011-0223-z.
Full textHuang, Ruiyang. "Research Progress of Catalysts for Hydrogen Production by Electrolysis of Water." MATEC Web of Conferences 410 (2025): 01012. https://doi.org/10.1051/matecconf/202541001012.
Full textSood, Sumit, Om Prakash, Mahdi Boukerdja, et al. "Generic Dynamical Model of PEM Electrolyser under Intermittent Sources." Energies 13, no. 24 (2020): 6556. http://dx.doi.org/10.3390/en13246556.
Full textVitale-Sullivan, Molly E., Quinn Quinn Carvalho, and Kelsey A. Stoerzinger. "Facet-Dependent Selectivity of Rutile IrO2 for Oxygen and Chlorine Evolution Reactions." ECS Meeting Abstracts MA2023-01, no. 50 (2023): 2577. http://dx.doi.org/10.1149/ma2023-01502577mtgabs.
Full textRudenko, A. V., A. A. Kataev, O. Yu Tkacheva, Yu P. Zaykov, A. A. Pyanykh, and G. V. Arkhipov. "Viscosity of conventional cryolite-alumina melts." Izvestiya Vuzov. Tsvetnaya Metallurgiya (Universities' Proceedings Non-Ferrous Metallurgy) 27, no. 6 (2021): 4–11. http://dx.doi.org/10.17073/0021-3438-2021-6-4-11.
Full textNishi, Ayana, Tatsuya Sasaki, Toshihide Takenaka, Toshiharu Matsumoto, and Katsushi Nagayasu. "Effects of Temperature and Different Electrolysis Processes on Mg Metal Deposition in Molten Salt Electrolysis." ECS Meeting Abstracts MA2024-02, no. 67 (2024): 4633. https://doi.org/10.1149/ma2024-02674633mtgabs.
Full textYin, Zhenglei, Hanqing Peng, Xing Wei, et al. "An alkaline polymer electrolyte CO2 electrolyzer operated with pure water." Energy & Environmental Science 12, no. 8 (2019): 2455–62. http://dx.doi.org/10.1039/c9ee01204d.
Full textOstadi, Mohammad, Kristofer Gunnar Paso, Sandra Rodriguez-Fabia, Lars Erik Øi, Flavio Manenti, and Magne Hillestad. "Process Integration of Green Hydrogen: Decarbonization of Chemical Industries." Energies 13, no. 18 (2020): 4859. http://dx.doi.org/10.3390/en13184859.
Full textKim, DaeGun, WooYeol Kim, ChanYoung Yun, et al. "Agro-industrial Wastewater Treatment by Electrolysis Technology." International Journal of Electrochemical Science 8, no. 7 (2013): 9835–50. http://dx.doi.org/10.1016/s1452-3981(23)13016-1.
Full textMaide, Martin, Alise-Valentine Prits, Sreekanth Mandati, and Rainer Küngas. "Multi-Functional Alkaline Electrolysis Setup for Industrially Relevant Testing of Cell Components." ECS Meeting Abstracts MA2023-02, no. 49 (2023): 3274. http://dx.doi.org/10.1149/ma2023-02493274mtgabs.
Full textLiang, Jingjing, Minfang Han, and Meng Ni. "A Comparative Study of the Performance and Electrode Processes of Solid Oxide H2O Electrolysis and CO2 Electrolysis." ECS Meeting Abstracts MA2023-01, no. 54 (2023): 200. http://dx.doi.org/10.1149/ma2023-0154200mtgabs.
Full textPaidimarri, N., U. Virendra, and S. Vedantam. "Simultaneous Recovery of Hydrogen and Chlorine from Industrial Waste Dilute Hydrochloric Acid." International Journal of Chemical Engineering 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/8194674.
Full textBristowe, George, and Andrew Smallbone. "The Key Techno-Economic and Manufacturing Drivers for Reducing the Cost of Power-to-Gas and a Hydrogen-Enabled Energy System." Hydrogen 2, no. 3 (2021): 273–300. http://dx.doi.org/10.3390/hydrogen2030015.
Full textMukhachev, A. P., V. G. Nefedov, and D. O. Yelatontsev. "Analysis of the technology of electrochemical production of zirconium." Voprosy Khimii i Khimicheskoi Tekhnologii, no. 5 (October 2023): 82–90. http://dx.doi.org/10.32434/0321-4095-2023-150-5-82-90.
Full textZhang, Zhicong, Xiaodong Huang, Dandan Wei, Qiqi Chang, Jinping Liu, and Qingxiu Jing. "Copper Nodule Defect Detection in Industrial Processes Using Deep Learning." Information 15, no. 12 (2024): 802. https://doi.org/10.3390/info15120802.
Full textLv, Jian, and Yifan Wang. "Analysis of current distribution of electrode change operation in aluminium electrolysis based on equivalent circuit computer numerical." Journal of Physics: Conference Series 2285, no. 1 (2022): 012013. http://dx.doi.org/10.1088/1742-6596/2285/1/012013.
