To see the other types of publications on this topic, follow the link: Inference. Logic, Symbolic and mathematical. Mathematics.

Dissertations / Theses on the topic 'Inference. Logic, Symbolic and mathematical. Mathematics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 24 dissertations / theses for your research on the topic 'Inference. Logic, Symbolic and mathematical. Mathematics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Bishop, Joyce Wolfer Otto Albert D. Lubinski Cheryl Ann. "Middle school students' understanding of mathematical patterns and their symbolic representations." Normal, Ill. Illinois State University, 1997. http://wwwlib.umi.com/cr/ilstu/fullcit?p9803721.

Full text
Abstract:
Thesis (Ph. D.)--Illinois State University, 1997.
Title from title page screen, viewed June 1, 2006. Dissertation Committee: Albert D. Otto, Cheryl A. Lubinski (co-chairs), John A. Dossey, Cynthia W. Langrall, George Padavil. Includes bibliographical references (leaves 119-123) and abstract. Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
2

Lavers, Peter Stanley. "Generating intensional logics : the application of paraconsistent logics to investigate certain areas of the boundaries of mathematics /." Title page, table of contents and summary only, 1985. http://web4.library.adelaide.edu.au/theses/09ARM/09arml399.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Akishev, Galym. "Monadic bounded algebras : a thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics /." ResearchArchive@Victoria e-Thesis, 2009. http://hdl.handle.net/10063/915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brierley, William. "Undecidability of intuitionistic theories." Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Quine, W. V. "The logic of sequences a generalization of Principia mathematica /." New York : Garland Pub, 1990. http://catalog.hathitrust.org/api/volumes/oclc/20797392.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Eliasson, Jonas. "Ultrasheaves." Doctoral thesis, Uppsala : Matematiska institutionen, Univ. [distributör], 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schwartzkopff, Robert. "The numbers of the marketplace : commitment to numbers in natural language." Thesis, University of Oxford, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.711821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brinkerhoff, Jennifer Alder. "Applying Toulmin's Argumentation Framework to Explanations in a Reform Oriented Mathematics Class." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1960.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Duff, Karen Malina. "What Are Some of the Common Traits in the Thought Processes of Undergraduate Students Capable of Creating Proof?" Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1856.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Konecny, Jan. "Isotone fuzzy Galois connections and their applications in formal concept analysis." Diss., Online access via UMI:, 2009.

Find full text
Abstract:
Thesis (Ph. D.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Systems Science and Industrial Engineering, 2009.
Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
11

Rodrigues, Tarcísio Genaro. "Sobre os fundamentos de programação lógica paraconsistente." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278897.

