Academic literature on the topic 'Inégalité de Gagliardo-Nirenberg'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Inégalité de Gagliardo-Nirenberg.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Inégalité de Gagliardo-Nirenberg"

1

Laurent, Clément. "Grandes déviations pour les temps locaux d'auto-intersections de marches aléatoires." Phd thesis, Université de Provence - Aix-Marseille I, 2011. http://tel.archives-ouvertes.fr/tel-00645783.

Full text
Abstract:
Dans cette thèse on s'intéresse au temps local d'auto-intersections de marches aléatoires. Cette quantité est définie comme la norme-$p$ à la puissance $p$ du temps local de la marche. Elle regarde dans quelle mesure la trajectoire de la marche aléatoire s'intersecte. Le temps local d'auto-intersections est lié à différents modèles physiques comme les modèles de polymères ou les problèmes d'écoulements de flux en milieux stratifiés mais aussi au modèle mathématiques des marches aléatoires en paysages aléatoires. Nous nous sommes pour notre part intéressés en particulier aux grandes déviations du temps local d'auto-intersections, c'est à dire que nous regardons la probabilité que la quantité d'intersections de la marche aléatoire soit plus grande que sa moyenne. Cette question qui a été très étudiée au cours des années 2000 fait apparaitre trois cas distincts, le cas sous-critique, le cas critique et le cas sur-critique. Nous améliorons la connaissance sur cette question au travers de deux résultats complets et d'un résultat partiel. D'abord nous prouvons un principe de grandes déviations dans les cas critique et sur-critique des marches $\alpha$-stables, puis nous améliorons les échelles de déviations au cas sous-critique tout entier de la marche simple, enfin nous sommes en train d'étendre ce dernier résultat aux marches $\alpha$-stables. Par ailleurs les trois preuves sont basées sur l'utilisation d'une version due à Eisenbaum d'un théorème d'isomorphisme de Dynkin. Cette méthode d'abord introduite par Castell dans le cas critique est donc ici étendue aux autres cas. Nous avons donc réussi à unifier les différentes méthodes de preuves au travers ce théorème d'isomorphisme.
APA, Harvard, Vancouver, ISO, and other styles
2

Brouttelande, Christophe. "Inégalités de Gagliardo-Nirenberg optimales sur les variétés riemanniennes." Toulouse 3, 2003. http://www.theses.fr/2003TOU30081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brouttelande, Christophe. "Inegalites de Gagliardo-Nirenberg optimales sur les varietes riemanniennes." Phd thesis, Université Paul Sabatier - Toulouse III, 2003. http://tel.archives-ouvertes.fr/tel-00005408.

Full text
Abstract:
Les espaces de Sobolev jouent un rôle central dans la théorie des équations aux dérivées partielles. Les théorèmes de plongement de ces espaces dans les espaces de Lebesgue se traduisent en inégalités dites de Sobolev. Elles sont devenues un outil fondamental en analyse. Ces notions ont été introduites par S. L. Sobolev à la fin des années~30. D'autres mathématiciens se sont intéressés à ce domaine. On peut notamment citer les travaux d'E. Gagliardo et L. Nirenberg dans les années~50. L'étude des inégalités de Sobolev optimales trouve ses origines dans de grands problèmes d'analyse tels que le problème de Yamabe. Il existe plusieurs façons d'aborder cette étude. Nous parlerons plus particulièrement de programme AB et de programme BA. Le premier programme a été étudié, entre autre, par T. Aubin, O. Druet, E. Hebey et M. Vaugon. Le second trouve sa source en théorie des semi-groupes de Markov. Il a notamment été étudié par D. Bakry et M. Ledoux. Les inégalités de Sobolev sont un cas particulier des inégalités de Gagliardo-Nirenberg. Il est donc naturel de se demander si les résultats connus pour les inégalités de Sobolev s'adaptent aux autres inégalités de la famille. Les premiers travaux de ce type se sont portés sur l'inégalité de Nash et les inégalités de Sobolev logarithmique. Dans cette thèse, nous obtenons une généralisation de ces travaux à une famille d'inégalités plus large. Plus précisément, nous adaptons les programmes AB et BA à une sous-famille des inégalités de Gagliardo-Nirenberg contenant, entre autres, l'inégalité de Nash.
APA, Harvard, Vancouver, ISO, and other styles
4

Chamorro, Diego. "Inégalités de Gagliardo-Nirenberg précisées sur le groupe de Heisenberg." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2006. http://tel.archives-ouvertes.fr/tel-00132135.

Full text
Abstract:
Cette thèse étudie la généralisation des inégalités de Gagliardo Nirenberg précisées sur les groupes de Lie stratifiés. Dans le cas euclidien il existe trois méthodes en fonction de l'exposant p qui caractérise l'espace de Sobolev. La première série d'inégalités concerne les espaces de Sobolev avec p>1. La démonstration de ces estimations découle de la caractérisation des espaces fonctionnels avec une analyse de Littlewood Paley. Pour traiter le cas p=1 il est nécessaire d'utiliser une autre technique. Nous allons utiliser les propriétés du noyau de la chaleur en généralisant la pseudo inégalité de Poincaré. Ce cas permet l'étude de l'espace de fonction BV, mais ne permet pas de considérer un espace de Sobolev dans le membre de gauche des inégalités. La troisième méthode de démonstration se base sur une décomposition en ondelettes à support compact et la généralisation au groupe de Heisenberg reste ouverte. On traite aussi des généralisations sur certains groupes de Lie et on discute une caractérisation de l'espace BV en termes d'espaces de Besov sur le groupe 2-adique
APA, Harvard, Vancouver, ISO, and other styles
5

Badr, Nadine. "Interpolation réelle des espaces de Sobolev sur les espaces métriques mesurés et applications aux inégalités fonctionnelles." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00736066.

Full text
Abstract:
Dans cette thèse, nous étudions l'interpolation réelle des espaces de Sobolev et ses applications. Le manuscrit est constitué de deux parties. Dans la première partie, nous démontrons au premier chapitre que les espaces de Sobolev non homogènes W^1_p (resp. homogènes ) sur les variétés Riemanniennes complètes vérifiant la propriété de doublement et une inégalité de Poincaré forment une échelle d'interpolation réelle pour un intervalle de valeurs de p. Nous étendons ce résultat à d'autres cadres géométriques. Dans un deuxième court chapitre, nous comparons différents espaces de Sobolev sur le cone Euclidien et nous regardons le lien de ces espaces avec l'interpolation. Nous montrons sur cet exemple que l'hypothèse de Poincaré n'est pas une condition nécessaire pour pouvoir interpoler les espaces de Sobolev. Dans le dernier chapitre de cette partie, nous définissons les espaces de Sobolev non homog'nes W^1_p,V (resp. homogènes ) associés à un potentiel positif V sur une variété Riemannienne. Nous démontrons que si la variété véifie la propriété de doublement et une inégalité de Poincaré et si de plus V est dans une classe de Holder inverse, ces espaces forment aussi une échelle d'interpolation réelle pour un intervalle de valeurs de p. Nous étendons ce résultat aux cas des groupes de Lie. Dans la deuxième partie, dans un premier chapitre en collaboration avec E. Russ, nous étudions sur un graphe vérifiant la propriété de doublement et une inégalité de Poincaré, la Lp bornitude de la transformée de Riesz pour p > 2 et son inégalité inverse pour p < 2. Pour notre but, nous démontrons aussi des résultats d'interpolation des espaces de Sobolev et des inégalités de Littlewood-Paley. Dans le deuxième chapitre, nous démontrons en utilisant notre résultat d'interpolation, des inégalités de Gagliardo-Nirenberg sur les variétés Riemanniennes complètes vérifiant le doublement, des inégalités de Poincaré et pseudo-Poincaré. Ce résultat s'applique aussi dans le cadre des groupes de Lie et des graphes.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography