Academic literature on the topic 'Industrial Furnace'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Industrial Furnace.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Industrial Furnace"
Niu, Hongya, Wenjing Cheng, Wei Pian, and Wei Hu. "The physiochemical properties of submicron particles from emissions of industrial furnace." World Journal of Engineering 13, no. 3 (June 13, 2016): 218–24. http://dx.doi.org/10.1108/wje-06-2016-029.
Full textAranburu, Iñigo, Bakartxo Egilegor, Iñigo Bonilla, Jaio Manzanedo, and Haizea Gaztañaga. "Modelica model of industrial gas furnaces." E3S Web of Conferences 116 (2019): 00003. http://dx.doi.org/10.1051/e3sconf/201911600003.
Full textQu, Na, and Wen You. "Design and fault diagnosis of DCS sintering furnace’s temperature control system for edge computing." PLOS ONE 16, no. 7 (July 6, 2021): e0253246. http://dx.doi.org/10.1371/journal.pone.0253246.
Full textShustrov, N. N., V. G. Puzach, and S. A. Bezenkov. "The effect of the conductive walls of the cooking furnace of an electric furnace on the distribution of energy flows." NOVYE OGNEUPORY (NEW REFRACTORIES), no. 4 (September 16, 2020): 13–18. http://dx.doi.org/10.17073/1683-4518-2020-4-13-18.
Full textStojanovski, Goran, and Mile Stankovski. "Comparison of Predictive Control Methods for High Consumption Industrial Furnace." Scientific World Journal 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/279042.
Full textSoares, Roberto Arruda Lima, and J. R. de S. Castro. "Comparison of Firing of the a Mass for Ceramic Tiles in Laboratory and Industrial Furnace." Materials Science Forum 805 (September 2014): 547–52. http://dx.doi.org/10.4028/www.scientific.net/msf.805.547.
Full textGao, Zhu, Xiao Min Ji, and Chun Qiang Zhang. "Dynamic Display of Industrial Furnace Products Based on the Technology of Virtual Reality." Advanced Materials Research 381 (November 2011): 99–103. http://dx.doi.org/10.4028/www.scientific.net/amr.381.99.
Full textFeng, Ran Bao, You Wen Chen, and Jian Min Gao. "Index Optimization and Integrated Loop Control of Heating Furnaces Based on Modern Control Theory." Applied Mechanics and Materials 533 (February 2014): 289–93. http://dx.doi.org/10.4028/www.scientific.net/amm.533.289.
Full textZeng, Ying, Claus Erik Weinell, Kim Dam-Johansen, Louise Ring, and Søren Kiil. "Comparison of an industrial- and a laboratory-scale furnace for analysis of hydrocarbon intumescent coating performance." Journal of Fire Sciences 38, no. 3 (April 13, 2020): 309–29. http://dx.doi.org/10.1177/0734904120902852.
Full textDzurňák, Róbert, Augustin Varga, Gustáv Jablonský, Miroslav Variny, Réne Atyafi, Ladislav Lukáč, Marcel Pástor, and Ján Kizek. "Influence of Air Infiltration on Combustion Process Changes in a Rotary Tilting Furnace." Processes 8, no. 10 (October 15, 2020): 1292. http://dx.doi.org/10.3390/pr8101292.
Full textDissertations / Theses on the topic "Industrial Furnace"
Ellul, Connie. "Flameless Combustion for Industrial Furnace Heaters." Thesis, University of Leeds, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505069.
Full textCarlborg, Hampus, and Henrik Iredahl. "Modeling and Temperature Control of an Industrial Furnace." Thesis, Linköpings universitet, Reglerteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-129617.
Full textHixson, Scott. "Rapid industrial furnace thermal modeling for improved fuel efficiency." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/5091.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on April 9, 2009) Includes bibliographical references.
Middleton, Kenneth George. "The failure of graphite arc-furnace electrodes." Thesis, Durham University, 1985. http://etheses.dur.ac.uk/7050/.
Full textCorreia, Sara Alexandra Chanoca. "Development of improved mathematical models for the design and control of gas-fired furnaces." Thesis, University of South Wales, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369080.