Full text
Abstract:
Orientador: Marcelo Esteban Coniglio
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciencias Humanas
Made available in DSpace on 2018-08-17T03:29:03Z (GMT). No. of bitstreams: 1 Rodrigues_TarcisioGenaro_M.pdf: 1141020 bytes, checksum: 59bb8a3ae7377c05cf6a8d8e6f7e45a5 (MD5) Previous issue date: 2010
Resumo: A Programação Lógica nasce da interação entre a Lógica e os fundamentos da Ciência da Computação: teorias de primeira ordem podem ser interpretadas como programas de computador. A Programação Lógica tem sido extensamente utilizada em ramos da Inteligência Artificial tais como Representação do Conhecimento e Raciocínio de Senso Comum. Esta aproximação deu origem a uma extensa pesquisa com a intenção de definir sistemas de Programação Lógica paraconsistentes, isto é, sistemas nos quais seja possível manipular informação contraditória. Porém, todas as abordagens existentes carecem de uma fundamentação lógica claramente definida, como a encontrada na programação lógica clássica. A questão básica é saber quais são as lógicas paraconsistentes subjacentes a estas abordagens. A presente dissertação tem como objetivo estabelecer uma fundamentação lógica e conceitual clara e sólida para o desenvolvimento de sistemas bem fundados de Programação Lógica Paraconsistente. Nesse sentido, este trabalho pode ser considerado como a primeira (e bem sucedida) etapa de um ambicioso programa de pesquisa. Uma das teses principais da presente dissertação é que as Lógicas da Inconsistência Formal (LFI's), que abrangem uma enorme família de lógicas paraconsistentes, proporcionam tal base lógica. Como primeiro passo rumo à definição de uma programação lógica genuinamente paraconsistente, demonstramos nesta dissertação uma versão simplificada do Teorema de Herbrand para uma LFI de primeira ordem. Tal teorema garante a existência, em princípio, de métodos de dedução automática para as lógicas (quantificadas) em que o teorema vale. Um pré-requisito fundamental para a definição da programação lógica é justamente a existência de métodos de dedução automática. Adicionalmente, para a demonstração do Teorema de Herbrand, são formuladas aqui duas LFI's quantificadas através de sequentes, e para uma delas demonstramos o teorema da eliminação do corte. Apresentamos também, como requisito indispensável para os resultados acima mencionados, uma nova prova de correção e completude para LFI's quantificadas na qual mostramos a necessidade de exigir o Lema da Substituição para a sua semântica
Abstract: Logic Programming arises from the interaction between Logic and the Foundations of Computer Science: first-order theories can be seen as computer programs. Logic Programming have been broadly used in some branches of Artificial Intelligence such as Knowledge Representation and Commonsense Reasoning. From this, a wide research activity has been developed in order to define paraconsistent Logic Programming systems, that is, systems in which it is possible to deal with contradictory information. However, no such existing approaches has a clear logical basis. The basic question is to know what are the paraconsistent logics underlying such approaches. The present dissertation aims to establish a clear and solid conceptual and logical basis for developing well-founded systems of Paraconsistent Logic Programming. In that sense, this text can be considered as the first (and successful) stage of an ambitious research programme. One of the main thesis of the present dissertation is that the Logics of Formal Inconsistency (LFI's), which encompasses a broad family of paraconsistent logics, provide such a logical basis. As a first step towards the definition of genuine paraconsistent logic programming we shown, in this dissertation, a simplified version of the Herbrand Theorem for a first-order LFI. Such theorem guarantees the existence, in principle, of automated deduction methods for the (quantified) logics in which the theorem holds, a fundamental prerequisite for the definition of logic programming over such logics. Additionally, in order to prove the Herbrand Theorem we introduce sequent calculi for two quantified LFI's, and cut-elimination is proved for one of the systems. We also present, as an indispensable requisite for the above mentioned results, a new proof of soundness and completeness for first-order LFI's in which we show the necessity of requiring the Substitution Lemma for the respective semantics
Mestrado
Filosofia
Mestre em Filosofia
APA, Harvard, Vancouver, ISO, and other styles
12

Almeida, Henrique Antunes 1989. "Revisitando o Teorema de Frege." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/279774.

Full text
Abstract:
Orientador: Walter Alexandre Carnielli
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciências Humanas
Made available in DSpace on 2018-08-25T21:09:00Z (GMT). No. of bitstreams: 1 Almeida_HenriqueAntunes_M.pdf: 1516387 bytes, checksum: 2608439ba585a23431d2aa295b1b8876 (MD5) Previous issue date: 2014
Resumo: Neste trabalho, abordamos o Teorema de Frege sob uma perspectiva exclusivamente técnica. Primeiramente, propomos uma caracterização geral de linguagens de segunda ordem que sejam adequadas para formalizar quaisquer teorias fregeanas ¿ teorias que resultam da introdução de um ou mais princípios de abstração a um sistema dedutivo de lógica de segunda ordem; fornecemos uma semântica e um sistema dedutivo para essas linguagens e elaboramos alguns resultados metateóricos acerca desse sistema. Em segundo lugar, apresentamos uma exposicão detalhada da prova do Teorema de Frege, enunciado como uma relação entre a Aritmética de Frege e a Aritmética de Dedekind-Peano. Por fim, provamos a equiconsistência entre essas teorias e a Aritmética de Peano de Segunda Ordem
Abstract: In this work, we discuss Frege¿s Theorem under an exclusively technical perspective. First, we propose a general caracterization of second-order languages suitable to formalize all Fregean theories ¿ theories that result from the introduction of one or more abstraction principles to a deductive system of second-order logic; we also furnish a semantics and a deductive system for these languages and establish a few metatheorical results about the system. Second, we present a detailed proof of Frege¿s Theorem, formulated as a relation between Frege¿s Arithmetic and Dedekind-Peano Arithemtic. Finally, we prove the equiconsistency between these theories and Peano Second-Order Arithmetic
Mestrado
Filosofia
Mestre em Filosofia
APA, Harvard, Vancouver, ISO, and other styles
13

Freire, Rodrigo de Alvarenga. "Os fundamentos do pensamento matematico no seculo XX e a relevancia fundacional da teoria de modelos." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/281061.

