Journal articles on the topic 'Industrial gas burner'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Industrial gas burner.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Cavazzuti, Marco, Mauro A. Corticelli, Antonino Nuccio, and Bruno Zauli. "CFD analysis of a syngas-fired burner for ceramic industrial roller kiln." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 227, no. 11 (2013): 2600–2609. http://dx.doi.org/10.1177/0954406213477340.
Full textMoreno-Soriano, Roberto, Froylan Soriano-Moranchel, Luis Armando Flores-Herrera, Juan Manuel Sandoval-Pineda, and Rosa de Guadalupe González-Huerta. "Thermal Efficiency of Oxyhydrogen Gas Burner." Energies 13, no. 20 (2020): 5526. http://dx.doi.org/10.3390/en13205526.
Full textRojas, Freddy J., Fernando Jimenez, and Luis Napan. "Energy design and experimental evaluation of an industrial burner to natural gas." Renewable Energy and Power Quality Journal 19 (September 2021): 171–76. http://dx.doi.org/10.24084/repqj19.248.
Full textCabelli, A., I. G. Pearson, I. C. Shepherd, and D. H. Collins. "Control of Noise from an Industrial Gas Fired Burner." Noise Control Engineering Journal 29, no. 2 (1987): 38. http://dx.doi.org/10.3397/1.2827689.
Full textPanwar, N. L., B. L. Salvi, and V. Siva Reddy. "Performance evaluation of producer gas burner for industrial application." Biomass and Bioenergy 35, no. 3 (2011): 1373–77. http://dx.doi.org/10.1016/j.biombioe.2010.12.046.
Full textBee´r, J. M., M. A. Toqan, J. M. Haynes, and R. W. Borio. "Development of the Radially Stratified Flame Core Low NOx Burner: From Fundamentals to Industrial Applications." Journal of Engineering for Gas Turbines and Power 126, no. 2 (2004): 248–53. http://dx.doi.org/10.1115/1.1688767.
Full textJia, Zhenzhen, Qing Ye, Haizhen Wang, He Li, and Shiliang Shi. "Numerical Simulation of a New Porous Medium Burner with Two Sections and Double Decks." Processes 6, no. 10 (2018): 185. http://dx.doi.org/10.3390/pr6100185.
Full textJohn, D. St, and G. S. Samuelsen. "Active, optimal control of a model industrial, natural gas-fired burner." Symposium (International) on Combustion 25, no. 1 (1994): 307–16. http://dx.doi.org/10.1016/s0082-0784(06)80657-0.
Full textRelation, H. L., J. L. Battaglioli, and W. F. Ng. "Numerical Simulations of Nonreacting Flows for Industrial Gas Turbine Combustor Geometries." Journal of Engineering for Gas Turbines and Power 120, no. 3 (1998): 460–67. http://dx.doi.org/10.1115/1.2818167.
Full textWang, Zhi Hua, and Shi Hong Zhang. "Research on Exhaust Gas Temperature inside Catalytic Honeycomb Monolith Channel of Natural Gas Burner Start-up." Advanced Materials Research 621 (December 2012): 223–27. http://dx.doi.org/10.4028/www.scientific.net/amr.621.223.
Full textChai, Almon. "Simulations on Modified Burner Configuration Using CFD." Applied Mechanics and Materials 465-466 (December 2013): 510–14. http://dx.doi.org/10.4028/www.scientific.net/amm.465-466.510.
Full textBukhmirov, V. V., A. V. Sadchikov, A. A. Sadchikov, E. N. Temlyantseva, and E. N. Bushuev. "Burner development for efficient combustion of biogas." Vestnik IGEU, no. 6 (December 28, 2020): 5–13. http://dx.doi.org/10.17588/2072-2672.2020.6.005-013.
Full textZhang, Xi Lai, and Wei Yao. "Heat Recovery and Burner Modification of an Industrial Tubular Furnace." Applied Mechanics and Materials 737 (March 2015): 296–300. http://dx.doi.org/10.4028/www.scientific.net/amm.737.296.
Full textKarim, H., K. Lyle, S. Etemad, et al. "Advanced Catalytic Pilot for Low NOx Industrial Gas Turbines." Journal of Engineering for Gas Turbines and Power 125, no. 4 (2003): 879–84. http://dx.doi.org/10.1115/1.1586313.
Full textChaelek, Aekkaphon, Usa Makmool Grare, and Sumrerng Jugjai. "Self-aspirating/air-preheating porous medium gas burner." Applied Thermal Engineering 153 (May 2019): 181–89. http://dx.doi.org/10.1016/j.applthermaleng.2019.02.109.
Full textAndrews, G. E., H. S. Alkabie, M. M. Abdul Aziz, et al. "High-Intensity Burners with Low Nox Emissions." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 206, no. 1 (1992): 3–17. http://dx.doi.org/10.1243/pime_proc_1992_206_003_02.
Full textKrittacom, Bundit, and Suradech Sinjapo. "Thermal Efficiency of Domestic Cooking-Gas Burner Using Open-Cellular Porous Media in the Case of Varied Outlet Diameter of Mixing Tube." Key Engineering Materials 801 (May 2019): 357–62. http://dx.doi.org/10.4028/www.scientific.net/kem.801.357.
Full textPolifke, W., P. Flohr, and M. Brandt. "Modeling of Inhomogeneously Premixed Combustion With an Extended TFC Model." Journal of Engineering for Gas Turbines and Power 124, no. 1 (2000): 58–65. http://dx.doi.org/10.1115/1.1394964.
Full textDjordjevic, Neda, Peter Habisreuther, and Nikolaos Zarzalis. "Flame Stabilization and Emissions of a Natural Gas/Air Ceramic Porous Burner." Advanced Materials Research 47-50 (June 2008): 105–8. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.105.
Full textHan, Jiade, Lingbo Zhu, Yiping Lu, Yu Mu, Azeem Mustafa, and Yajun Ge. "Numerical Simulation of Combustion in 35 t/h Industrial Pulverized Coal Furnace with Burners Arranged on Front Wall." Processes 8, no. 10 (2020): 1272. http://dx.doi.org/10.3390/pr8101272.
Full textCarroni, Richard, Timothy Griffin, and Greg Kelsall. "Cathlean: catalytic, hybrid, lean-premixed burner for gas turbines." Applied Thermal Engineering 24, no. 11-12 (2004): 1665–76. http://dx.doi.org/10.1016/j.applthermaleng.2003.10.029.
Full textSanjaya, Ari Susandy, S. Suhartono, and Herri Susanto. "Pemanfaatan gasifikasi batubara untuk unit pengeringan teh." Jurnal Teknik Kimia Indonesia 5, no. 2 (2018): 443. http://dx.doi.org/10.5614/jtki.2006.5.2.6.
Full textRangel, Dr Leonardo P., L. M. Fletcher, M. Pourkashanian, and A. Williams. "EXPERIMENTAL INVESTIGATIONS OF COUNTERFLOW DOUBLE FLAMES APPLICABLE TO AN INDUSTRIAL NATURAL GAS-FIRED BURNER." Clean Air: International Journal on Energy for a Clean Environment 7, no. 3 (2006): 187–202. http://dx.doi.org/10.1615/interjenercleanenv.v7.i3.10.
Full textAndreini, Antonio, Bruno Facchini, Alessandro Innocenti, and Matteo Cerutti. "Numerical Analysis of a Low NOx Partially Premixed Burner for Industrial Gas Turbine Applications." Energy Procedia 45 (2014): 1382–91. http://dx.doi.org/10.1016/j.egypro.2014.01.145.
Full textDe Toni, Amir, Thamy Hayashi, and Paulo Schneider. "A reactor network model for predicting NOx emissions in an industrial natural gas burner." Journal of the Brazilian Society of Mechanical Sciences and Engineering 35, no. 3 (2013): 199–206. http://dx.doi.org/10.1007/s40430-013-0039-5.
Full textHe, Jinqiao, Zhengchun Chen, Xin Jiang, and Chun Leng. "Combustion characteristics of blast furnace gas in porous media burner." Applied Thermal Engineering 160 (September 2019): 113970. http://dx.doi.org/10.1016/j.applthermaleng.2019.113970.
Full textNash, F. "The Development and First Commercial Application of an Innovative Diesel Engine Based Cogeneration System." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 206, no. 3 (1992): 197–207. http://dx.doi.org/10.1243/pime_proc_1992_206_030_02.
Full textWang, Mingyu, Jing Zhao, Feihong Guo, Lingli Zhu, Dekui Shen, and Xiaoxiang Jiang. "Numerical simulation on the emission of NOx from the combustion of natural gas in the sidewall burner." Thermal Science, no. 00 (2021): 61. http://dx.doi.org/10.2298/tsci200916061w.
Full textSrisathit, Suttikiat, and Panya Aroonjarattham. "The Effects of High Pressure Gas Burner Parameters on Thermal Efficiency for 2014 International Conference on Machining, Materials and Mechanical Technology (IC3MT)." Key Engineering Materials 656-657 (July 2015): 729–34. http://dx.doi.org/10.4028/www.scientific.net/kem.656-657.729.
Full textHalliwell, N. A., and G. K. Hargrave. "Optical engineering: Diagnostics for industrial applications." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 217, no. 6 (2003): 597–617. http://dx.doi.org/10.1243/095440603321919545.
Full textLiu, Bo, Binbin Bao, Yuanhua Wang, and Hong Xu. "Numerical simulation of flow, combustion and NO emission of a fuel-staged industrial gas burner." Journal of the Energy Institute 90, no. 3 (2017): 441–51. http://dx.doi.org/10.1016/j.joei.2016.03.005.
Full textGao, Zihe, Xiangyong Yuan, Jie Ji, Yuanzhou Li, and Lizhong Yang. "Influence of stack effect on flame shapes of gas burner fires." Applied Thermal Engineering 127 (December 2017): 1574–81. http://dx.doi.org/10.1016/j.applthermaleng.2017.08.110.
Full textIurashev, Dmytro, Giovanni Campa, Vyacheslav V. Anisimov, Ezio Cosatto, Luca Rofi, and Edoardo Bertolotto. "Application of a three-step approach for prediction of combustion instabilities in industrial gas turbine burners." Journal of the Global Power and Propulsion Society 1 (July 21, 2017): JCW78T. http://dx.doi.org/10.22261/jcw78t.
Full textDemayo, T. N., M. M. Miyasato, and G. S. Samuelsen. "Hazardous air pollutant and ozone precursor emissions from a low-NOx natural gas-fired industrial burner." Symposium (International) on Combustion 27, no. 1 (1998): 1283–91. http://dx.doi.org/10.1016/s0082-0784(98)80532-8.
Full textSigfrid, Ivan R., Ronald Whiddon, Robert Collin, and Jens Klingmann. "Influence of reactive species on the lean blowout limit of an industrial DLE gas turbine burner." Combustion and Flame 161, no. 5 (2014): 1365–73. http://dx.doi.org/10.1016/j.combustflame.2013.10.030.
Full textTseng, Yen Kuei. "To Gain the Burning Efficiency by Improving the Mixing Condition of Oil and Gas." Advanced Materials Research 361-363 (October 2011): 861–64. http://dx.doi.org/10.4028/www.scientific.net/amr.361-363.861.
Full textBondrea, Dana Andreya, Lucian Mihaescu, Gheorghe Lazaroiu, Ionel Pisa, and Gabriel Negreanu. "Researches on the mixture limits of animal fats with liquid hydrocarbons for combustion at industrial level." E3S Web of Conferences 112 (2019): 02001. http://dx.doi.org/10.1051/e3sconf/201911202001.
Full textFox, T. G., and B. C. Schlein. "Full Annular Rig Development of the FT8 Gas Turbine Combustor." Journal of Engineering for Gas Turbines and Power 114, no. 1 (1992): 27–32. http://dx.doi.org/10.1115/1.2906303.
Full textTeotia, Shivam, Vinod Kumar Yadav, Shubham Sharma, and Jagdish Prasad Yadav. "Effect of porosity and loading height on the performance of household LPG gas stoves." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 235, no. 4 (2021): 997–1004. http://dx.doi.org/10.1177/0954408920987024.
Full textDemayo, T. N., V. G. McDonell, and G. S. Samuelsen. "Robust active control of combustion stability and emissions performance in a fuel-staged natural-gas-fired industrial burner." Proceedings of the Combustion Institute 29, no. 1 (2002): 131–38. http://dx.doi.org/10.1016/s1540-7489(02)80021-9.
Full textEdwards, C. F., and P. J. Goix. "Effect of Fuel Gas Composition and Excess Air on VOC Emissions from a Small-Scale, Industrial-Style Burner." Combustion Science and Technology 116-117, no. 1-6 (1996): 375–97. http://dx.doi.org/10.1080/00102209608935555.
Full textSu, Ya Xin, and Wen Hui Wang. "Influence of Preheated Air Temperature on High Temperature Air Combustion in Furnace with Swirling Burner: a Modeling Study." Advanced Materials Research 354-355 (October 2011): 315–18. http://dx.doi.org/10.4028/www.scientific.net/amr.354-355.315.
Full textDinda, Soumitra Kumar, and Kinnor Chattopadhyay. "Numerical Modeling of Volatile Organic Compounds (VOC) Emissions during Preheating of Magnesia-Carbon Bricks in a Basic Oxygen Furnace." Metals 10, no. 10 (2020): 1277. http://dx.doi.org/10.3390/met10101277.
Full textPoskart, A., H. Radomiak, P. Niegodajew, M. Zajemska, and D. Musiał. "The Analysis of Nitrogen Oxides Formation During Oxygen - Enriched Combustion of Natural Gas." Archives of Metallurgy and Materials 61, no. 4 (2016): 1925–30. http://dx.doi.org/10.1515/amm-2016-0309.
Full textHoffmann, S., B. Lenze, and H. Eickhoff. "Results of Experiments and Models for Predicting Stability Limits of Turbulent Swirling Flames." Journal of Engineering for Gas Turbines and Power 120, no. 2 (1998): 311–16. http://dx.doi.org/10.1115/1.2818122.
Full textBashirnezhad, K., S. Baghdar Hosseini, A. R. Moghiman, and Mohammad Moghiman. "Experimental Study on Combustion and Pollution Characteristic of Gas Oil and Biodiesel." Applied Mechanics and Materials 110-116 (October 2011): 99–104. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.99.
Full textSu, Ya Xin, and Wen Hui Wang. "Combustion Performance and NO Emission in Industrial Furnace under Preheated Air Condition with Different Excess Air Ratio." Advanced Materials Research 402 (November 2011): 463–66. http://dx.doi.org/10.4028/www.scientific.net/amr.402.463.
Full textSohn, Hong Yong, De-Qiu Fan, and Amr Abdelghany. "Design of Novel Flash Ironmaking Reactors for Greatly Reduced Energy Consumption and CO2 Emissions." Metals 11, no. 2 (2021): 332. http://dx.doi.org/10.3390/met11020332.
Full textSchmitz, N., C. Schwotzer, H. Pfeifer, J. Schneider, E. Cresci, and J. G. Wünning. "Development of an Energy-Efficient Burner for Heat Treatment Furnaces with a Reducing Gas Atmosphere." HTM Journal of Heat Treatment and Materials 72, no. 2 (2017): 73–80. http://dx.doi.org/10.3139/105.110314.
Full textSlefarski, Rafal, Pawel Czyzewski, and Michal Golebiewski. "Experimental study on combustion of CH4/NH3 fuel blends in an industrial furnace operated in flameless conditions." Thermal Science 24, no. 6 Part A (2020): 3625–35. http://dx.doi.org/10.2298/tsci200401282s.
Full text