Full textBlanden, Zachary F. "Process development for high powered amplifier Au/Sn eutectic die attach via vacuum furnace." Thesis, State University of New York at Binghamton, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10250174.
Full textThis research was conducted to develop and qualify a vacuum GaAs semiconductor monolithic microwave integrated circuit die attach process. Research was done to understand the causes and effects of voiding levels on device performance and reliability. Simultaneous investigation was done to qualify vacuum-attach as a successful methodology by which minimal voiding levels were achieved. After an initial vacuum-attach trial was completed to verify the methodology, internal accept/reject criteria were developed to qualify die attach interfaces. A dual phase attachment methodology was created to minimize tolerance stacking resulting in more consistent component placement. MATLAB image processing code was developed to quantify the voiding levels against the accept/reject criteria. Statistical methodologies were employed to troubleshoot root causes for special cause variation of initial attachment failures. A design of experiment was conducted testing three factors each at two levels (process gas [Gas A, Gas B], leaking chamber [yes, no], and carrier supplier [Supplier A, Supplier B]). The DOE identified process gas and its interaction with the carrier supplier to be significant. Further investigation of the carriers identified plating contamination, resulting in the process gas the primary factor of interest. A secondary experiment focusing on process gas identified no statistical difference between Gas A? and Gas B (Gas A? indicating a high purity form of Gas A). With this information, Gas A? was selected as the process gas. A total of 56 attachment interfaces were then produced yielding 0.7485% voiding, on average, following a Weibull distribution (?= 1.04171, ? = 0.75967) with zero rejections. The process?s consistency of minimal voiding levels were deemed a success and the process was released to production.
Hougen, Krysta E. "Long-term Effects of Industrial History on the Forest Flora of Southeastern Ohio." Ohio University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1237857409.
Full textBorges, Cláudio Neves. "Modelagem matemática do processo industrial de coqueamento retardado." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3137/tde-29062016-162519/.
Full textThe delayed coke unit is a thermal conversion process, used by the crude oil refineries, to convert residual feedstocks into products of low molecular weight and high aggregated value (gases, naphtha and gasoil) and green coke. A small increase in the net yield in the delayed coke unit results in considerable economic benefits, particularly in the liquid distillates. The market competition, the restrictions on the product specifications and the operational bottlenecks require a better production planning. Therefore, the development of new strategies and mathematical models, focused in better industrial process operating conditions and product formulations, is essential to achieve better yields and a more precise product quality monitoring. The objective of this work is the development of a furnace-reactor mathematical model of the delayed coke process based on industrial plant information. The proposed model is based on the feed and product characterization as pseudo components, group kinetical models and liquid-vapor equilibrium. Furthermore, the main challenges to develop the furnace and reactor mathematical model are discussed, as well as the vacuum residual and the coke unit products rigorous characterization to determine the parameters that impact the coke morphology and the reaction zone inside the coke reactor.
Stadler, Johan George. "Multi-objective optimisation using the cross-entropy method in CO gas management at a South African ilmenite smelter." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71631.
