Academic literature on the topic 'Industrial Motion Control'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Industrial Motion Control.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Industrial Motion Control"

1

Steinbuch, M., and M. L. Norg. "Advanced Motion Control: An Industrial Perspective." European Journal of Control 4, no. 4 (1998): 278–93. http://dx.doi.org/10.1016/s0947-3580(98)70121-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jahns, T. M. "Designing intelligent muscle into industrial motion control." IEEE Transactions on Industrial Electronics 37, no. 5 (1990): 329–41. http://dx.doi.org/10.1109/41.103427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Steinbuch, Maarten, and René van de Molengraft. "Iterative Learning Control of Industrial Motion Systems." IFAC Proceedings Volumes 33, no. 26 (2000): 899–904. http://dx.doi.org/10.1016/s1474-6670(17)39259-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Week, M., and G. Ye. "Smooth Motion Control of Automated Industrial Processes." IFAC Proceedings Volumes 20, no. 5 (1987): 175–80. http://dx.doi.org/10.1016/s1474-6670(17)55314-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Omatu, Shigeru. "Intelligent Motion Control. II. Present Technologies on Motion Control." IEEJ Transactions on Industry Applications 116, no. 8 (1996): 812–15. http://dx.doi.org/10.1541/ieejias.116.812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fujimoto, Yasutaka, Toshiyuki Murakami, and Roberto Oboe. "Advanced Motion Control for Next-Generation Industrial Applications." IEEE Transactions on Industrial Electronics 63, no. 3 (2016): 1886–88. http://dx.doi.org/10.1109/tie.2016.2515992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ferretti, G., C. Maffezzoni, G. Magnani, and P. Rocco. "Decoupling Force and Motion Control in Industrial Robots." IFAC Proceedings Volumes 26, no. 2 (1993): 541–46. http://dx.doi.org/10.1016/s1474-6670(17)48786-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ferretti, G., C. Maffezzoni, G. Magnani, and P. Rocco. "Decoupling force and motion control in industrial robots." Control Engineering Practice 1, no. 6 (1993): 1019–27. http://dx.doi.org/10.1016/0967-0661(93)90012-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Palii, O. S., E. O. Lapkhanov, and D. S. Svorobin. "Model of distributed space power system motion control." Technical mechanics 2022, no. 4 (2022): 35–50. http://dx.doi.org/10.15407/itm2022.04.035.

Full text
Abstract:
The goal of this article is to develop a generalized mathematical model for controlling the motion of the spacecraft of a space industrial platform’s distributed power system. Space industrialization is one of the promising lines of industrial development in the world. The development of space industrial technologies will allow one to solve a number of problems in the production of unique products unavailable under terrestrial conditions. The main types of these products include semiconductor materials, materials made by 3D printing in microgravity, space modules of sunshade systems, space met
APA, Harvard, Vancouver, ISO, and other styles
10

Muhamediyeva, D. T., and M. Fozilova. "General algorithm for optimal control of moving industrial robots." E3S Web of Conferences 401 (2023): 05058. http://dx.doi.org/10.1051/e3sconf/202340105058.

Full text
Abstract:
Control of robots in changing conditions is complex, and its main reason is, firstly, that the robot changes its manipulative behavior concerning the influence of the external environment, and secondly, that it does not have a clear model of motion. If the motion model is not clear, the control model will not be clear, and it will be difficult to determine the control parameters of the robot. Therefore, to overcome these shortcomings, the article presents a model of the motion of robots moving in changing conditions using mathematical methods and an algorithm for optimal control based on it.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Industrial Motion Control"

1

Шендрик, Віра Вікторівна, Вера Викторовна Шендрик, Vira Viktorivna Shendryk, Е. Kuznetsov, and Y. Mashyn. "Investigation of industrial robot-manipulator computer model motion control." Thesis, Sumy State University, 2017. http://essuir.sumdu.edu.ua/handle/123456789/55777.

Full text
Abstract:
This article provides a technology for develop a physical and mathematical simulation of the robot's computer model. The purpose of the work is to learn how to define the movement of robot elements. A complete, controlled computer model of an industrial robot manipulator has been created. Model control is implemented using the modeling environment software. The technology developed is used to master the basics of robotics.
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Joonyoung. "Path-invariant and time-optimal motion control for industrial robots." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/61295.

Full text
Abstract:
This thesis presents practical methods for planning and control to improve the motion performance of industrial robots. Particular attention is given to the commercial six degrees-of-freedom articulated robot with a low-cost generic controller. A comparative study of motion control methods demonstrated that both smooth trajectory planning and filtering techniques, when combined with a traditional Proportional-Derivative control, are limited in achievable performance due to reduced accelerations (smooth trajectory) or large path-distortions (filtering technique). Instead, faster and more accura
APA, Harvard, Vancouver, ISO, and other styles
3

Gao, Jiaming. "Industrial robot motion control for joint tracking in laser welding." Thesis, Högskolan Väst, Avdelningen för maskinteknik och naturvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-10365.

Full text
Abstract:
Laser welding is used in modern industrial production due to its high welding speed and good welding performance comparing to more traditional arc welding. To improve the flex-ibility, robots can be used to mount the laser tool. However, laser welding has a high require-ment for the accuracy in positioning the laser tool. There are three main related variables which affect the laser welding accuracy: robot path accuracy, workpiece geometry and fixture repeatability. Thus, joint tracking is very important for laser welding to achieve high quality welds. There are many joint tracking systems whi
APA, Harvard, Vancouver, ISO, and other styles
4

Sorour, Mohamed. "Motion discontinuity-robust controller for steerable wheeled mobile robots." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTS090/document.

Full text
Abstract:
Les robots mobiles à roues orientables gagnent de la mobilité en employant des roues conventionnelles entièrement orientables, comportant deux joints actifs, un pour la direction et un autre pour la conduite. En dépit d'avoir seulement un degré de mobilité (DOM) (défini ici comme degrés de liberté instantanément autorisés DOF), correspondant à la rotation autour du centre de rotation instantané (ICR), ces robots peuvent effectuer des trajectoires planaires complexes de $ 2D $. Ils sont moins chers et ont une capacité de charge plus élevée que les roues non conventionnelles (par exemple, Sweedi
APA, Harvard, Vancouver, ISO, and other styles
5

Cetinkunt, Sabri. "On motion planning and control of multi-link lightweight robotic manipulators." Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/19243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Karadogan, Ernur. "Teleoperation of an Industrial Robot Using Resolved Motion Rate Control with Visual Servoing." Ohio University / OhioLINK, 2005. http://www.ohiolink.edu/etd/view.cgi?ohiou1125605349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shum, Heung-yeung. "Adaptive motion and force control of robot manipulators with uncertainties /." Hong Kong : [University of Hong Kong], 1990. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12840403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

沈向洋 and Heung-yeung Shum. "Adaptive motion and force control of robot manipulators with uncertainties." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1990. http://hub.hku.hk/bib/B3120997X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Basar, Feza. "Development Of A 3 Axes Pc Numerical Control System For Industrial Applications." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1022565/index.pdf.

Full text
Abstract:
In this study, a three-axes PC numerical control system for industrial applications has been developed. With this system, fast and cheap prototyping of designed objects can be realized. The system consists of software and a hardware which includes an XYZ positioning table and three step motors controlling this table. A proper drive circuit for the stepper motors is utilized. The software digitizes two dimensional drawings of three dimensional objects and generates the control signals for the XYZ positioning table. The software is developed under Microsoft Studio Visual Basic 6.0 environment re
APA, Harvard, Vancouver, ISO, and other styles
10

Westerlund, Andreas. "Sensor-Based Trajectory Planning in Dynamic Environments." Thesis, Linköpings universitet, Reglerteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150040.

Full text
Abstract:
Motion planning is central to the efficient operation and autonomy of robots in the industry. Generally, motion planning of industrial robots is treated in a two-step approach. First, a geometric path between the start and goal position is planned where the objective is to achieve as short path as possible together with avoiding obstacles. Alternatively, a pre-defined geometric path is provided by the end user. Second, the velocity profile along the geometric path is calculated accounting for system dynamics together with other constraints. This approach is computationally efficient, but yield
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Industrial Motion Control"

1

Gürocak, Hakan. Industrial Motion Control. John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118403211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Society of Manufacturing Engineers. Marketing Services Division., ed. Industrial robots: Robots, accessories, components, sensors, control systems, consultants, motion control, drives, tooling. 2nd ed. Society of Manufacturing Engineers, Marketing Services Division, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ming-Chih, Chien, ed. Adaptive control of robot manipulators: A unified regressor-free approach. World Scientific Publishing, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lang, Donogh W. Development of an adaptive control strategy for elastic mechanical systems. University College Dublin, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wall, John James Michael. Design, analysis and performance testing of an x-y table. University College Dublin, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sallinen, Mikko. Modelling and estimation of spatial relationships in sensor-based robot workcells. VTT Technical Research Centre of Finland, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1959-, Siciliano Bruno, ed. Robotics: Modelling, planning and control. Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gopalakrishnan, S. Spectral finite element method: Wave propagation, diagnostics and control in anisotropic and inhomogenous structures. Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gopalakrishnan, S. Spectral finite element method: Wave propagation, diagnostics and control in anisotropic and inhomogenous structures. Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gopalakrishnan, S. Spectral finite element method: Wave propagation, diagnostics and control in anisotropic and inhomogenous structures. Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Industrial Motion Control"