Full text
Abstract:
Orientador: Walter Alexandre Carnielli
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciencias Humanas
Made available in DSpace on 2018-08-12T22:46:52Z (GMT). No. of bitstreams: 1 Freire_RodrigodeAlvarenga_D.pdf: 761227 bytes, checksum: 3b1a0de92aa93b50f2bfc602bf6173bc (MD5) Previous issue date: 2009
Resumo: Esta Tese tem como objetivo elucidar, ao menos parcialmente, a questão do significado da Teoria de Modelos para uma reflexão sobre o conhecimento matemático no século XX. Para isso, vamos buscar, primeiramente, alcançar uma compreensão da própria reflexão sobre o conhecimento matemático, que será denominada de Fundamentos do Pensamento Matemático no século XX, e da própria relevância fundacional. Em seguida, analisaremos, dentro do contexto fundacional estabelecido, o papel da Teoria de Modelos e da sua interação com a Álgebra, em geral, e, finalmente, empreenderemos um estudo de caso específico. Nesse estudo de caso mostraremos que a Teoria de Galois pode ser vista como um conteúdo lógico, e buscaremos compreender o significado fundacional desse enquadramento modelo-teórico para uma parte da Álgebra clássica.
Abstract: The aim of the present Thesis is to bring some light to the question about the status and relevance of Model Theory to a reflection about the mathematical knowledge in the twentieth century. To pursue this target, we will, first of all, try to reach a comprehension of the reflection about the mathematical knowledge, itself, what will be designated as Foundations of Mathematical Thought in the twentieth century, and of the foundational relevance, itself. In the sequel, we will provide an analysis, of the role of Model Theory and its interaction with Algebra, in general, within the established foundational setting and, finally, we will discuss a specific study case. In this study case we will show that Galois Theory can be seen as a logical content, and we will try to understand the foundational meaning of this model-theoretic framework for some part of classical Algebra.
Doutorado
Logica
Doutor em Filosofia
APA, Harvard, Vancouver, ISO, and other styles
14

Peske, Wendy Ann. "A topological approach to nonlinear analysis." CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2779.

Full text
Abstract:
A topological approach to nonlinear analysis allows for strikingly beautiful proofs and simplified calculations. This topological approach employs many of the ideas of continuous topology, including convergence, compactness, metrization, complete metric spaces, uniform spaces and function spaces. This thesis illustrates using the topological approach in proving the Cauchy-Peano Existence theorem. The topological proof utilizes the ideas of complete metric spaces, Ascoli-Arzela theorem, topological properties in Euclidean n-space and normed linear spaces, and the extension of Brouwer's fixed point theorem to Schauder's fixed point theorem, and Picard's theorem.
APA, Harvard, Vancouver, ISO, and other styles
15

Sentone, Francielle Gonçalves. "Paradoxos geométricos em sala de aula." Universidade Tecnológica Federal do Paraná, 2017. http://repositorio.utfpr.edu.br/jspui/handle/1/2701.

Full text
Abstract:
CAPES
Apresentamos neste trabalho alguns paradoxos lógico-matemáticos, como o paradoxo de Galileu, e também alguns paradoxos geométricos, como os paradoxos de Curry, de Hooper e de Banach-Tarski. Empregamos os paradoxos de Curry e de Hooper para motivar o estudo de conceitos de Geometria e de Teoria dos Números, tais como área, semelhança de triângulos, o Teorema de Pitágoras, razões trigonométricas no triângulo retângulo, o coeficiente angular da reta e a sequência de Fibonacci, e organizamos atividades lúdicas para a sala de aula no Ensino Fundamental e no Ensino Médio.
We present in this work some logical-mathematical paradoxes, as Galileo's paradox, and also some geometric paradoxes, such as Curry's paradox, Hooper's paradox and the Banach-Tarski paradox. We employ the Curry and Hooper paradoxes to motivate the study of concepts of Geometry and Number Theory, such as area, triangle similarity, Pythagorean Theorem, trigonometric ratios in the right triangle, angular coefficient of the line, and Fibonacci sequence, and we organize recreation activities for the classroom in Elementary and High School.
APA, Harvard, Vancouver, ISO, and other styles
16

Mortensen, Chris. "The theory of inconsistency: inconsistant mathematics and paraconsistent logic/ C. E. Mortensen." 2005. http://hdl.handle.net/2440/38538.

