Journal articles on the topic 'Industrial Furnace'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Industrial Furnace.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Niu, Hongya, Wenjing Cheng, Wei Pian, and Wei Hu. "The physiochemical properties of submicron particles from emissions of industrial furnace." World Journal of Engineering 13, no. 3 (June 13, 2016): 218–24. http://dx.doi.org/10.1108/wje-06-2016-029.
Full textAranburu, Iñigo, Bakartxo Egilegor, Iñigo Bonilla, Jaio Manzanedo, and Haizea Gaztañaga. "Modelica model of industrial gas furnaces." E3S Web of Conferences 116 (2019): 00003. http://dx.doi.org/10.1051/e3sconf/201911600003.
Full textQu, Na, and Wen You. "Design and fault diagnosis of DCS sintering furnace’s temperature control system for edge computing." PLOS ONE 16, no. 7 (July 6, 2021): e0253246. http://dx.doi.org/10.1371/journal.pone.0253246.
Full textShustrov, N. N., V. G. Puzach, and S. A. Bezenkov. "The effect of the conductive walls of the cooking furnace of an electric furnace on the distribution of energy flows." NOVYE OGNEUPORY (NEW REFRACTORIES), no. 4 (September 16, 2020): 13–18. http://dx.doi.org/10.17073/1683-4518-2020-4-13-18.
Full textStojanovski, Goran, and Mile Stankovski. "Comparison of Predictive Control Methods for High Consumption Industrial Furnace." Scientific World Journal 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/279042.
Full textSoares, Roberto Arruda Lima, and J. R. de S. Castro. "Comparison of Firing of the a Mass for Ceramic Tiles in Laboratory and Industrial Furnace." Materials Science Forum 805 (September 2014): 547–52. http://dx.doi.org/10.4028/www.scientific.net/msf.805.547.
Full textGao, Zhu, Xiao Min Ji, and Chun Qiang Zhang. "Dynamic Display of Industrial Furnace Products Based on the Technology of Virtual Reality." Advanced Materials Research 381 (November 2011): 99–103. http://dx.doi.org/10.4028/www.scientific.net/amr.381.99.
Full textFeng, Ran Bao, You Wen Chen, and Jian Min Gao. "Index Optimization and Integrated Loop Control of Heating Furnaces Based on Modern Control Theory." Applied Mechanics and Materials 533 (February 2014): 289–93. http://dx.doi.org/10.4028/www.scientific.net/amm.533.289.
Full textZeng, Ying, Claus Erik Weinell, Kim Dam-Johansen, Louise Ring, and Søren Kiil. "Comparison of an industrial- and a laboratory-scale furnace for analysis of hydrocarbon intumescent coating performance." Journal of Fire Sciences 38, no. 3 (April 13, 2020): 309–29. http://dx.doi.org/10.1177/0734904120902852.
Full textDzurňák, Róbert, Augustin Varga, Gustáv Jablonský, Miroslav Variny, Réne Atyafi, Ladislav Lukáč, Marcel Pástor, and Ján Kizek. "Influence of Air Infiltration on Combustion Process Changes in a Rotary Tilting Furnace." Processes 8, no. 10 (October 15, 2020): 1292. http://dx.doi.org/10.3390/pr8101292.
Full textVaretsky, Yuriy. "Overvoltages on power filters under energizing industrial power system transformer." Energy engineering and control systems 6, no. 2 (2020): 97–103. http://dx.doi.org/10.23939/jeecs2020.02.097.
Full textJiang, Qing, Chao Zhang, and Jin Jiang. "Sensitivity Analysis of a FGR Industrial Furnace for NOx Emission Using Frequency Domain Method." Journal of Energy Resources Technology 129, no. 2 (May 21, 2005): 134–43. http://dx.doi.org/10.1115/1.2141636.
