Dissertations / Theses on the topic 'Infrared imaging. Imaging systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Infrared imaging. Imaging systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Bobiak, John Peter. "Raman and Infrared Imaging of Dynamic Polymer Systems." Case Western Reserve University School of Graduate Studies / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=case1133472157.
Full textTingstad, James Scott 1962. "Design of an advanced I.R. catadioptric optical system." Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276689.
Full textAta, Ali. "Wireless IR image transfer system for autonomous vehicles." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Dec%5FAta.pdf.
Full textThesis advisor(s): Gamani Karunasiri, Richard M. Harkins. Includes bibliographical references (p. 31). Also available online.
Mertiri, Alket. "Mid-infrared photothermal hyperspectral imaging of biomolecular systems." Thesis, Boston University, 2014. https://hdl.handle.net/2144/12952.
Full textThe development of novel techniques in spectroscopy and microscopy that are label-free, contactless and accessible is useful among many scientific disciplines, ranging from Materials Science to Biomedical Engineering. Hyperspectral photothermal imaging using vibrational spectroscopy promises to be a new tool in the arsenal for analysis and characterization of materials. This technique can be used for understanding structural composition of a material that is advantageous to the materials scientist. A combination of microscopy and spectroscopy is also beneficial to the biologist or pathologist that analyzes a complex sample with rich morphology. Photothermal hyperspectral microscopy is a label-free nondestructive method that utilizes specific vibrational bands of a molecule giving spectral information to an image. The method is based on changes in the thermal state, and the associated change in the refractive index of the sample as it is irradiated with mid-infrared light. Photothermal microscopy has rapidly emerged as one of the most sensitive label-free optical spectroscopic methods, rivaling current well-established methods based on fluorescence. The method has been used to image single non-fluorescent molecules in room temperature and to directly characterize biological features such as mitochondria and red blood cells. Despite great breakthroughs in the visible regime, the method has not been explored in the mid-infrared regime where most of the biological molecules have characteristic vibrational modes that constitute an intrinsic molecular "fingerprint" . This thesis presents the development of a new technique to measure the linear and nonlinear mid-infrared photothermal response induced by tunable high power lasers such as Quantum Cascade Lasers (QCLs). Photothermal response can be measured in pump-probe heterodyne detection, using short wavelength visible lasers and compact fiber lasers as a probe. This allows for direct detection of the fingerprint mid-infrared vibrational modes through ultrasensitive photodetectors. Integrated into a mid-infrared microscope, the system facilitates the acquisition of spectra and images on condensed phase samples. Photothermal heterodyne mid-infrared hyperspectral vibrational technique is used to image biological samples such as bird brain and other biomolecules First photothermal images on specially designed plasmonic metamaterials, designed to either enhance or suppress a selected mid-infrared vibrational normal mode, are demonstrated. Plasmonic metamaterials can be engineered using electron beam lithography for functional studies on biomolecules enhancing selected vibrational infrared resonances. This study takes advantage of the strong interaction between light and matter and investigates properties of the material that are difficult to detect through conventional spectroscopic methods. The new technique has the ability to advance studies in many fields, as it is applicable to different types of materials, non-destructive, accessible and inexpensive.
Weith-Glushko, Seth A. "Quantitative analysis of infrared contrast enhancement algorithms /." Online version of thesis, 2007. http://hdl.handle.net/1850/4208.
Full textFelekoglu, Oktay. "Propagation and performance analysis for a 915 MHz wireless IR image transfer system." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2005. http://library.nps.navy.mil/uhtbin/hyperion/05Jun%5FFelekoglu.pdf.
Full textThesis Advisor(s): Richard M. Harkins, Gamani Karunasiri. Includes bibliographical references (p. 77-78). Also available online.
Domboulas, Dimitrios I. "Infrared imaging face recognition using nonlinear kernel-based classifiers." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FDomboulas.pdf.
Full textThesis Advisor(s): Monique P. Fargues. Includes bibliographical references (p. 107-109). Also available online.
Fernando, Nilmi T. "Novel Near-Infrared Cyanine Dyes for Fluorescence Imaging in Biological Systems." Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/chemistry_diss/57.
Full textDobbs, Brian M. "The incorporation of atmospheric variability into DIRSIG /." Online version of thesis, 2006. https://ritdml.rit.edu/dspace/handle/1850/3014.
Full textZadnik, Jerome A. "Image degradation due to diffraction, reflection, and scattering in an optical system." Thesis, Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/80064.
Full textMaster of Science
Ford, Ralph M. (Ralph Michael) 1965. "Computer-aided analysis of medical infrared images." Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/276986.
Full textTripp, Everett. "Interferometric Optical Readout System for a MEMS Infrared Imaging Detector." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/222.
Full textConcia, Massimo. "Fluorescence labeled PEI-based gene delivery systems for near infrared imaging in nude mice." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-113095.
Full textMangus, Devin. "Developing thermal infrared imaging systems for monitoring spatial crop temperatures for precision agriculture applications." Thesis, Kansas State University, 2015. http://hdl.handle.net/2097/35241.
Full textDepartment of Biological & Agricultural Engineering
Ajay Sharda
Precise water application conserves resources, reduces costs, and optimizes plant performance and quality. Existing irrigation scheduling utilizes single, localized measurements that do not account for spatial crop water need; but, quick, single-point sensors are impractical for measuring discrete variations across large coverage areas. Thermography is an alternate approach for measuring spatial temperatures to quantify crop health. However, agricultural studies using thermography are limited due to previous camera expense, unfamiliar use and calibration, software for image acquisition and high-throughput processing specifically designed for thermal imagery mapping and monitoring spatial crop water need. Recent advancements in thermal detectors and sensing platforms have allowed uncooled thermal infrared (TIR) cameras to become suited for crop sensing. Therefore, a small, lightweight thermal infrared imaging system (TIRIS) was developed capable of radiometric temperature measurements. One-time (OT) and real-time (RT) radiometric calibrations methods were developed and validated for repeatable, temperature measurements while compensating for strict environmental conditions within a climate chamber. The Tamarisk® 320 and 640 analog output yielded a measurement accuracy of ±0.82°C or 0.62ºC with OT and RT radiometric calibration, respectively. The Tamarisk® 320 digital output yielded a measurement accuracy of ±0.43 or 0.29ºC with OT and RT radiometric calibration, respectively. Similarly, the FLIR® Tau 2 analog output yielded a measurement accuracy of ±0.87 or 0.63ºC with OT and RT radiometric calibration, respectively. A TIRIS was then built for high-throughput image capture, correction, and processing and RT environmental compensation for monitoring crop water stress within a greenhouse and temperature mapping aboard a small unmanned aerial systems (sUAS). The greenhouse TIRIS was evaluated by extracting plant temperatures for monitoring full-season crop water stress index (CWSI) measurements. Canopy temperatures demonstrated that CWSI explained 82% of the soil moisture variation. Similarly, validation aboard a sUAS provided radiometric thermal maps with a ±1.38°C (α=0.05) measurement accuracy. Due to the TIR cameras’ performance aboard sUAS and greenhouse platforms, a TIRIS provides unparalleled spatial coverage and measurement accuracy capable of monitoring subtle crop stress indicators. Further studies need to be conducted to produce spatial crop water stress maps at scales necessary for variable rate irrigation systems.
Smith, David Michael Patrick. "Aspects of small airborne passive millimetre-wave imaging systems." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/3979.
Full textENGLISH ABSTRACT: Passive millimetre-wave (PMMW) imaging is a technique that uses radiometers to detect thermal radiation emitted and reflected by metallic and non-metallic objects. While visual and infra-red emissions are attenuated by atmospheric constituents, PMMW emissions are transmitted, resulting in consistent contrast between different objects from day to night in clear weather and in low-visibility conditions to form images for a range of security and inclement weather applications. The use of a PMMW imaging system on a small unmanned aerial vehicle (UAV) offers extremely attractive possibilities for applications such as airborne surveillance for search and rescue operations, which are often hindered by inclement weather making visibility poor and endangering the rescuers as the search vehicle flies through the bad weather zone. The UAV would fly above the bad weather zone, with the PMMW imaging system detecting the thermal radiation emitted and reflected by objects in the MMW spectrum through the inclement weather. The 35GHz propagation window is chosen for the greater transmission through atmospheric constituents. The design of the PMMW imaging system is severely limited by the size of the UAV, particularly in the inability to incorporate any form of optical or mechanical scanning antenna. A possible solution is a long, thin antenna array fitted under the wings of the UAV. Such an antenna has a narrow, high gain, frequency-scanned beam along the plane perpendicular to the flight path, but a very broad beam along the plane of the flight path blurs the image, making it difficult to accurately determine the position of an object or to differentiate between objects situated along the plane of the flight path. This dissertation proposes a technique of image reconstruction based on the Kalman filter, a recursive filter that uses feedback control to estimate the state of a partially observed non-stationary stochastic process, to reconstruct an accurate image of the target area from such a detected signal. It is shown that given a simulated target area, populated with an arbitrary number of objects, the Kalman filter is able to successfully reconstruct the image using the measured antenna pattern to model the scanning process and reverse the blurring effect
AFRIKAANSE OPSOMMING: Passiewe millimetergolf (PMMG) beeldvorming is ’n tegniek wat van radiometers gebruik maak om termiese straling waar te neem vanaf beide metaal en nie-metaal voorwerpe. Waar optiese en infra-rooi straling attenueer word deur atmosferiese bestanddele, plant PMMG strale ongehinderd voort. Dit lei tot konstante kontras tussen verskillende voorwerpe in daglig of snags, mooi of bewolkte weer, en in ander lae-sigbaarheid toestande om beelde te vorm vir ’n wye reeks sekuriteits- of weertoepassings. Die gebruik van PMMG beeldvorming op ’n klein onbemande lugtuig (OLT) bied aantreklike moontlikhede vir toepassings in observasie en reddingsoperasies, wat dikwels verhinder word deur bewolke weer wat reddingswerkers in gevaar stel as hul moet vlieg in toestande van lae sigbaarheid. Die OLT kan bokant die onweer vlieg, met die PMMG beeldvormer wat termiese straling in die millimetergolf spektrum vanaf voorwerpe kan waarneem in swaks weerstoestande. Vir verbeterde golfvoortplanting deur atmosferiese bestanddele, word die 35GHz band gekies. Die ontwerp van die PMMG stelsel word geweldig beperk deur die grootte van die OLT, spesifiek deur die tuig se onvermoë om ’n antenne te huisves wat opties of meganies kan skandeer. ’n Moontlike oplossing is om gebruik te maak van ’n lang, dun antenne samestelling wat onder die OLT se vlerke geplaas word. So ’n antenne het ’n nou, hoë-aanwins bundel wat met frekwensie skandeer langs ’n vlak loodreg tot die vlugtrajek. So ’n antenne het egter ’n baie wye bundel langs die vlugtrajek, wat beeldkwaliteit verlaag en dit moeilik maak om die posisie van ’n voorwerp langs die vlugtrajek te bepaal, of om tussen veelvuldige voorwerpe te onderskei. Hierdie proefskrif bied ’n tegniek van beeldherwinning gebaseer op die Kalman filter, ’n rekursiewe filter wat terugvoerbeheer gebruik om die toestand van ’n nie-stasionêre stochastiese proses af te skat wat slegs gedeeltelik waargeneem is, om soedoende ’n akkurate beeld van die teikenarea te herkonstrueer vanuit ’n verwronge beeld. Dit word getoon dat, gegewe ’n gesimuleerde teikenomgewing met ’n arbitrêre hoeveelheid voorwerpe, die Kalman filter suksesvol ’n beeld kan herkonstrueer deur gebruik te maak van die antenne se gemete stralingspatroon om die skanderingsproses na te boots, om sodoende die beeldkwaliteit te verhoog
Celik, Mustafa. "Measurements and modeling enhancements for the NPS Minimum Resolvable Temperature Difference Model, VISMODII /." Thesis, Monterey, California. Naval Postgraduate School, 2001. http://handle.dtic.mil/100.2/ADA397426.
Full textRodigas, Timothy John. "High-Contrast Near-Infrared Studies of Planetary Systems and their Circumstellar Environments." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/306772.
Full textHall, David Jonathan. "The development of a near infrared time resolved imaging system and the assessment of the methodology for breast imaging." Thesis, University College London (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243779.
Full textIzzetoglu, Kurtulus Onaral Banu. "Neural correlates of cognitive workload and anesthetic depth : fNIR spectroscopy investigation in humans /." Philadelphia, Pa. : Drexel University, 2008. http://hdl.handle.net/1860/2896.