Full text
Abstract:
Each volume includes author's previously published papers.
Bibliography: leaves 147-151 (v. 1).
3 v. :
Title page, contents and abstract only. The complete thesis in print form is available from the University Library.
Thesis (D.Sc.)--University of Adelaide, School of Mathematical Sciences, 2005
APA, Harvard, Vancouver, ISO, and other styles
17

Kim, Joongol. "A philosophical inquiry into the concept of number." 2004. http://etd.nd.edu/ETD-db/theses/available/etd-04202004-160320/.

Full text
Abstract:
Thesis (Ph. D.)--University of Notre Dame, 2004.
Thesis directed by Michael Detlefsen and Patricia Blanchette for the Department of Philosophy. "April 2004." Includes bibliographical references (leaves 120-122).
APA, Harvard, Vancouver, ISO, and other styles
18

Van, Staden Anna Maria. "The role of logical principles in proving conjectures using indirect proof techniques in mathematics." Thesis, 2012. http://hdl.handle.net/10210/6769.

Full text
Abstract:
M.Ed.
Recently there has been renewed interest in proof and proving in schools worldwide. However, many school students and even teachers of mathematics have only superficial ideas on the nature of proof. Proof is considered the heart of mathematics as individuals explore, make conjectures and try to convince themselves and others about the truth or falsity of their conjectures. There are basically two categories of deductive proof, namely proof by direct argument and indirect proofs. The aim of this study was to examine the structural features common to most of the mathematical proofs for formalised mathematical systems, with the emphasis on indirect proof techniques. The main question was to investigate which mathematical activities and logical principles at secondary school level are necessary for students to become proficient with proof writing. A great deal of specialised language is associated with reasoning. Such words as axiom, theorem, proof, and conjecture are just some of the terms that students must understand as they engage in the proof-making task. The formal aspect of mathematics at secondary school is extremely important. It is inevitable that students become involved with hypothetical arguments. They use among others, proofs by contradiction. Furthermore, necessary and sufficient conditions are related to theorems and their converses. It is therefore apparent that the study of logic is necessary already at secondary school level in order to practise mathematics satisfactorily. An analysis of the mathematics syllabus of the Department of Education has indicated that students should use indirect techniques of proof. According to this syllabus students should be familiar with logical arguments. The conclusion which is reached, gives evidence that students’ background in logic is completely lacking and inadequate. As a result they cannot cope adequately with argumentation and this causes a poor perception of what mathematics entails. Although proof writing can never be reduced to a mechanical process, considerable anxiety and uncertainty can be eliminated from the process if students are exposed to the principles of elementary logic and techniques. Mathematics educators and education researchers have reported students’ difficulties with mathematical proof and point out the conflict between the nature of this essential mathematical activity and current approaches to teaching it. This recent interest has led to an increased effort to teach proof in innovative ways.
APA, Harvard, Vancouver, ISO, and other styles
19

Ambre, Mandar Kwan Bing Woon. "A design methodology for the implementation of fuzzy logic traffic controller using programmable gate array /." 2004. http://etd.lib.fsu.edu/theses/available/etd-04122004-164143.

Full text
Abstract:
Thesis (M.S.)--Florida State University, 2004.
Advisor: Dr. Bing Kwan, Florida State University, College of Engineering, Dept. of Electrical and Computer Engineering. Title and description from dissertation home page (viewed June 16, 2004). Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
20

Barbour, Graham. "On the logics of algebra." Thesis, 2008. http://hdl.handle.net/10413/436.