Full textOlesen, Soffi Ester Sola, Anders Westergaard Jensen, Bo Brummerstedt Iversen, Filippo Fenini, Lars Pleth Nielsen, and Anders Bentien. "Scalable and Efficient H2S Treated Nickel Foam Electrocatalyst for Alkaline Water Electrolysis Under Industrial Conditions." ECS Meeting Abstracts MA2024-02, no. 42 (2024): 2815. https://doi.org/10.1149/ma2024-02422815mtgabs.
Full textChen, Fan, Guojian Mei, Bo Zhao, Wenbo Bie, and Guangxi Li. "Mechanism of online dressing for micro-diamond grinding wheel during the ultrasound-aided electrolytic in-process dressing grinding." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 234, no. 3 (2020): 263–74. http://dx.doi.org/10.1177/0954408920915129.
Full textSuzdaltsev, Andrey. "Silicon Electrodeposition for Microelectronics and Distributed Energy: A Mini-Review." Electrochem 3, no. 4 (2022): 760–68. http://dx.doi.org/10.3390/electrochem3040050.
Full textKang, Zhongjian, and Shijie Liu. "Research on Capacity Optimization Configuration of Renewable Energy Off Grid Hydrogen Production System Considering Collaborative Electrolysis." Energies 17, no. 8 (2024): 1962. http://dx.doi.org/10.3390/en17081962.
Full textEmonts, Bernd, Martin Müller, Michael Hehemann, et al. "A Holistic Consideration of Megawatt Electrolysis as a Key Component of Sector Coupling." Energies 15, no. 10 (2022): 3656. http://dx.doi.org/10.3390/en15103656.
Full textSchwarze, Konstantin, Oliver Posdziech, Simon Kroop, Nieves Lapeña-Rey, and Joshua Mermelstein. "Green Industrial Hydrogen via Reversible High-Temperature Electrolysis." ECS Transactions 78, no. 1 (2017): 2943–52. http://dx.doi.org/10.1149/07801.2943ecst.
Full textFoit, Severin Robert, Lucy Dittrich, Trutz Theuer, Simon Morgenthaler, Rüdiger Albert Eichel, and L. G. J. de Haart. "White Syngas by Co-Electrolysis for Industrial Chemistry." ECS Transactions 91, no. 1 (2019): 2467–74. http://dx.doi.org/10.1149/09101.2467ecst.
Full textOsipova, M. L., I. B. Murashova, and A. M. Savel’ev. "Formation of dendritic copper deposit in industrial electrolysis." Powder Metallurgy and Metal Ceramics 49, no. 5-6 (2010): 253–59. http://dx.doi.org/10.1007/s11106-010-9230-8.
Full textLiu, Xiong, Ruiting Guo, Kun Ni, et al. "Reconstruction‐Determined Alkaline Water Electrolysis at Industrial Temperatures." Advanced Materials 32, no. 40 (2020): 2001136. http://dx.doi.org/10.1002/adma.202001136.
Full textLiliya, Shevchuk, Aftanaziv Ivan, Strutynska Lesya, Strogan Orysia, and Samsin Igor. "IDENTIFICATION OF SPECIAL FEATURES IN THE ELECTROLYSISCAVITATION WATER TREATMENT IN POOLS." Eastern-European Journal of Enterprise Technologies 2, no. 10 (98) (2019): 6–15. https://doi.org/10.15587/1729-4061.2019.162229.
Full textHuang, Yipeng, Zhaowen Wang, Youjian Yang, Bingliang Gao, Zhongning Shi, and Xianwei Hu. "Anodic Bubble Behavior in a Laboratory Scale Transparent Electrolytic Cell for Aluminum Electrolysis." Metals 8, no. 10 (2018): 806. http://dx.doi.org/10.3390/met8100806.
Full textGoto, Akihiro, Junda Chen, and Kosuke Shirai. "Milling of Sintered Carbide via Electrochemical Reaction – Investigation of Machining Phenomena –." International Journal of Automation Technology 16, no. 6 (2022): 862–69. http://dx.doi.org/10.20965/ijat.2022.p0862.
Full textLiao, Chunfa, Lianghua Que, Zanhui Fu, et al. "Research Status of Electrolytic Preparation of Rare Earth Metals and Alloys in Fluoride Molten Salt System: A Mini Review of China." Metals 14, no. 4 (2024): 407. http://dx.doi.org/10.3390/met14040407.
Full textPozio, A., and S. Galli. "The role of hydrogen from electrolysis in the overproduction of energy fromrenewable sources." IOP Conference Series: Materials Science and Engineering 1265, no. 1 (2022): 012001. http://dx.doi.org/10.1088/1757-899x/1265/1/012001.
Full textAmirabad, Morteza Mirzaei, Alireza Mirzaei Amirabad, Jafar Khodagholizadeh, and Ali Akbar Naeimi. "Producing Hydrogen through Electrolysis." Applied Mechanics and Materials 110-116 (October 2011): 2296–300. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.2296.
Full textIto, Yasuhiko, Tokujiro Nishikiori, and Hiroyuki Tsujimura. "Advances toward industrialization of novel molten salt electrochemical processes." Faraday Discussions 190 (2016): 307–26. http://dx.doi.org/10.1039/c5fd00237k.
Full text