Full textAkin, Ryan E. "Minimally invasive assessment of lymphatic pumping pressure using near infrared imaging." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47536.
Full textJudge, Kevin D. "Decision making in spectroscopy /." View online ; access limited to URI, 2007. http://0-digitalcommons.uri.edu.helin.uri.edu/dissertations/AAI3276987.
Full textFerguson, Bradley Stuart. "Three dimensional T-Ray inspection systems /." Title page, Table of contents and abstract only, 2004. http://web4.library.adelaide.edu.au/theses/09PH/09phf3521.pdf.
Full textJoo, Youngjoong. "High speed image acquisition system for focal-plane-arrays." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/14455.
Full textZhang, Lin. "PATTERN RECOGNITION METHODS FOR THE ANALYSIS OF INFRARED IMAGING DATA AND MULTIVARIATE CALIBRATION STANDARDIZATION FOR NEAR-INFARED SPECTROSCOPY." Ohio : Ohio University, 2002. http://www.ohiolink.edu/etd/view.cgi?ohiou1013445546.
Full textBernier, Jean Daniel. "Real time imaging and infrared background scene analysis using the Naval Postgraduate School Infrared Search and Target Designation (NPS-IRSTD) System." Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/28491.
Full textBaca, Michael James. "Real time imaging of infrared scene data generated by the Naval Postgraduate School Infrared Search and Target Designation System (NPS-ITSTD)." Thesis, Monterey, California. Naval Postgraduate School, 2013.
Find full textA system to display images generated by the Naval Postgraduate School Infrared Search and Target Designation System (a modified AN/SAR-8 Advanced Development Model) in near real time was developed using a 33MHz NIC computer as the central controller. This computer was enhanced with a Data Translation DT2861 Frame Grabber for image processing and an interface board designed and constructed at NPS to provide synchronization between the IRSTD and Frame Grabber. Images are displayed in false color in a video raster format on a 512 by 480 pixel resolution monitor. Using FORTRAN, programs h ave been written to acquire, unscramble, expand and display a 3 degrees sector of data. The time line for acquisition, processing and display has been analyzed and repetition periods of less than four seconds for successive screen displays have been achieved. This represents a marked improvement over previous methods necessitating slower Direct Memory Access transfers of data into the Frame Grabber. Recommendations are made for further improvements to enhance the speed and utility of images produced.
Baca, Michael James. "Real-time imaging of infrared scene data generated by the Naval Postgraduate School Infrared Search and Target Designation System (NPS-ITSTD)." Monterey, California : Naval Postgraduate School, 1990. http://handle.dtic.mil/100.2/ADA240983.
Full textThesis Advisor(s): Cooper, Alfred W. Second Reader(s): Cleary, David D. Description based on title screen viewed on December 16, 2009. DTIC Descriptor(s): Infrared receivers, infrared radiation, repetition rate, acquisition, real time, interfaces, resolution, theses, optical data, display systems, time, fortran, colors, images, formats, monitors, video signals, rasters, screens(displays), target designators, image processing, control. DTIC Identifier(s): Infrared target designators, AN/SAR-8. Author(s) subject terms: IRSTD, Framegrabber, thermal imaging. Includes bibliographical references (p. 51). Also available in print.
Petermann, Jeff C. "Design of a Fully Automated Polarimetric Imaging System for Remote Characterization of Space Materials." University of Akron / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=akron1329101390.
Full textEngel, Raymond Charles. "A PC-based imaging system for the Naval Postgraduate School Infrared Search and Target Designation (NPS-IRSTD) system." Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/27200.
Full textMa, Ling. "An infrared and laser range imaging system for non-invasive estimation of internal cooking temperature in poultry fillets." College Park, Md. : University of Maryland, 2003. http://hdl.handle.net/1903/119.
Full textThesis research directed by: Dept. of Biological Resources Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Jasinghege, Don Prasanna Deshapriya. "Spectrophotometric properties of the nucleus of the comet 67P/Churyumov-Gerasimenko observed by the ROSETTA spacecraft." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC007/document.
Full textThis thesis is based on the spectrophotometric properties of the comet 67P/Churyumov-Gerasimenko, using the OSIRIS instrument of Rosetta space mission. Composed of two scientific cameras to observe the nucleus and the coma of the comet, OSIRIS images are acquired with multiple filters, that span the near-UV to near-IR wavelength range. They were used to study the spectrophotometric curves of the exposed bright features that appeared on the surface of the cometary nucleus, leading to a comparative study, that was carried out in collaboration with the VIRTIS spectro-imager aboard Rosetta, that demonstrated, that these exposures are related to H2O ice, using its absorption band located at 2 microns. The thesis further details a spectrophotometric study of the Khonsu region in the southern latitudes of the comet, where the seasonal variation of the spectral slope of different types of terrains is explored. Finally, the results of an extended survey of exposed bright features are presented. More than 50 individual features are presented under four morphologies along with an albedo calculation, suggesting that different activity sources are responsible for their appearance on the nucleus
Liao, Wen-Jiao. "Physics-based radiometric signature modeling and detection algorithms of land mines using electro-optical sensors." Columbus, Ohio : Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc%5num=osu1064252075.
Full textTitle from first page of PDF file. Document formatted into pages; contains xxii, 255 p. : ill. (some col.). Advisors: Joel T. Johnson and Brian A. Baertlein, Dept. of Electrical Engineering. Includes bibliographical references (p. 247-255).
Beckett, Martin Gregory. "High resolution infrared imaging." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388828.
Full textJones, Julia Craven. "Infrared Hyperspectral Imaging Stokes Polarimeter." Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/145409.
Full textVolin, Curtis Earl. "Portable snapshot infrared imaging spectrometer." Diss., The University of Arizona, 2000. http://hdl.handle.net/10150/289203.
Full textAumiller, Riley. "Longwave Infrared Snapshot Imaging Spectropolarimeter." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/301708.
Full textPereira, Diogo Camara. "Face recognition using infrared imaging." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://library.nps.navy.mil/uhtbin/hyperion-image/02Dec%5FPereira.pdf.
Full textThesis advisor(s): Monique P. Fargues, Gamani Karunasiri, Roberto Cristi. Includes bibliographical references (p. 93-95). Also available online.
Servoss, Thomas G. "Infrared symbolic scene comparator /." Online version of thesis, 1993. http://hdl.handle.net/1850/11725.
Full textLong, Robert Llewellyn, and bizarrealong@hotmail com. "Improving fruit soluble solids content in melon (Cucumis melo L.) (reticulatus group) in the Australian production system." Central Queensland University. Biological and Environmental Science, 2005. http://library-resources.cqu.edu.au./thesis/adt-QCQU/public/adt-QCQU20051019.144749.
Full textHadj-Youcef, Mohamed Elamine. "Spatio spectral reconstruction from low resolution multispectral data : application to the Mid-Infrared instrument of the James Webb Space Telescope." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS326/document.
Full textThis thesis deals with an inverse problem in astronomy. The objective is to reconstruct a spatio-spectral object, having spatial and spectral distributions, from a set of low-resolution multispectral data taken by the imager MIRI (Mid-InfraRed Instrument), which is on board the next space telescope James Webb Space Telescope (JWST). The observed multispectral data suffers from a spatial blur that varies according to the wavelength due to the spatial convolution with a shift-variant optical response (PSF). In addition the multispectral data also suffers from severe spectral degradations because of the spectral filtering and the integration by the detector over broad bands. The reconstruction of the original object is an ill-posed problem because of the severe lack of spectral information in the multispectral dataset. The difficulty then arises in choosing a representation of the object that allows the reconstruction of this spectral information. A common model used so far considers a spectral shift-invariant PSF per band, which neglects the spectral variation of the PSF. This simplistic model is only suitable for instruments with a narrow spectral band, which is not the case for the imager of MIRI. Our approach consists of developing an inverse problem framework that is summarized in four steps: (1) designing an instrument model that reproduces the observed multispectral data, (2) proposing an adapted model to represent the sought object, (3) exploiting all multispectral dataset jointly, and finally (4) developing a reconstruction method based on regularization methods by enforcing prior information to the solution. The overall reconstruction results obtained on simulated data of the JWST/MIRI imager show a significant increase of spatial and spectral resolutions of the reconstructed object compared to conventional methods. The reconstructed object shows a clear denoising and deconvolution of the multispectral data. We obtained a relative error below 5% at 30 dB, and an execution time of 1 second for the l₂-norm algorithm and 20 seconds (with 50 iterations) for the l₂/l₁-norm algorithm. This is 10 times faster than the iterative solution computed by conjugate gradients
Rock, Gilles [Verfasser]. "Thermal Infrared Imaging Spectroscopy / Gilles Rock." Trier : Universität Trier, 2019. http://d-nb.info/1203837658/34.
Full textMcLeod, Brian Andrew. "Infrared imaging of high-redshift galaxies." Diss., The University of Arizona, 1994. http://hdl.handle.net/10150/186985.
Full textAbdulkarim, Abrahim, and Outa Nima Nova Al. "Conceptualizing an automated sorting system for the recycling of plastic-floors." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-19713.
Full textBakgrund Tarkett AB Ronneby (Sverige) är ett golvlösning företag, erkänt för tillverkning och återvinning av homogent plastgolv. Tarkett AB återvinner huvudsakligen installations spill och tillverkningsfel. Tarkett AB överväger dock att utvidga sina återvinnings förmågor till att omfatta gamla och sönderrivna plastgolv som kan innehålla föroreningar och förbjudna ämnen eller plastgolv från konkurrerande varumärken. För att åstadkomma detta överväger Tarkett en helt ny återvinnings linje med en automatiserad sorteringsprocess istället för den aktuella manuella processen. Således föreslår Tarkett ett examensarbete för att konceptualisera ett nytt automatiserat sorteringssystem med ökad kapacitet och ökad funktionalitet. Syfte Detta arbete syftar till att undersöka den nuvarande sorterings processen och introducera konceptuella lösningar för en ny automatiserad sorteringsprocess som kan identifiera och separera plastgolv efter tillverkare, typ, skick och externt avfall med befintlig teknik. Metod De metoder och verktyg som används i detta arbete är huvudsakligen baserade på en modifierad produktutvecklingsprocess. Vilket börja med datainsamling av den aktuella sorterings processen, hitta behov och extrahera krav för en automatiserad sorteringsprocess, undersöka relevant teknik, utvärdera tekniken baserad på vetenskaplig litteratur och tester. Testningen genomfördes i samarbete med två företag. Nära-infraröda skannrar testades med Holger AB, medan mönsterigenkänning system testades med Vision-Geek. Slutligen utvecklades tre koncept för den automatiserade sorterings processen och visades genom flödesscheman och 2D-3D-illustrationer. Resultat Resultaten av detta arbete visade att det var möjligt att använda nära-infraröd och mönsterigenkänning för separering av plastgolv. Dessutom genererades tre konceptuella lösningar för en automatiserad sorteringsprocess och visades med schematiska grafer och 2D-3D-illustrationer. Begreppen beskriver hur sorterings processen fungerar och vilken teknik som används för varje steg i processen. Koncept 1 och Koncept 2 använde både mönsterigenkänning och spektroskopi metoder. Medan Koncept 3 bara använde spektroskopi metoder. Spektroskopi metoderna användes för att sortera plastgolv efter innehåll medan mönsterigenkänning efter utseende. Slutsats Återvinning av sönderrivna plastgolv kan vara fördelaktigt för både miljön och återvinningsindustrin. Dock finns det några utmaningar med anknytning till pålitlig, snabb och icke-förstörande identifiering för sorterings- och separation ändamål. Ny och beprövad teknik som nästan infraröd hyperspektral avbildning och mönsterigenkänning kan användas. Emellertid måste mönster- och spektrum bibliotek av hög kvalitet av flera plastgolv skapas för optimala och pålitliga referens-modeller. Dessutom måste mönsterigenkänning och nära-infraröda metoder testas vidare i industriell skala.
Thurairajah, Brentha. "Thermal infrared imaging of the atmosphere : the infrared cloud imager." Thesis, Montana State University, 2004. http://etd.lib.montana.edu/etd/2004/thurairajah/ThurairajahB04.pdf.
Full textMinchin, Nigel Robert. "Near-infrared imaging polarimetry of bipolar nebulae." Thesis, University of Hertfordshire, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293286.
Full textFranke, Daniel. "Fluorescent materials for short-wave infrared imaging." Thesis, Massachusetts Institute of Technology, 2018. https://hdl.handle.net/1721.1/121616.
Full textThesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2018
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 223-247).
Our understanding of the fundamental processes that drive biology and medicine is, in large part, based on our ability to visualize biological structures and monitor their transformations over time. Fluorescence imaging is one of the most transformative technologies of modern biomedical imaging as it provides a low cost, high sensitivity method for real-time molecular imaging in vivo. As the scattering and absorption of light through biological tissue impose significant restrictions on imaging penetration depth, acquisition speed, and spatial resolution, the development of novel optical imaging technologies has increasingly shifted toward the use of light of longer wavelengths. Fluorescence imaging in the shortwave infrared (SWIR, 1000 - 2000 nm) spectral region mitigates the negative effects of light attenuation and benefits from a general lack of tissue autofluorescence.
As a result, SWIR imaging promises higher contrast, sensitivity, and penetration depths compared to conventional visible and near-infrared (NIR) fluorescence imaging. However, the lack of versatile and functional SWIR emitters has prevented the general adoption of SWIR imaging both in academic and clinical settings. Here, we will present progress toward the synthesis of a new generation of SWIR-emissive materials and discuss their use in enabling biomedical imaging applications. In the first part of this thesis, we will examine the synthesis of SWIR-emissive indium arsenide (InAs) quantum dots (QDs). To address existing challenges in the synthesis of these semiconductor nanocrystals, we will investigate the processes that govern nanoparticle formation and growth.
Combining experimental and theoretical methods, we demonstrate that the synthesis of large nanocrystals is hindered by slow growth rates for large particles, as well as the formation and persistence of small cluster intermediates throughout nanocrystal growth. Based on these insights, we design a novel, rational synthesis for large InAs QDs with high brightness across the SWIR spectral region. Second, we will discuss the use of InAs-based QDs in functional SWIR imaging applications in pre-clinical settings. We will present three QD surface functionalizations that enable the non-invasive real-time imaging of hemorrhagic stroke, the quantification of metabolic activity in genetically-engineered animals, and the measurement of hemodynamics in the brain vasculature of mice. In addition, we will present preliminary results for the synthesis of SWIR-emissive QD probes for the molecular targeting of biological entities and for advanced particle tracking applications.
Using a QD-based broadband SWIR emitter, we will further investigate the eæect of SWIR imaging wavelength on image contrast and tissue penetration depth. While it was previously assumed that reduced scattering of light at longer wavelengths is the primary cause for increased image contrast, our results indicate that for imaging scenarios with strong fluorescent background signals, image contrast and penetration depth correlate closely with the absorptive properties of biological tissue. As a result, deliberate selection of imaging wavelengths at which biological tissue is highly absorptive can help to overcome contrast-limited imaging scenarios. In the last part of this thesis, we will take a closer look at SWIR emitters with the potential for translation into clinical settings.
We will demonstrate that the FDA-approved NIR dye indocyanine green (ICG) exhibits an unexpectedly high SWIR brightness that arises from a large absorption cross-section and a vibronic shoulder in its fluorescence spectrum that extends well into the SWIR spectral region. We expand on this finding by showing that ICG outperforms commercial SWIR dyes during in vivo imaging, and additionally by demonstrating a variety of high-contrast and high-speed imaging applications in small animals. These results suggest that ICG enables the direct translation of SWIR imaging into the clinic. In summary, this thesis will paint a comprehensive picture of the current state of SWIR-emissive materials, present the synthesis of novel versatile SWIR probes, and show their application in unprecedented functional SWIR imaging applications.
by Daniel Franke.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Chemistry
Finnemeyer, Valerie A. "Development of Liquid Crystal Infrared Imaging Sensors." Kent State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=kent1463139065.
Full textAli, Babar. "Infrared imaging and spectroscopy of young stars /." The Ohio State University, 1996. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487940665436496.
Full textHoward, Matthew David. "Fourier Multispectral Imaging in the Shortwave Infrared." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1507560319244019.
Full textWong, Gerald. "Snapshot hyperspectral imaging : near-infrared image replicating imaging spectrometer and achromatisation of Wollaston prisms." Thesis, Heriot-Watt University, 2012. http://hdl.handle.net/10399/2615.
Full text