Full textENGLISH ABSTRACT: In a minerals processing environment, stable production processes, cost minimisation and energy efficiency are key to operational excellence, safety and profitability. At an ilmenite smelter, typically found in the heavy minerals industry, it is no different. Management of an ilmenite smelting process is a complex, multi-variable challenge with high costs and safety risks at stake. A by-product of ilmenite smelting is superheated carbon monoxide (CO) gas, or furnace off-gas. This gas is inflammable and extremely poisonous to humans. At the same time the gas is a potential energy source for various on-site heating applications. Re-using furnace off-gas can increase the energy efficiency of the energy intensive smelting process and can save on the cost of procuring other gas for heating purposes. In this research project, the management of CO gas from the Tronox KZN Sands ilmenite smelter in South Africa was studied with the aim of optimising the current utilisation of the gas. In the absence of any buffer capacity in the form of a pressure vessel, the stability of the available CO gas is directly dependent on the stability of the furnaces. The CO gas has been identified as a partial replacement for methane gas which is currently purchased for drying and heating of feed material and pre-heating of certain smelter equipment. With no buffer capacity between the furnaces and the gas consuming plants, a dynamic prioritisation approach had to be found if the CO was to replace the methane. The dynamics of this supply-demand problem, which has been termed the “CO gas problem”, needed to be studied. A discrete-event simulation model was developed to match the variable supply of CO gas to the variable demand for gas over time – the demand being a function of the availability of the plants requesting the gas, and the feed rates and types of feed material processed at those plants. The problem was formulated as a multi-objective optimisation problem with the two main, conflicting objectives, identified as: 1) the average production time lost per plant per day due to CO-methane switchovers; and 2) the average monthly saving on methane gas costs due to lower consumption thereof. A metaheuristic, namely multi-objective optimisation using the cross-entropy method, or MOO CEM, was applied as optimisation algorithm to solve the CO gas problem. The performance of the MOO CEM algorithm was compared with that of a recognised benchmark algorithm for multi-objective optimisation, the NSGA II, when both were applied to the CO gas problem. The background of multi-objective optimisation, metaheuristics and the usage of furnace off-gas, particularly CO gas, were investigated in the literature review. The simulation model was then developed and the optimisation algorithm applied. The research aimed to comment on the merit of the MOO CEM algorithm for solving the dynamic, stochastic CO gas problem and on the algorithm’s performance compared to the benchmark algorithm. The results served as a basis for recommendations to Tronox KZN Sands in order to implement a project to optimise usage and management of the CO gas.
AFRIKAANSE OPSOMMING: In mineraalprosessering is stabiele produksieprosesse, kostebeperking en energie-effektiwiteit sleuteldrywers tot bedryfsprestasie, veiligheid en wins. ‘n Ilmenietsmelter, tipies aangetref in swaarmineraleprosessering, is geen uitsondering nie. Die bestuur van ‘n ilmenietsmelter is ‘n komplekse, multi-doelwit uitdaging waar hoë kostes en veiligheidsrisiko’s ter sprake is. ‘n Neweproduk van die ilmenietsmeltproses is superverhitte koolstofmonoksiedgas (CO gas). Hierdie gas is ontvlambaar en uiters giftig vir die mens. Terselfdertyd kan hierdie gas benut word as energiebron vir allerlei verhittingstoepassings. Die herbenutting van CO gas vanaf die smelter kan die energie-effektiwiteit van die energie-intensiewe smeltproses verhoog en kan verder kostes bespaar op die aankoop van ‘n ander gas vir verhittingsdoeleindes. In hierdie navorsingsprojek is die bestuur van die CO gasstroom wat deur die ilmenietsmelter van Tronox KZN Sands in Suid-Afrika geproduseer word, ondersoek met die doel om die huidige benuttingsvlak daarvan te verbeter. Weens die afwesigheid van enige bufferkapasiteit in die vorm van ‘n drukbestande tenk, is die stabiliteit van CO gas beskikbaar vir hergebruik direk afhanklik van die stabiliteit van die twee hoogoonde wat die gas produseer. Die CO gas kan gedeeltelik metaangas, wat tans aangekoop word vir die droog en verhitting van voermateriaal en vir die voorverhitting van sekere smeltertoerusting, vervang. Met geen bufferkapasiteit tussen die hoogoonde en die aanlegte waar die gas verbruik word nie, was die ondersoek van ‘n dinamiese prioritiseringsbenadering nodig om te kon vasstel of die CO die metaangas kon vervang. Die dinamika van hierdie vraag-aanbod probleem, getiteld die “CO gasprobleem”, moes bestudeer word. ‘n Diskrete-element simulasiemodel is ontwikkel as probleemoplossingshulpmiddel om die vraag-aanbodproses te modelleer en die prioritiseringsbenadering te ondersoek. Die doel van die model was om oor tyd die veranderlike hoeveelhede van geproduseerde CO teenoor die veranderlike gasaanvraag te vergelyk. Die vlak van gasaanvraag is afhanklik van die beskikbaarheidsvlak van die aanlegte waar die gas verbruik word, sowel as die voertempo’s en tipes voermateriaal in laasgenoemde aanlegte. Die probleem is geformuleer as ‘n multi-doelwit optimeringsprobleem met twee hoof, teenstrydige doelwitte: 1) die gemiddelde verlies aan produksietyd per aanleg per dag weens oorgeskakelings tussen CO en metaangas; 2) die gemiddelde maandelikse besparing op metaangaskoste weens laer verbruik van dié gas. ‘n Metaheuristiek, genaamd MOO CEM (multi-objective optimisation using the cross-entropy method), is ingespan as optimeringsalgoritme om die CO gasprobleem op te los. Die prestasie van die MOO CEM algoritme is vergelyk met dié van ‘n algemeen aanvaarde riglynalgoritme, die NSGA II, met beide toepas op die CO gasprobleem. The agtergrond van multi-doelwit optimering, metaheuristieke en die benutting van hoogoond af-gas, spesifiek CO gas, is ondersoek in die literatuurstudie. Die simulasiemodel is daarna ontwikkel en die optimeringsalgoritme is toegepas.