Full textNicolle, Rémy. "The operation of charcoal blast furnaces in the XIXth century." Metallurgical Research & Technology 117, no. 1 (2020): 117. http://dx.doi.org/10.1051/metal/2019071.
Full textLiu, Hui, Dai Dong Guo, Ting Shou Song, and Shi Quan Liu. "A Multi-Functional Resistance Furnace for Industrial Thermogravimetric Analysis." Applied Mechanics and Materials 670-671 (October 2014): 481–84. http://dx.doi.org/10.4028/www.scientific.net/amm.670-671.481.
Full textGolikov, Alexander V., and Dmitry I. Subbotin. "Damage analysis and assessment of the impact of damage on the operation of supporting structures of oil refining tube furnaces." Structural Mechanics of Engineering Constructions and Buildings 16, no. 3 (December 15, 2020): 193–202. http://dx.doi.org/10.22363/1815-5235-2020-16-3-193-202.
Full textFilipponi, Mirko, Federico Rossi, Andrea Presciutti, Stefania De Ciantis, Beatrice Castellani, and Ambro Carpinelli. "Thermal Analysis of an Industrial Furnace." Energies 9, no. 10 (October 18, 2016): 833. http://dx.doi.org/10.3390/en9100833.
Full textMIHOVSKY, M., TZ TZONEV, and B. LUCHEVA. "INDUSTRIAL 2,5-TONS PLASMA-INDUCTION FURNACE." Annals of the New York Academy of Sciences 891, no. 1 HEAT AND MASS (December 1999): 137–42. http://dx.doi.org/10.1111/j.1749-6632.1999.tb08760.x.
Full textCarvalho, M. G., V. S. Semia˜o, and P. J. Coelho. "Modelling and Optimization of the NO Formation in an Industrial Glass Furnace." Journal of Engineering for Industry 114, no. 4 (November 1, 1992): 514–23. http://dx.doi.org/10.1115/1.2900706.
Full textKukartsev, Viktor A., Vladislav V. Kukartsev, and Vadim S. Tynchenko. "The Peculiarities of Smelting of Wear-Resistant Cast Iron IChH28N2 in the Induction Crucible Furnace IChT10." Solid State Phenomena 299 (January 2020): 397–402. http://dx.doi.org/10.4028/www.scientific.net/ssp.299.397.
Full textGeldenhuys, I. J., Q. G. Reynolds, and G. Akdogan. "Evaluation of Titania-Rich Slag Produced from Titaniferous Magnetite Under Fluxless Smelting Conditions." JOM 72, no. 10 (August 3, 2020): 3462–71. http://dx.doi.org/10.1007/s11837-020-04304-3.
Full textLi, Zaoyang, Lijun Liu, Yunfeng Zhang, Qingchao Meng, Zhiyan Hu, and Genshu Zhou. "Preservation of Seed Crystals in Feedstock Melting for Cast Quasi-Single Crystalline Silicon Ingots." International Journal of Photoenergy 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/670315.
Full textGáspár, László, and Zsolt Bencze. "Blast furnace slag in road construction and maintenance." Dorogi i mosti 2021, no. 23 (March 25, 2021): 53–59. http://dx.doi.org/10.36100/dorogimosti2021.23.053.
Full textTunckaya, Yasin. "Performance assessment of permeability index prediction in an ironmaking process via soft computing techniques." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 231, no. 6 (June 7, 2016): 1101–13. http://dx.doi.org/10.1177/0954408916654199.
Full textTang, Xin Tong, and Chang Qing Cai. "Optimal Control of the Industrial Furnace System." Advanced Materials Research 383-390 (November 2011): 3077–80. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.3077.
Full textKizhatil, R. K., and R. Seshadri. "INTEGRITY ASSESSMENT OF THICK WALLED INDUSTRIAL FURNACE TUBES." Transactions of the Canadian Society for Mechanical Engineering 17, no. 2 (June 1993): 127–43. http://dx.doi.org/10.1139/tcsme-1993-0008.