Full text
Abstract:
We present and consider a number of logics that arise naturally from universal algebraic considerations, but which are ‘inherently unalgebraizable’ in the sense of [BP89a], essentially because they have no theo- rems. Of particular interest is the membership logic of a quasivariety, which is determined by its theorems, which are the relative congruence classes of the term algebra together with the empty-set in the case that the quasivariety is non-trivial. The membership logic arises by a more general technique developed in this text, for inducing deductive systems from closed systems on the free algebras of quasivarieties. In order to formalize this technique, we develop a theory of logics over constructs, where constructs are concrete categories. With this theory in place, we are able to view a closed system over an algebra as a logic, and in particular a structural logic, structural with respect to a suitable construct, typically the construct con- sisting of all algebras in a quasivariety and all algebra homomorphisms between these algebras. Of course, in such a case, none of these logics are generally sentential (i.e., structural and finitary deductive systems in the sense of [BP89a]), since the formulae of sentential logics arise from the terms of the absolutely free term algebra, which is generally not a member of the quasivariety under interest. In such cases, where the term algebra is not a member of a quasivariety, the free algebra of the quasivariety on denumerably countable free generators takes on the role played by the term algebra in sentential logics. Many of the logics that we encounter in this text arise most naturally as finitary logics on this free algebra of the quasivariety and generally are structural with respect to the quasivariety. We call such logics canons, and show how such structural canons induce sentential calculi, which we call the induced ideal ; the filters of the ideal on the free algebra are precisely the theories of the canon. The membership logic is the ideal of the cannon whose theories are the relative congruence classes on the free algebra. The primary aim of this thesis is to provide a unifying framework for logics of this type which extends the Blok-Pigozzi theory of elementarily algebraizable (and protoalgebraic) deductive systems. In this extension there are two parameters: a set of formulae and a variable. When the former is empty or consists of theorems, the Blok-Pigozzi theory is recovered, and the variable is redundant. For the membership logic, the appropriate variant of equivalent algebraic semantics encompasses the relatively congruence regular quasivarieties. These results have appeared in [BR03]. The secondary aim of this thesis is to analyse our theory of parameterized algebraization from a non- parameterized perspective. To this end, we develop a theory of protoalgebraic logics over constructs and equivalence between logics from different constructs, which we then use to explain the results we obtained in our parameterized theories of protoalgebraicity, algebraic semantics and equivalent algebraic semantics. We relate this theory to the theory of deductively equivalent -institutions [Vou03], and as a consequence obtain a number of improved and new results in the field of categorical abstract algebraic logic. We also use our theory of protoalgebraic logics over constructs to obtain a new and simpler characterization of structural finitary n-deductive systems, which we then use to close the program begun in [BR99], by extending those results for 1-deductive systems to n-deductive systems, and in particular characterizing the protoalgebraicity of the sentential n-deductive system Sn(K,N), which is the natural extension of the 1-deductive system S(K, ) introduce in [BR99], in terms of the quasivariety K having hK,Ni-coherent N-classes (we cannot see how to obtain this result from the standard characterization of protoalgebraic n- deductive systems of [Pal03], which is very complex). With respect to this program of completing [BR99], we also show that a quasivariety K is an equivalent algebraic semantics for a n-deductive system with defining equations N iff K is hK,Ni-regular; a notion of regularity that we introduce and characterize by a quasi-Mal’cev condition. The third aim of this text is to unify as many disparate arguments and notions in algebraic logic under the banner of continuous translations between closed systems, where our use of the term continuous is in the topological sense rather than in the order-theoretic sense, and, where possible, to give elementary, i.e. first order, definitions and proofs. To this end, we show that closed systems, closure operators and conse- quence relations can all be characterized elementarily over orders, and put into one-to-one correspondence that reflects exactly, the standard correspondences between the well-known concrete notions with the same name. We show that when the order is the complete power order over a set, then these elementary structures coincide with their well-known counterparts with the same name. We also introduce two other elementary structures over orders, namely the closed equivalence relation and something we term the proto-Leibniz relation; these elementary structures are also in one-to-one correspondence with the earlier mentioned structures; we have not seen concrete versions of these structures. We then characterize the structure homomorphisms between these structures, as well as considering galois relations between them; galois relations are pairs of order-preserving function in opposite directions; we call these translations, and they are elementary notions. We demonstrate how notions as disparate as structurality, semantics, algebraic semantics, the filter correspondence property, filters, models, semantic consequence, protoalge- braicity and even the logic S(K, ) of [BR99] and our logic Sn(K,N), all fall within this framework, as does much of our parameterized theory and much of the theory of -institutions. A brief summary of the standard theory of deductive systems and their algebraization is provided for the reader unfamiliar with algebraic logics, as well as the necessary background material, including construct and category theory, the theory of structures and algebras, and the model theory of structures with and without equality.
Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2008.
APA, Harvard, Vancouver, ISO, and other styles
21

Essack, Regina Miriam. "Exploring grade 11 learner routines on function from a commognitive perspective." Thesis, 2016. http://hdl.handle.net/10539/20693.