Suopajärvi, H. (Hannu). "Bioreducer use in blast furnace ironmaking in Finland:techno-economic assessment and CO₂ emission reduction potential." Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526207063.
Full textTiivistelmä Suurin osa maailmassa tuotetusta teräksestä valmistetaan integroidulla masuuni-konvertteri reitillä, joka perustuu neitseellisten raaka-aineiden käyttöön. Masuuniprosessissa käytetään suuri määrä fossiilisia, lähinnä hiilipohjaisia pelkistimiä, jotka aiheuttavat hiilidioksidipäästöjä ilmakehään. Fossiilisia hiilidioksidipäästöjä voidaan teräksenvalmistuksessa vähentää uusilla teknologioilla tai siirtymällä uusiutumattomista energialähteistä uusiutuviin. Biomassasta valmistetut pelkistimet voisivat olla yksi mahdollinen keino alentaa masuunipohjaisen teräksenvalmistuksen ominaispäästöjä. Tämän työn tavoitteena oli tarkastella biopelkistimien käytön teknistaloudellista potentiaalia masuunikäytössä ja aikaansaatavia hiilidioksidipäästövähenemiä eri systeemirajauksilla. Työssä keskityttiin tarkastelemaan biopelkistimien hyödynnettävyyttä lähinnä Suomen tasolla, vaikka käytetyt tutkimusmetodit ovat sovellettavissa myös laajemmin. Työssä arvioitiin biopelkistimien metallurgisia ominaisuuksia, niiden vaikutusta masuuniprosessiin ja laajemmin muihin terästehtaan prosesseihin, pääpainon ollessa saavutettavan CO₂ päästövähenemän tarkastelussa. Työssä tarkasteltiin biopelkistimien valmistuksen CO₂ päästöjä, energiankulutusta ja tuotantokustannuksia sekä energiapuun saatavuutta biopelkistimien tuotantoon. Tulokset osoittavat, että biomassasta voidaan valmistaa kiinteitä, nestemäisiä ja kaasumaisia pelkistimiä termokemiallisilla konversioteknologioilla, joiden soveltuvuus masuunikäyttöön vaihtelee suuresti. Masuuniprosessissa suurin fossiilisten pelkistimien korvaavuus saavutetaan käyttämällä puuhiili-injektiota. Torrefioidun puun, puuhiilen ja Bio-SNG:n hiilijalanjälki on varsin maltillinen verrattuna fossiilisiin pelkistimiin ja niiden tuotanto on energeettisesti järkevää. Biopelkistimien taloudellinen kannattavuus verrattuna fossiilisiin pelkistimiin on tällä hetkellä heikko, mutta kilpailukykyinen verrattuna muihin CO₂ päästöjen vähennyskeinoihin, kuten hiilidioksidin talteenottoon ja -varastointiin. Energiapuun saatavuus biopelkistimien valmistukseen on suurin alueilla, jotka sijaitsevat lähellä Suomen terästehtaita. Biopelkistimien tuotannon kannattavuutta voitaisiin parantaa tuottamalla useita tuotteita ja hyödyntämällä prosessi-integraatiota
Books on the topic "Industrial Furnace"
Brandes, Janet L. Industrial furnaces, kilns, and ovens. Cleveland Heights, OH: Leading Edge Reports, 1989.