1

Kiong, Tan Kok, Lee Tong Heng, Dou Huifang, and Huang Sunan. "Precision Tracking Motion Control." In Advances in Industrial Control. Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-3691-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tan, Kok Kiong, and Andi Sudjana Putra. "Trends in Motion Control." In Drives and Control for Industrial Automation. Springer London, 2011. http://dx.doi.org/10.1007/978-1-84882-425-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kiong, Tan Kok, Lee Tong Heng, Dou Huifang, and Huang Sunan. "Co-Ordinated Motion Control of Gantry Systems." In Advances in Industrial Control. Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-3691-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Isidori, Alberto, Lorenzo Marconi, and Andrea Serrani. "Robust Nonlinear Motion Control of a Helicopter." In Advances in Industrial Control. Springer London, 2003. http://dx.doi.org/10.1007/978-1-4471-0011-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jiwei, Han. "Intelligent Motion Control Technology of Industrial Robot." In Advances in Communication, Devices and Networking. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1983-3_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Heine, Ralf, and Thorsten Schnare. "Collision Free Motion Planning for Robot-Manipulators." In Analysis and Control of Industrial Processes. Vieweg+Teubner Verlag, 1991. http://dx.doi.org/10.1007/978-3-322-88847-1_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Krastev, Evgeniy. "Velocity Motion Path Control of Redundant Robot Arms." In Advances in Service and Industrial Robotics. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19648-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Deutschmann, Bastian, Christian Ott, Concepcion A. Monje, and Carlos Balaguer. "Robust Motion Control of a Soft Robotic System Using Fractional Order Control." In Advances in Service and Industrial Robotics. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61276-8_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Htike, Zaw, Georgios Papaioannou, Efstathios Siampis, Efstathios Velenis, and Stefano Longo. "Motion Sickness Minimisation in Autonomous Vehicles Using Optimal Control." In Advances in Service and Industrial Robotics. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48989-2_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alvarado Requena, Erick, Antonio Estrada, Gengis Toledo Ramírez, Noe Reyes Elias, Jorge Uribe, and Berenice Rodríguez. "Control of a Stewart-Gough Platform for Earthquake Ground Motion Simulation." In Industrial and Robotic Systems. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45402-9_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Industrial Motion Control"

1

Al-Rawashdeh, Yazan M., Mohammad Al Saaideh, Marcel F. Heertjes, and Mohammad Al Janaideh. "On Precision Motion Control for an Industrial Long-Stroke Motion System with a Nonlinear Micropositioning Actuator." In 2024 American Control Conference (ACC). IEEE, 2024. http://dx.doi.org/10.23919/acc60939.2024.10645004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jung, Jooyeol, Seunghyeon Sim, and Soohee Han. "Safe Motion Planning for Industrial Manipulators in Dynamic Environments." In 2024 24th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2024. https://doi.org/10.23919/iccas63016.2024.10773209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Qi, Chengyuan Hua, Caoyuan Gu, Yao-Wei Wang, Wen-An Zhang, and Shigeyuki Takagi. "Contour Tracking Control for High-Order Fully Actuated Multi-Axis Motion Control Systems." In 2025 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2025. https://doi.org/10.1109/icit63637.2025.10965133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Motion control, and mechatronics." In 2017 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2017. http://dx.doi.org/10.1109/icit.2017.7915434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ferreira, Oscar, and Ralph Kennel. "Encoderless Control of Industrial Servo Drives." In 2006 12th International Power Electronics and Motion Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/epepemc.2006.283147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ferreira, Oscar Cabral, and Ralph Kennel. "Encoderless Control of Industrial Servo Drives." In 2006 12th International Power Electronics and Motion Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/epepemc.2006.4778693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chiandone, M., S. Cleva, R. Menis, and G. Sulligoi. "Industrial motion control applications using linux RTAI." In 2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). IEEE, 2008. http://dx.doi.org/10.1109/speedham.2008.4581212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nakashima, R., M. Ojima, R. Oguro, and T. Tsuji. "A decoupling control method for industrial robots." In 6th International Workshop on Advanced Motion Control. Proceedings. IEEE, 2000. http://dx.doi.org/10.1109/amc.2000.862869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Motion sensing and control." In 2011 IEEE 20th International Symposium on Industrial Electronics (ISIE). IEEE, 2011. http://dx.doi.org/10.1109/isie.2011.5984492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kazemi, Reza, and Siavash Taheri. "Body roll motion optimal control." In 2008 IEEE International Conference on Industrial Technology - (ICIT). IEEE, 2008. http://dx.doi.org/10.1109/icit.2008.4608404.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Industrial Motion Control"

1

Seroa da Motta, Ronaldo. Sinopsis del estudio de inserción de la gestión ambiental en las políticas sectoriales: Determinantes del desempeño ambiental en el sector industrial brasileño. Inter-American Development Bank, 2002. http://dx.doi.org/10.18235/0012175.

Full text
Abstract:
Este documento fue comisionado por la Red de Medio Ambiente del Diálogo Regional de Política para la I Reunión Hemisférica, celebrada los días 4 y 5 de abril, 2002. Este estudio analiza los determinantes del desempeño ambiental en el sector industrial brasileño. Utiliza una base de datos conducida por la Confederación Nacional Brasileña de Industrias investigando cuestiones de gestión ambiental en 325 firmas medianas y grandes referidas al año 1997. Hemos podido probar tres variables sustitutivas de desempeño ambiental, tales como: un número promedio ponderado de prácticas de control ambiental
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!