Full textZhou, Hao, Sheng Meng, Chunhong Mo, Lujun Wang, Xiukui Hu, Can Chen, Suoshan Huo, Peng Xu, Yan Huang, and Kefa Cen. "Reduced-order analysis of an oil-fuel furnace vibration and comparison with the finite element method." Journal of Vibration and Control 25, no. 2 (May 17, 2018): 298–309. http://dx.doi.org/10.1177/1077546318776203.
Full textSheshukov, O. Yu, D. K. Egiazar’yan, and D. A. Lobanov. "Wasteless processing of ladle furnace and electric arc furnace slag." Izvestiya. Ferrous Metallurgy 64, no. 3 (April 9, 2021): 192–99. http://dx.doi.org/10.17073/0368-0797-2021-3-192-199.
Full textBarreras, Marta, and Mario García-Sanz. "Model identification of a multivariable industrial furnace." IFAC Proceedings Volumes 36, no. 16 (September 2003): 429–34. http://dx.doi.org/10.1016/s1474-6670(17)34799-7.
Full textMantha,, D., and R. G. Reddy,. "Viscosities of Industrial Lead Blast Furnace Slags." High Temperature Materials and Processes 24, no. 1 (February 2005): 73–78. http://dx.doi.org/10.1515/htmp.2005.24.1.73.
Full textEl-Behery, Samy M., A. A. Hussien, H. Kotb, and Mostafa El-Shafie. "Performance evaluation of industrial glass furnace regenerator." Energy 119 (January 2017): 1119–30. http://dx.doi.org/10.1016/j.energy.2016.11.077.
Full textStognei, V. G., V. S. Lagunov, and V. V. Trapeznikov. "Pore cooling for lined industrial-furnace doors." Refractories 29, no. 5-6 (May 1988): 303–7. http://dx.doi.org/10.1007/bf01293369.
Full textIshii, T., C. Zhang, and S. Sugiyama. "Numerical Simulations of Highly Preheated Air Combustion in an Industrial Furnace." Journal of Energy Resources Technology 120, no. 4 (December 1, 1998): 276–84. http://dx.doi.org/10.1115/1.2795048.
Full textvan Limpt, Hans, Ruud Beerkens, and Marco van Kersbergen. "Effect of Small Glass Composition Changes on Flue Gas Emissions of Glass Furnaces." Advanced Materials Research 39-40 (April 2008): 653–58. http://dx.doi.org/10.4028/www.scientific.net/amr.39-40.653.
Full textHavryliv, Roman, and Vоlоdymyr Maystruk. "Development of Combustion Model in the Industrial Cyclone-Calciner Furnace Using CFD-Modeling." Chemistry & Chemical Technology 11, no. 1 (March 15, 2017): 71–80. http://dx.doi.org/10.23939/chcht11.01.071.
Full textGerdes, T., Monika Willert-Porada, Ho Seon Park, and A. Schmidt. "Production Scale m3 Batch Furnace for Hybrid-Heating and Microwave Sintering." Advances in Science and Technology 45 (October 2006): 869–74. http://dx.doi.org/10.4028/www.scientific.net/ast.45.869.
Full textPrasertsook, Somsak. "Research and Development of Non-Ferrous Melting Energy." Materials Science Forum 618-619 (April 2009): 547–49. http://dx.doi.org/10.4028/www.scientific.net/msf.618-619.547.
Full textGanin, D. R., V. G. Druzhkov, A. A. Panychev, and A. Yu Fuks. "Analysis of indices and operation improvement conditions of JSC “Ural Steel” blast furnace shop." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information, no. 12 (December 19, 2018): 46–54. http://dx.doi.org/10.32339/0135-5910-2018-12-46-54.
Full textKukartsev, Viktor A., Vladislav V. Kukartsev, and Vadim S. Tynchenko. "Cast Iron and Steel Smelting in Induction Crucible Furnaces of Industrial Frequency." Solid State Phenomena 299 (January 2020): 530–34. http://dx.doi.org/10.4028/www.scientific.net/ssp.299.530.
Full textSmalcerz, A., B. Oleksiak, and G. Siwiec. "The Influence A Crucible Arrangement On The Electrical Efficiency Of The Cold Crucible Induction Furnace." Archives of Metallurgy and Materials 60, no. 3 (September 1, 2015): 1711–16. http://dx.doi.org/10.1515/amm-2015-0295.
Full textMacRosty, Richard D. M., and Christopher L. E. Swartz. "Dynamic Modeling of an Industrial Electric Arc Furnace." Industrial & Engineering Chemistry Research 44, no. 21 (October 2005): 8067–83. http://dx.doi.org/10.1021/ie050101b.
Full textPatrascioiu, Cristian, and Vasile Marinoiu. "Modelling and Optimal Control of an Industrial Furnace." IFAC Proceedings Volumes 31, no. 11 (June 1998): 477–82. http://dx.doi.org/10.1016/s1474-6670(17)44972-x.
Full textObika, Masanobu, and Toru Yamamoto. "Energy-saving inferential control system for industrial furnace." IEEJ Transactions on Electronics, Information and Systems 138, no. 5 (May 1, 2018): 480–85. http://dx.doi.org/10.1541/ieejeiss.138.480.
Full textNieckele, Angela O., Mo^nica F. Naccache, and Marcos S. P. Gomes. "Numerical Modeling of an Industrial Aluminum Melting Furnace." Journal of Energy Resources Technology 126, no. 1 (March 1, 2004): 72–81. http://dx.doi.org/10.1115/1.1625396.
Full textObika, Masanobu, and Toru Yamamoto. "Energy-saving inferential control of an industrial furnace." Electronics and Communications in Japan 101, no. 9 (July 20, 2018): 42–47. http://dx.doi.org/10.1002/ecj.12108.
Full textCassiano, J., M. V. Heitor, and T. F. Silva. "Combustion tests on an industrial glass-melting furnace." Fuel 73, no. 10 (October 1994): 1638–42. http://dx.doi.org/10.1016/0016-2361(94)90144-9.
Full textBlostein, Ph, M. Devaux, and M. Grant. "Use of industrial gases in blast-furnace operation." Metallurgist 55, no. 7-8 (November 2011): 552–57. http://dx.doi.org/10.1007/s11015-011-9467-6.
Full textLubyanoi, D. A., S. A. Fomkin, A. V. Kukharenko, D. D. Lubyanoi, A. V. Markidonov, and Yu N. Soina-Kutishcheva. "Regarding a technology of Sulphur removal in acidic induction furnaces." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 75, no. 6 (July 26, 2019): 689–94. http://dx.doi.org/10.32339/0135-5910-2019-6-689-694.
Full textDauletbakov, T. S., A. R. Mambetaliyeva, N. K. Dosmukhamedov, F. R. Zhandauletova, and G. Z. Moldabaeva. "Complex Processing of Industrial Products and Lead-Copper Concentrates." Eurasian Chemico-Technological Journal 17, no. 4 (April 2, 2016): 301. http://dx.doi.org/10.18321/ectj274.
Full textHiguchi, Masashi, Kota Suzuki, Keiichi Katayama, Toshiki Nakamura, Akira Kagohashi, Akihiro Kinoshita, and Hiromitsu Suzuki. "Preparation of Cathode Materials for a Lithium-Ion Battery Using an Industrial Microwave Furnace." Key Engineering Materials 445 (July 2010): 113–16. http://dx.doi.org/10.4028/www.scientific.net/kem.445.113.
Full textMeng, Zhi Yong, Chen Meng Sui, and Lei Liu. "Research of the Industrial Furnace Temperature Control Based on DMC Algorithm." Applied Mechanics and Materials 556-562 (May 2014): 2240–43. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.2240.
Full text