Find full textCranstone, David. Derwentcote steel furnace: An industrial monument in County Durham. Lancaster: Lancaster University Archaeological Unit, 1997.
Find full textNick, Honerkamp, and Will M. Elizabeth 1952-, eds. Industry and technology in antebellum Tennessee: The archaeology of Bluff Furnace. Knoxville: University of Tennessee Press, 1992.
Find full textJackson, George E. Cumberland Furnace: A frontier industrial village : a story of the first ironworks on the western highland rim. Virginia Beach, VA: Donning Co., 1994.
Find full textSloss Furnaces and the rise of the Birmingham district: An industrial epic. Tuscaloosa: University of Alabama Press, 1994.
Find full textBarrie, Jenkins, and ScienceDirect (Online service), eds. Industrial and process furnaces: Principles, design and operation. Amsterdam: Butterworth-Heinemann, 2008.
Find full textMullinger, Peter. Industrial and process furnaces: Principles, design and operation. Amsterdam: Butterworth-Heinemann, 2008.
Find full textBook chapters on the topic "Industrial Furnace"
Mbiock, Aristide, and Roman Weber. "Application to Industrial Furnace." In Radiation in Enclosures, 159–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57094-0_8.
Full textMahanta, Bashista Kumar, and Nirupam Chakraboti. "Evolutionary Computation in Blast Furnace Iron Making." In Management and Industrial Engineering, 211–52. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01641-8_8.
Full textSaxén, Henrik, and Leif Lassus. "Pattern Recognition for Blast Furnace Temperature Classification." In Industrial Applications of Soft Computing, 79–91. Heidelberg: Physica-Verlag HD, 2001. http://dx.doi.org/10.1007/978-3-7908-1822-2_6.
Full textKumar, Arun, Ashish Agrawal, and Ashok Kumar. "Blast Furnace Health Index Based on Historical Data." In Lecture Notes on Multidisciplinary Industrial Engineering, 415–26. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6017-0_27.
Full textMartineau, S., E. Gaura, K. J. Burnham, and O. C. L. Haas. "Neural Network Control Approach for an Industrial Furnace." In Artificial Neural Nets and Genetic Algorithms, 121–25. Vienna: Springer Vienna, 2003. http://dx.doi.org/10.1007/978-3-7091-0646-4_23.
Full textSantos, Daniel, Luís Rato, Teresa Gonçalves, Miguel Barão, Sérgio Costa, Isabel Malico, and Paulo Canhoto. "Composite SVR Based Modelling of an Industrial Furnace." In Modelling and Development of Intelligent Systems, 158–70. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39237-6_11.
Full textMcNamara, Pamela, John D. Cashion, and Mary S. J. Gani. "Slag Attack of Firebrick in a Tin Smelting Furnace." In Industrial Applications of the Mössbauer Effect, 467–77. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-1827-9_24.
Full textMahanta, Bashista Kumar, Rajesh Jha, and Nirupam Chakraborti. "Data-Driven Optimization of Blast Furnace Iron Making Process Using Evolutionary Deep Learning." In Management and Industrial Engineering, 47–81. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75847-9_3.
Full textPu, Cuiping, Jie Ren, and Bin Xue. "Research on Intelligent Predictive Control of Roasting Furnace Temperature." In Modern Industrial IoT, Big Data and Supply Chain, 389–99. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6141-6_41.
Full textMichal, Ksiazek, Grådahl Svend, Rotevant Eirik Andersen, and Wittgens Bernd. "Capturing and Condensation of SiO Gas from Industrial Si Furnace." In Advances in Molten Slags, Fluxes, and Salts, 1153–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119333197.ch123.
Full textConference papers on the topic "Industrial Furnace"
Chang, S. L., C. Q. Zhou, and K. Scheeringa. "Numerical Simulations of Industrial Melting Furnaces." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47348.
Full textMuresan, Vlad, Mihail Abrudean, Daniel Moga, Mihaela-Ligia Unguresan, Iulia Clitan, Roxana Carmen Cordos, Adrian Codoban, Mircea Cohut, and Marius Rares Abrudan. "Temperature Modelling in an Industrial Furnace." In 2020 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR). IEEE, 2020. http://dx.doi.org/10.1109/aqtr49680.2020.9129959.
Full textGolchert, Brian M., Shen-Lin Chang, and Ed Olson. "Modeling and Preliminary Validation of a Regenerative Furnace Using the ANL Glass Furnace Model." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47441.
Full textGolchert, B., S. L. Chang, C. Q. Zhou, and J. Wang. "Modeling of Regenerative Furnace Ports." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-42321.
Full textMureşan, Vlad, Mihail Abrudean, Mihaela-Ligia Ungureşan, Iulia Clitan, Valentin Sita, and Tiberiu Coloşi. "Intelligent Temperature Control in an Industrial Furnace." In ICCAE 2020: 2020 12th International Conference on Computer and Automation Engineering. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3384613.3384647.
Full textAeenmehr, A., A. Yazdizadeh, and M. S. Ghazizadeh. "Neuro-PID control of an industrial furnace temperature." In Applications (ISIEA 2009). IEEE, 2009. http://dx.doi.org/10.1109/isiea.2009.5356358.
Full textShengquan Yang and Bailin Liu. "Research of industrial furnace fault diagnosis expert system." In 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccasm.2010.5619377.
Full textBitschnau, Lukas, and Martin Kozek. "Modeling and Control of an Industrial Continuous Furnace." In 2009 International Conference on Computational Intelligence, Modelling and Simulation. IEEE, 2009. http://dx.doi.org/10.1109/cssim.2009.26.
Full textHogue, Tim, and David E. Stanley. "Reconfiguration And Deconstructability Design For Industrial Furnace Retrofit." In The Seventh International Structural Engineering and Construction Conference. Singapore: Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-5354-2_st-46-120.
Full textBae, Juhee, Gunnar Mathiason, Yurong Li, Niklas Kojola, and Niclas Ståhl. "Understanding Robust Target Prediction in Basic Oxygen Furnace." In IEIM 2021: 2021 The 2nd International Conference on Industrial Engineering and Industrial Management. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3447432.3447435.
Full textReports on the topic "Industrial Furnace"
Federer, J. I., T. N. Tiegs, D. M. Kotchick, and D. Petrak. Analysis of candidate silicon carbide recuperator materials exposed to industrial furnace environments. Office of Scientific and Technical Information (OSTI), July 1985. http://dx.doi.org/10.2172/5275519.
Full textBerthod, J. W. Development and evaluation of a workpiece temperature analyzer for industrial furnaces. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10155811.
Full textMohamed Abdelrahman, roger Haggard, Wagdy Mahmoud, Kevin Moore, Denis Clark, Eric Larsen, and Paul King. Interated Intelligent Industrial Process Sensing and Control: Applied to and Demonstrated on Cupola Furnaces. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/808417.
Full textKeiser, James R., Gorti B. Sarma, Arvind Thekdi, Meisner Roberta A., Tony Phelps, Adam W. Willoughby, J. Peter Gorog, et al. Final Report, Materials for Industrial Heat Recovery Systems, Task 1 Improved Materials and Operation of Recuperators for Aluminum Melting Furnaces. Office of Scientific and Technical Information (OSTI), September 2007. http://dx.doi.org/10.2172/919037.
Full textDevelopment and evaluation of a workpiece temperature analyzer for industrial furnaces. Office of Scientific and Technical Information (OSTI), May 1990. http://dx.doi.org/10.2172/6195367.
Full textDevelopment and evaluation of a workpiece temperature analyzer for industrial furnaces. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/6006341.
Full textDevelopment and evaluation of a workpiece temperature analyzer for industrial furnaces. Phase 1-A. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10107168.
Full text