Full text
Abstract:
A thesis submitted to the Faculty of Humanities, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy September 2015
This study explores the mathematical discourse of Grade 11 learners on the topic function through their routines. From a commognitive perspective, it describes routines in terms of exploration and ritual. Data was collected through in-depth interviews with 18 pairs of learners, from six South African secondary schools, capturing a landscape of public schooling, where poor performance in Mathematics predominates. The questions pursued became: why does poor performance persist and what might a commognitive lens bring into view? With the discursive turn in education research, commognition provides an alternate view of learning mathematics. With the emphasis on participation and not on constraints from inherited mental ability, the study explored the nature of learner discourse on the object, function. Function was chosen as it holds significant time and weight in the secondary school curriculum. Examining learners’ mathematical routines with the object was a way to look at their discourse development: what were the signifiers related to the object and what these made possible for learners to realise. Within learners’ routines, I was able to characterise these realisations, which were described and categorised. This enabled a description of learner thinking over three signifiers of function in school Mathematics: the algebraic expression, table and graph. In each school, Grade 11 learners were separated into three groups according to the levels at which they were performing, from summative scores of grade 11 assessments, so as to enable a description of discourse related to performance. Interviews were conducted in pairs, and designed to provoke discussion on aspects of function and its signifiers between learners in each pair. This communication between learners and with the interviewer provided data for description and analysis of rituals and explorations. Zooming in and out again on these routines made a characterisation of the discourse of failure possible, which is seldom done. It became apparent early in the study that learners talked of the object function, without a formal mathematical narrative, a definition in other words, of the object. The object was thus vested in its signifiers. The absence of an individualised formal narrative of the object impacts directly what is made possible for learners to realise, hence to learn. The study makes the following contributions: first, it describes learners’ discursive routines as they work with the object function. Second, it characterises the discourse of learners at different levels of performance. Third, it starts exploration of commognition as an alternate means to look at poor performance. The strengths and limitations of the theory as it pertains to this study, are discussed later in the concluding chapter. Keywords commognition, discourse, communication, participation, routines, exploration, ritual, learners, learning, narratives, endorsed narratives, visual mediators.
APA, Harvard, Vancouver, ISO, and other styles
22

Stols, Gert Hendrikus. "Algebraïese simbole : die historiese ontwikkeling, gebruik en onderrig daarvan." 1996. http://hdl.handle.net/10500/16122.

Full text
Abstract:
Text in Afrikaans, abstract in Afrikaans and English
Die gebruik van simbole maak wiskunde eenvoudiger en kragtiger, maar ook moeiliker verstaanbaar. Laasgenoemde kan voorkom word as slegs eenvoudige en noodsaaklike simbole gebruik word, met die verduidelikings en motiverings in woorde. Die krag van simbole le veral in die feit dat simbole as substitute vir konsepte kan dien. Omdat die krag van simbole hierin le, skuil daar 'n groot gevaar in die gebruik van simbole. Wanneer simbole los is van sinvolle verstandsvoorstellings, is daar geen krag in simbole nie. Dit is die geval met die huidige benadering in skoolalgebra. Voordat voldoende verstandsvoorstellings opgebou is, word daar op die manipulasie van simbole gekonsentreer. Die algebraiese historiese-kenteoretiese perspektief maak algebra meer betekenisvol vir leerders. Hiervolgens moet die leerlinge die geleentheid gegun word om oplossings in prosavorm te skryf en self hul eie wiskundige simbole vir idees spontaan in te voer. Hulle moet self die voordeel van algebraiese simbole beleef.
The use of symbols in algebra both simplifies and strengthens the subject, but it also increases its level of complexity.This problem can be prevented if only simple and essential symbols are used and if the explanations are fully verbalised. The power of symbols stems from their potential to be used as substitutes for concepts. As this constitutes the crux of mathematical symbolic representation, it also presents a danger in that the symbols may not be comprehended. If symbols are not related to mental representations, the symbols are meaningless. This is the case in the present approach to algebra. Before sufficient mental representations are built, there is a concentration on the manipulation of symbols. The algebraic historical epistemological perspective makes algebra more meaningful for learners. Learners should be granted the opportunities to write their solutions in prose and to develop their own symbols for concepts.
Mathematics Education
M. Sc. (Wiskunde-Onderwys)
APA, Harvard, Vancouver, ISO, and other styles
23

Mukono, Shadrick. "Grade 11 mathematics learner's concept images and mathematical reasoning on transformations of functions." Thesis, 2015. http://hdl.handle.net/10500/19569.

Full text
Abstract:
The study constituted an investigation for concept images and mathematical reasoning of Grade 11 learners on the concepts of reflection, translation and stretch of functions. The aim was to gain awareness of any conceptions that learners have about these transformations. The researcher’s experience in high school and university mathematics teaching had laid a basis to establish the research problem. The subjects of the study were 96 Grade 11 mathematics learners from three conveniently sampled South African high schools. The non-return of consent forms by some learners and absenteeism during the days of writing by other learners, resulted in the subsequent reduction of the amount of respondents below the anticipated 100. The preliminary investigation, which had 30 learners, was successful in validating instruments and projecting how the main results would be like. A mixed method exploratory design was employed for the study, for it was to give in-depth results after combining two data collection methods; a written diagnostic test and recorded follow-up interviews. All the 96 participants wrote the test and 14 of them were interviewed. It was found that learners’ reasoning was more based on their concept images than on formal definitions. The most interesting were verbal concept images, some of which were very accurate, others incomplete and yet others exhibited misconceptions. There were a lot of inconsistencies in the students’ constructed definitions and incompetency in using graphical and symbolical representations of reflection, translation and stretch of functions. For example, some learners were misled by negative sign on a horizontal translation to the right to think that it was a horizontal translation to the left. Others mistook stretch for enlargement both verbally and contextually. The research recommends that teachers should use more than one method when teaching transformations of functions, e.g., practically-oriented and process-oriented instructions, with practical examples, to improve the images of the concepts that learners develop. Within their methodologies, teachers should make concerted effort to be aware of the diversity of ways in which their learners think of the actions and processes of reflecting, translating and stretching, the terms they use to describe them, and how they compare the original objects to images after transformations. They should build upon incomplete definitions, misconceptions and other inconsistencies to facilitate development of accurate conceptions more schematically connected to the empirical world. There is also a need for accurate assessments of successes and shortcomings that learners display in the quest to define and master mathematical concepts but taking cognisance of their limitations of language proficiency in English, which is not their first language. Teachers need to draw a clear line between the properties of stretch and enlargement, and emphasize the need to include the invariant line in the definition of stretch. To remove confusion around the effect of “–” sign, more practice and spiral testing of this knowledge could be done to constantly remind learners of that property. Lastly, teachers should find out how to use smartphones, i-phones, i-pods, tablets and other technological devices for teaching and learning, and utilize them fully to their own and the learners’ advantage in learning these and other concepts and skills
Mathematics Education
D.Phil. (Mathematics, Science and Technology Education)
APA, Harvard, Vancouver, ISO, and other styles
24

Prathamesh, Turga Venkata Hanumantha. "Mechanising knot Theory." Thesis, 2014. http://hdl.handle.net/2005/3052.

Full text
Abstract:
Mechanisation of Mathematics refers to use of computers to generate or check proofs in Mathematics. It involves translation of relevant mathematical theories from one system of logic to another, to render these theories implementable in a computer. This process is termed formalisation of mathematics. Two among the many ways of mechanising are: 1 Generating results using automated theorem provers. 2 Interactive theorem proving in a proof assistant which involves a combination of user intervention and automation. In the first part of this thesis, we reformulate the question of equivalence of two Links in first order logic using braid groups. This is achieved by developing a set of axioms whose canonical model is the braid group on infinite strands B∞. This renders the problem of distinguishing knots and links, amenable to implementation in first order logic based automated theorem provers. We further state and prove results pertaining to models of braid axioms. The second part of the thesis deals with formalising knot Theory in Higher Order Logic using the interactive proof assistant -Isabelle. We formulate equivalence of links in higher order logic. We obtain a construction of Kauffman bracket in the interactive proof assistant called Isabelle proof assistant. We further obtain a machine checked proof of invariance of Kauffman bracket.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography