Academic literature on the topic 'Infrared nanospectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Infrared nanospectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Infrared nanospectroscopy"

1

Pięta, E., C. Paluszkiewicz, and W. M. Kwiatek. "Multianalytical approach for surface- and tip-enhanced infrared spectroscopy study of a molecule–metal conjugate: deducing its adsorption geometry." Physical Chemistry Chemical Physics 20, no. 44 (2018): 27992–8000. http://dx.doi.org/10.1039/c8cp05587d.

Full text
Abstract:
Multianalytical approach to the surface-enhanced infrared absorption spectroscopy (SEIRA) and tip-enhanced infrared nanospectroscopy (TEIRA) studies of α-methyl-dl-tryptophan adsorption geometry on a gold nanoparticle surface.
APA, Harvard, Vancouver, ISO, and other styles
2

Polito, Raffaella, Mattia Musto, Maria Eleonora Temperini, et al. "Infrared Nanospectroscopy of Individual Extracellular Microvesicles." Molecules 26, no. 4 (2021): 887. http://dx.doi.org/10.3390/molecules26040887.

Full text
Abstract:
Extracellular vesicles are membrane-delimited structures, involved in several inter-cellular communication processes, both physiological and pathological, since they deliver complex biological cargo. Extracellular vesicles have been identified as possible biomarkers of several pathological diseases; thus, their characterization is fundamental in order to gain a deep understanding of their function and of the related processes. Traditional approaches for the characterization of the molecular content of the vesicles require a large quantity of sample, thereby providing an average molecular profile, while their heterogeneity is typically probed by non-optical microscopies that, however, lack the chemical sensitivity to provide information of the molecular cargo. Here, we perform a study of individual microvesicles, a subclass of extracellular vesicles generated by the outward budding of the plasma membrane, released by two cultures of glial cells under different stimuli, by applying a state-of-the-art infrared nanospectroscopy technique based on the coupling of an atomic force microscope and a pulsed laser, which combines the label-free chemical sensitivity of infrared spectroscopy with the nanometric resolution of atomic force microscopy. By correlating topographic, mechanical and spectroscopic information of individual microvesicles, we identified two main populations in both families of vesicles released by the two cell cultures. Subtle differences in terms of nucleic acid content among the two families of vesicles have been found by performing a fitting procedure of the main nucleic acid vibrational peaks in the 1000–1250 cm−1 frequency range.
APA, Harvard, Vancouver, ISO, and other styles
3

Meireles, Leonel M., Ingrid D. Barcelos, Gustavo A. Ferrari, Paulo Alexandre A. de A. Neves, Raul O. Freitas, and Rodrigo G. Lacerda. "Synchrotron infrared nanospectroscopy on a graphene chip." Lab on a Chip 19, no. 21 (2019): 3678–84. http://dx.doi.org/10.1039/c9lc00686a.

Full text
Abstract:
Here we present a graphene chip designed to nanoscale infrared analysis of materials in liquid environments. We measured the local chemistry of protein clusters in water and a variety of biocompatible liquids.
APA, Harvard, Vancouver, ISO, and other styles
4

Lu, Yi-Hsien, Jonathan M. Larson, Artem Baskin, et al. "Infrared Nanospectroscopy at the Graphene–Electrolyte Interface." Nano Letters 19, no. 8 (2019): 5388–93. http://dx.doi.org/10.1021/acs.nanolett.9b01897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pollard, Benjamin, Francisco C. B. Maia, Markus B. Raschke, and Raul O. Freitas. "Infrared Vibrational Nanospectroscopy by Self-Referenced Interferometry." Nano Letters 16, no. 1 (2015): 55–61. http://dx.doi.org/10.1021/acs.nanolett.5b02730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jin, Mingzhou, Feng Lu, and Mikhail A. Belkin. "High-sensitivity infrared vibrational nanospectroscopy in water." Light: Science & Applications 6, no. 7 (2017): e17096-e17096. http://dx.doi.org/10.1038/lsa.2017.96.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lekkas, Ioannis, Mark D. Frogley, Timon Achtnich, and Gianfelice Cinque. "Rapidly frequency-tuneable, in-vacuum, and magnetic levitation chopper for fast modulation of infrared light." Review of Scientific Instruments 93, no. 8 (2022): 085105. http://dx.doi.org/10.1063/5.0097279.

Full text
Abstract:
We present an in-vacuum mechanical chopper running at high speed and integrated into a magnetic levitating motor for modulating optical beams up to 200 kHz. The compact chopper rotor allows fast acceleration (10 kHz s−1 as standard) for rapid tuning of the modulation frequency, while 1 mm diameter slots provide high optical throughput for larger infrared beams. The modulation performances are assessed using a reference visible laser and the high brightness, broadband, infrared (IR) beam of synchrotron radiation at the MIRIAM beamline B22 at Diamond Light Source, UK. For our application of IR nanospectroscopy, minimizing the temporal jitter on the modulated beam due to chopper manufacturing and control tolerances is essential to limit the noise level in measurements via lock-in detection, while high modulation frequencies are needed to achieve high spatial resolution in photothermal nanospectroscopy. When reaching the maximum chopping frequency of 200 kHz, the jitter was found to be 0.9% peak-to-peak. The described chopper now replaces the standard ball-bearing chopper in our synchrotron-based FTIR photothermal nanospectroscopy system, and we demonstrate improved spectroscopy results on a 200 nm thickness polymer film.
APA, Harvard, Vancouver, ISO, and other styles
8

Kurouski, Dmitry, Alexandre Dazzi, Renato Zenobi, and Andrea Centrone. "Infrared and Raman chemical imaging and spectroscopy at the nanoscale." Chemical Society Reviews 49, no. 11 (2020): 3315–47. http://dx.doi.org/10.1039/c8cs00916c.

Full text
Abstract:
The advent of nanotechnology, and the need to understand the chemical composition at the nanoscale, has stimulated the convergence of IR and Raman spectroscopy with scanning probe methods, resulting in new nanospectroscopy paradigms.
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Yawen, Jing Ren, Ying Pei, Zeming Qi, Min Chen, and Shengjie Ling. "Structural information of biopolymer nanofibrils by infrared nanospectroscopy." Polymer 219 (March 2021): 123534. http://dx.doi.org/10.1016/j.polymer.2021.123534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dazzi, A., F. Glotin, and R. Carminati. "Theory of infrared nanospectroscopy by photothermal induced resonance." Journal of Applied Physics 107, no. 12 (2010): 124519. http://dx.doi.org/10.1063/1.3429214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Infrared nanospectroscopy"

1

Petay, Margaux. "Multimodal and multiscale analysis of complex biomaterials : optimization and constraints of infrared nanospectroscopy measurements." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASF092.

Full text
Abstract:
Dans le domaine du biomédical, l'étude des changements physico-chimiques induits par une pathologie au sein des tissus, à l'échelle cellulaire, peut être cruciale pour élucider les mécanismes à l'origine de ce phénomène. Toutefois, seules quelques techniques d'analyse permettent une description chimique à cette échelle. La nanospectroscopie infrarouge, en particulier l'AFM-IR (Microscopie à Force Atomique-Infrarouge) est prometteuse en permettant une description chimique des matériaux à l'échelle nanométrique. Actuellement, l'AFM-IR est souvent utilisée pour l'étude des cellules et micro-organismes, mais très peu pour l'étude des tissus biologiques en raison de la complexité de ces derniers. Pourtant, de nombreuses applications pourraient bénéficier d'une telle description, comme l'étude des phénomènes de minéralisation dans les tissus mammaires. Les microcalcifications mammaires (MCMs) sont des dépôts calciques anormaux (oxalates ou phosphates de calcium) et dont la composition est, dans la littérature, présumée associée à la nature des lésions : cancéreuses ou non. Malgré la multiplication des recherches sur le sujet au cours des dix dernières années, les processus de formation de ces MCMs et leur lien avec les pathologies et notamment les cancers du sein restent mal compris. Dans ce contexte, une description chimique des MCMs à l'échelle nanométrique pourrait fournir un nouvel éclairage et aider à la compréhension de leur genèse. Les biopsies mammaires (typiquement quelques millimètres à quelques centimètres) contiennent généralement plusieurs MCMs avec une forte dispersion en taille, de quelques centaines de nanomètres à un millimètre. Une stratégie de caractérisation multi-échelle est donc nécessaire pour décrire chimiquement l'entièreté de l'échantillon mais également accéder à une description fine des MCMs. Une approche multimodale et multi-échelle a ainsi été mise en place. Celle-ci permet d'étudier les propriétés morphologiques des MCMs en utilisant la microscopie électronique à balayage, ainsi que leurs propriétés chimiques à l'échelle micrométrique et nanométrique grâce à la microscopie et nanospectroscopie IR (e.g., AFM-IR). Bien que l'étude d'objets inorganiques et cristallins au sein d'une matrice organique par AFM-IR soit complexe, en raison des fortes variations locales des propriétés optiques et mécaniques au sein de ces matériaux hybrides, nous avons réussi à caractériser par AFM-IR des dépôts calciques au sein de tissus biologiques. La mise en œuvre d'une telle approche comporte plusieurs défis, tant d'un point de vue méthodologique qu'expérimental, notamment pour la préparation des échantillons, au cours des mesures, du traitement et de la gestion des données générées, ainsi que de leur interprétation. Tous ces aspects seront détaillés et des solutions proposées illustrant ainsi les capacités de l'AFM-IR pour l'étude des biomatériaux complexes<br>In the biomedical field, understanding the physicochemical changes at the cellular level in tissues can be crucial for unraveling the mechanisms of pathological phenomena. However, the number of techniques providing chemical descriptions at the cellular/molecular level is limited. Infrared (IR) nanospectroscopy techniques, particularly AFM-IR (Atomic Force Microscopy-infrared), are promising as they offer materials' chemical descriptions at the nanometer scale. Up to now, AFM-IR is mainly used in biology for studying individual cells or micro-organisms, but its direct application in biological tissues is relatively scarce due to tissue sections' complex nature. Yet, many applications could benefit from such description, such as mineralization phenomena in breast tissue. Breast microcalcifications (BMCs) are calcium-based deposits (such as calcium oxalate and calcium phosphate) hypothesized to be associated with some breast pathologies, including cancer. Despite increased research over the past decade, BMCs' formation process and connection with breast conditions remain poorly understood. Still, BMCs nanoscale chemical speciation might offer new insights into their chemical architecture. However, breast biopsies typically range from a few millimeters to a few centimeters, containing many BMCs ranging from hundreds of nanometers to a millimeter. Thus, a breast biopsy multiscale characterization strategy is required to provide both a global chemical description of the sample and a fine chemical description of BMCs. We, thus, propose a new multimodal and multiscale approach to investigate BMCs' morphological properties using scanning electron microscopy and their chemical composition at the microscale using IR spectromicroscopy, extending up to the nanometer scale thanks to AFM-IR analysis. Although AFM-IR measurements of inorganic and crystalline objects can be challenging due to their specific optical and mechanical properties, we demonstrate AFM-IR capabilities to characterize pathological deposits directly in biological tissues. Furthermore, implementing a multimodal and multiscale methodology comes with significant challenges in terms of sample preparation, measurements, data processing, and data management, as well as their interpretation: challenges which will be outlined and addressed
APA, Harvard, Vancouver, ISO, and other styles
2

Lang, Denny [Verfasser], Thomas [Gutachter] Taubner, Manfred [Akademischer Betreuer] Helm, and Manfred [Gutachter] Helm. "Infrared nanospectroscopy at cryogenic temperatures and on semiconductor nanowires / Denny Lang ; Gutachter: Thomas Taubner, Manfred Helm ; Betreuer: Manfred Helm." Dresden : Technische Universität Dresden, 2019. http://d-nb.info/1226942830/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kemel, Kamilia. "Mécanismes de passage transcutané : étude des interactions nanoparticules / peau." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS075.

Full text
Abstract:
De nombreux systèmes nanoparticulaires ont été développés pour modifier la délivrance de molécules par la voie cutanée. Dans ce travail de thèse, nous nous sommes intéressés aux nanoparticules lipidiques type Janus (JNP), une forme galénique innovante caractérisée par la combinaison de deux compartiments, de polarité chimique opposée, un compartiment aqueux accolé à un compartiment lipidique. L’objectif principal a été la caractérisation des JNP. La spectroscopie ATR-FTIR a permis de mettre au point un descripteur IR permettant de suivre la stabilité physique des JNP à l’air libre et en fonction du temps. Le même descripteur a permis de suivre leur devenir à la surface de la peau, et de constater une pénétration significative à partir de 3 heures d’application. Nous avons prouvé que l’AFM-IR est une technique prometteuse pour étudier la nanostructure de la peau. De plus, elle a permis de montrer qu’après 24 heures d’application, les JNP se sont accumulées dans les premières couches du SC avec un gradient dans les couches plus profondes du SC. En revanche, il n’a pas été possible de déterminer si elles ont pénétré à l’état intact ou dégradé. Les JNP semblent avoir une influence sur la pénétration cutanée de l’acide hyaluronique, elles ont permis une augmentation significative de son flux de pénétration. La caractérisation de la phase lipophile des JNP par différentes techniques (LC-MS, DLS, Cryo-TEM, diffraction des rayons X…) a permis de mieux comprendre leur instabilité aux températures élevées (32°C - 43°C)<br>Many nanocarriers have been developed to improve the delivery of molecules into the skin. In this PhD thesis, we are interested in lipid-based Janus nanoparticles (JNP), an innovative galenic form characterized by the combination of two compartments of opposite chemical polarity, an aqueous compartment associated to a lipid compartment. The main aim was the characterization of JNP. ATR-FTIR spectroscopy allowed to identify an infrared descriptor to follow the physical stability of JNP in open air and over time. The same descriptor allowed to follow their behavior on the surface of the skin, and to note a significant penetration from 3 hours of application. AFM-IR has been shown to be a promising technique for studying the nanostructure of the human skin. In addition, it has shown that after 24 hours of application, JNP were accumulated in the first layers of the SC with a gradient in the deeper layers of the SC. However, it was not possible to conclude if they have penetrated in the intact or degraded form. JNP seem to have an influence on the cutaneous penetration of the hyaluronic acid, they allowed a significant increase of its penetration flux. The characterization of the lipophilic phase of JNP by different techniques (LC-MS, DLS, Cryo-TEM, X-ray diffraction...) allowed to better understand their instability at high temperatures (32°C - 43°C)
APA, Harvard, Vancouver, ISO, and other styles
4

Mathurin, Jérémie. "Nanospectroscopie infrarouge avancée : développements instrumentaux et applications." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS188/document.

Full text
Abstract:
Depuis une dizaine d’années, les technologies de champ proche appliquées à la spectroscopie infrarouge ont connu de rapides progrès permettant d’atteindre maintenant l’échelle du nanomètre. Dans le cadre de ma thèse, l’une de ces techniques, appelées AFM-IR et qui consiste à un couplage entre la microscopie à force atomique (AFM) et un laser accordable dans le domaine de l’infrarouge, va être présenté plus en détail.Le but de ma thèse va être de présenter les différents développements qui ont eu lieu dans le domaine de cette technique, comme l’AFM-IR en résonance forcée, l’AFM-IR en mode tapping ou les débuts du développement de l’AFM-IR avec des sources spectralement continues. Ces développements majeurs ont eu pour conséquence de populariser la technique et de voir une rapide augmentation du nombre d’utilisateurs. Cependant l’AFM-IR reste une technique récente et non triviale à maitriser, car elle demande à la fois des connaissances en AFM, mais aussi en spectroscopie infrarouge.Les dernières avancées technologiques ont permis de s’approcher de la résolution nanométrique. Les conséquences sont multiples et notamment cela permet d’ouvrir la technique à de nouveaux champs d’applications. Or qui dit nouveaux domaines dit nouvelles problématiques, mais surtout nouveaux challenges expérimentaux. Il est donc important d’identifier les verrous technologiques et limitations associés à ces développements pour garder un esprit critique sur ce qui peut être ou non obtenu en AFM-IR et éviter des erreurs d’interprétation et/ou d’analyse qui pourraient avoir des conséquences néfastes dans les champs d’applications étudiés<br>For 10 years, near-field technologies applied to infrared spectroscopy have reached milestones and now are able to make analysis at nanoscale. In my PhD thesis, I will focus on one of these techniques: the so-called AFM-IR technique which combined an atomic force microscope (AFM) with a pulse laser tunable in the infrared spectral range.The main goal of my PhD thesis will be to present the last developments which appears for this technique such as resonance enhanced AFM-IR, tapping mode AFM-IR or the first measurements of AFM-IR with broadband sources. These developments are major in the field of the technique and have led to high increase of the numbers of users. However, AFM-IR remains a recent and complicated technique where user has to master in the same time atomic force microscopy and infrared spectroscopy.The last technological developments allow measurements at the nanoscale. This has multiple consequences, especially it opens new applications fields. It also generates new problematic and new experimental challenges. As a consequence, it is necessary to understand new technological limitations created by these new developments in order to stay critical of the results obtained with an AFM-IR measurement and avoid analysis and interpretation errors which can have bad consequences on the different fields of study
APA, Harvard, Vancouver, ISO, and other styles
5

Partouche, David. "Analyse de l’assemblage de peptides amyloïdes bactériens." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX084/document.

Full text
Abstract:
Hfq est une protéine bactérienne qui a un rôle pleiotropique. La principale fonction de la protéine Hfq bactérienne consiste à répondre aux stress que peut rencontrer la bactérie lors d’un changement environnemental, en utilisant essentiellement un contrôle post-transcriptionnel. La protéine, par sa capacité à interagir avec les ARN et notamment les petits ARN non codant, permet ainsi une régulation rapide de l’expression génétique. En outre la protéine interagit aussi avec l’ADN qu’elle aide à se structurer. Les mutations dans le gène qui code pour Hfq ont des effets pleïotropes (déterminant plusieurs caractères phénotypiques).D’un point de vue structural, la protéine adopte un repliement de type Sm, caractérisé par un oligomère toroïdal reposant sur la formation d’un feuillet β continu à 30 brins. Cependant, outre cette région Sm N-terminale, Hfq possède également une région C-terminale (CTR) de taille et de séquence variables selon les bactéries. Mon travail de thèse a porté sur l’analyse de cette région CTR chez la bactérie Escherichia coli. Cette région a en effet la capacité de former une structure de type amyloïde : structures auto-assemblées in vivo, à proximité de la membrane interne et dans le nucléoïde.Par l’utilisation de diverses techniques physico-chimiques (microscopie moléculaire, spectroscopie et microscopie infrarouge, dichroïsme circulaire et diffusion aux petits angles), mon travail a consisté à caractériser l’assemblage de cette région de Hfq ainsi que les facteurs l’influençant en particulier la présence d’acide nucléique. Une partie de mon travail de thèse a aussi consisté à mettre en place une méthode d’imagerie corrélative innovante permettant d’analyser la signature chimique et morphologique d’une fibre amyloïde unique. Mon travail a enfin porté sur l’analyse de l’effet de composés inhibant l’agrégation de la structure amyloïde, ce qui pourrait constituer une piste pour développer une nouvelle classe d’antibiotiques<br>Hfq is a pleiotropic bacterial protein that determines several phenotypic characteristics. Its main function is to facilitate responses to stresses that bacteria may encounter during environmental changes, mainly by using post-transcriptional genetic control. The protein, by its capacity to interact with RNA, in particular small non-coding RNA, enables a rapid regulation of gene expression. In addition, the protein also interacts with DNA and compacts it. From a structural point of view, the protein adopts an Sm-like fold, characterized by a toroidal oligomer formed by a continuous 30-stranded β-sheet. Besides its conserved N-terminal Sm domain, Hfq also possesses a C-terminal region (CTR) that can vary in size and sequence between bacteria. My PhD work focused on the analysis of this CTR region in Escherichia coli bacteria. Indeed, this region has the capacity to form an amyloid structure. This structural dynamic is related to the formation of self-assembled structures in vivo, in the proximity of the inner membrane and in the nucleoid.Using various physicochemical techniques (molecular microscopy, spectroscopy and infrared microscopy, circular dichroism and small angle X-ray scattering), my work consisted in characterizing the assembly of this region of Hfq, as well as the factors influencing its assembly (in particular, the presence of nucleic acids). A part of my work consisted in setting up an innovative correlative–imaging method to analyze the chemical and morphological signature of a single amyloid fibre. Finally, my work focused on the analysis of the effect of compounds that inhibit the aggregation of the amyloid structure, which could constitute a new way to develop a novel class of antibiotics
APA, Harvard, Vancouver, ISO, and other styles
6

Lang, Denny. "Infrared nanospectroscopy at cryogenic temperatures and on semiconductor nanowires." Doctoral thesis, 2019. https://tud.qucosa.de/id/qucosa%3A36177.

Full text
Abstract:
Die vorliegende Dissertation befasst sich mit der streuenden, infraroten Rasternahfeldmikroskopie (engl. s-SNIM) in Kombination mit dem Freie-Elektronen Laser (FEL) am Helmholtz-Zentrum Dresden-Rossendorf. Der FEL ist eine intensive,schmalbandige Strahlungsquelle, welche vom mittleren bis ferninfraroten Spektralbereich durchstimmbar ist (5 meV bis 250 meV). Die s-SNIM Technik ermöglicht Infrarotmikroskopie- und spektroskopie mit einer wellenlängenunabhängigen räumlichen Auflösung von etwa 10nm. Der erste Ergebnisteil demonstriert die Erweiterung eines FEL-basierten s- SNIM hinsichtlich der Möglichkeit, bei tiefen Temperaturen bis 5K messen zu können. So verdeutlichen wir die Funktionalität unseres Tieftemperatur-s-SNIM anhand verschiedener Proben wie Au, strukturiertem Si/SiO2 sowie Gallium-Vanadium-Sulfid (GaV4S8). Das letztgenannte Material erregt momentan ein hohes wissenschaftliches Interesse, da es sogenannte Skyrmionen des Néel-Typs – periodische angeordnete Spinwirbel – enthält. GaV4S8 hat einen strukturellen Phasenübergang bei T = 42K und beinhaltet bei niedrigeren Temperaturen ferroelektrische Domänen, die wir unter anderem mittels s-SNIM abbilden können. Hierbei beobachten wir einen beträchtlichen Einfluss der Infrarotstrahlung auf die Domänenstruktur. Dies nutzen wir, um den lokalen Hitzeeintrag der Infrarotstrahlung lokal unter der s-SNIM Sonde zu quantifizieren. Der zweite Teil der Ergebnisse beinhaltet s-SNIM Messungen an hochwertigen Halbleiter-Nanodrähten (ND), welche mittels Molekularstrahlepitaxie gewachsen wurden. Derartige ND sind, unter anderem aufgrund ihrer hohen Ladungsträgermobilität, vielversprechende Komponenten für schnelle optoelektronische Nanoelemente der Zukunft. So untersuchen wir beispielsweise hochdotierte GaAs/InGaAs Kern/Schale ND, bei denen wir – unter Verwendung eines Dauerstrich CO2 Lasers – eine spektral scharfe plasmonische Resonanz bei etwa 125 meV beobachten. Betrachten wir selbige ND mittels intensiver, gepulster FEL-Strahlung, ist eine signifikante Rotverschiebung zu Energien kleiner als 100 meV sowie eine Verbreiterung der Resonanz festzustellen. Dieses nichtlineare Verhalten wird zurückgeführt auf eine starke Erhitzung des Elektronengases unter dem Einfluss der intensiven FEL-Pulse. Unsere Erkenntnisse zeigen dahingehend die Möglichkeiten auf, Nichtgleichgewichtszustände im s-SNIM gezielt zu induzieren und zu beinflussen. Abgesehen von den Messungen der Nichtlinearität ist die Herstellung und Charakterisierung von ND-Querschnitten – sowohl der genannten homogen dotierten, als auch modulationsdotierten– Gegenstand des zweiten Ergebniskapitels.:Abstract iii Zusammenfassung v 1 Introduction 1 2 Fundamentals 3 2.1 Scanning probe techniques 3 2.1.1 Atomic force microscopy 4 2.1.2 Piezoresponse force microscopy 8 2.1.3 Kelvin-probe force microscopy 9 2.2 Infrared nanospectroscopy 10 2.2.1 The diffraction limit 10 2.2.2 Scattering scanning near-field infrared microscopy 11 2.2.3 Point-dipole model 12 2.2.4 Signal detection 17 2.2.5 Higher harmonic demodulation and contrast 19 2.2.6 Advantages and limitations of s-SNIM 22 2.3 Infrared light sources 24 2.3.1 Carbon dioxide laser 24 2.3.2 Free-electron laser 26 3 Infrared nanospectroscopy at cryogenic temperatures 31 3.1 Introduction 31 3.2 Samples 33 3.3 Experimental details 36 3.3.1 Low-temperature atomic force microscopy 36 3.3.2 Optical setup 38 3.3.3 Low-temperature scattering scanning near-field infrared microscopy 39 3.3.4 Measurement modes and data acquisition 42 3.4 Results and discussion 44 3.4.1 Performance and IR heating calibration 44 3.4.2 s-SNIM study of gallium vanadium sulfide 49 3.5 Conclusion 51 4 Infrared nanospectroscopy on semiconductor nanowires 53 4.1 Introduction 53 4.2 Samples 55 4.2.1 GaAs/InGaAs core/shell nanowires 55 4.2.2 Modulation doped nanowires 56 4.2.3 Nanowire cross sections 57 4.2.4 Infrared response of doped nanowires 59 4.3 Experimental details 61 4.3.1 Room-temperature atomic force microscopy 61 4.3.2 Room-temperature scattering scanning near-field infrared microscopy 63 4.3.3 Properties of the free-electron laser pulses 65 4.4 Results and discussion 68 4.4.1 GaAs/InGaAs core/shell nanowires 68 4.4.2 Nanowire cross sections 75 4.5 Conclusion 79 5 Summary and outlook 81 A Citation metrics 85 B Additional nanospectroscopic studies 87 B.1 Silicon carbide nanoparticle probes 87 B.2 Individual impurities in Si 91 B.3 Surface phonon polaritons in moybdenum disulfide 96 C Derivation of the nonparabolic effective mass and density of states 99 C.1 Effective mass 99 C.2 Density of states 100 D Comparison of self-homodyne and pseudo-heterodyne detection 103 Bibliography 105 List of Abbreviations 125 List of Symbols 132 List of Publications 133 Acknowledgments 137 Versicherung 139<br>This PhD thesis concentrates on scattering scanning near-field infrared microscopy (s-SNIM) which utilizes the radiation from the free-electron laser (FEL) at the Helmholtz-Zentrum Dresden-Rossendorf. The FEL is an intense, narrow-band radiation source, tunable from the mid- to far-infrared spectral range (5 meV to 250 meV). The s-SNIM technique enables infrared microscopy and spectroscopy with a wavelength-independent spatial resolution of about 10nm. The first part demonstrates the extension of s-SNIM at the FEL towards cryogenic temperatures as low as 5K. To this end, we show the functionality of our low-temperature s-SNIM apparatus on different samples such as Au, structured Si/SiO2, as well as the multiferroic material gallium vanadium sulfide (GaV4S8). The latter material recently attracted a lot of interest since it hosts a Néel-type skyrmion lattice – a periodic array of spin vortices. Below T = 42K, GaV4S8 undergoes a structural phase transition and then forms ferroelectric domains, which we can map out by low-tempererature s-SNIM. Notably, we found a strong impact on the ferroelectric domains upon infrared irradiation, which we further utilize to calibrate the local heat contribution of the focused infrared beam beneath the s-SNIM probe. The second part of this thesis contains comprehensive s-SNIM investigations of high-quality semiconductor nanowires (NWs) grown by molecular beam epitaxy. Such NWs are promising building blocks for fast opto-)electronic nanodevices, amongst others due to their high carrier mobility. We have examined highly doped GaAs/InGaAs core/shell NWs and observed a strong and spectrally sharp plasmonic resonance at about 125 meV, using a continuous wave CO2 laser for probing. If we probe the same NWs utilizing the intense, pulsed FEL radiation, we observe a pronounced redshift to energies less than 100 meV and a broading of the plasmonic response. This nonlinear response is most likely induced by heating of the electron gas upon irradiation by the strong FEL pulses. Our observations open up the possibility to actively induce and observe non-equilibrium states in s-SNIM directly by the mid-infrared beam. Beside the nonlinear effect, we prepared and measured cross sections of both homogeneously-doped and modulation-doped core/shell NWs.:Abstract iii Zusammenfassung v 1 Introduction 1 2 Fundamentals 3 2.1 Scanning probe techniques 3 2.1.1 Atomic force microscopy 4 2.1.2 Piezoresponse force microscopy 8 2.1.3 Kelvin-probe force microscopy 9 2.2 Infrared nanospectroscopy 10 2.2.1 The diffraction limit 10 2.2.2 Scattering scanning near-field infrared microscopy 11 2.2.3 Point-dipole model 12 2.2.4 Signal detection 17 2.2.5 Higher harmonic demodulation and contrast 19 2.2.6 Advantages and limitations of s-SNIM 22 2.3 Infrared light sources 24 2.3.1 Carbon dioxide laser 24 2.3.2 Free-electron laser 26 3 Infrared nanospectroscopy at cryogenic temperatures 31 3.1 Introduction 31 3.2 Samples 33 3.3 Experimental details 36 3.3.1 Low-temperature atomic force microscopy 36 3.3.2 Optical setup 38 3.3.3 Low-temperature scattering scanning near-field infrared microscopy 39 3.3.4 Measurement modes and data acquisition 42 3.4 Results and discussion 44 3.4.1 Performance and IR heating calibration 44 3.4.2 s-SNIM study of gallium vanadium sulfide 49 3.5 Conclusion 51 4 Infrared nanospectroscopy on semiconductor nanowires 53 4.1 Introduction 53 4.2 Samples 55 4.2.1 GaAs/InGaAs core/shell nanowires 55 4.2.2 Modulation doped nanowires 56 4.2.3 Nanowire cross sections 57 4.2.4 Infrared response of doped nanowires 59 4.3 Experimental details 61 4.3.1 Room-temperature atomic force microscopy 61 4.3.2 Room-temperature scattering scanning near-field infrared microscopy 63 4.3.3 Properties of the free-electron laser pulses 65 4.4 Results and discussion 68 4.4.1 GaAs/InGaAs core/shell nanowires 68 4.4.2 Nanowire cross sections 75 4.5 Conclusion 79 5 Summary and outlook 81 A Citation metrics 85 B Additional nanospectroscopic studies 87 B.1 Silicon carbide nanoparticle probes 87 B.2 Individual impurities in Si 91 B.3 Surface phonon polaritons in moybdenum disulfide 96 C Derivation of the nonparabolic effective mass and density of states 99 C.1 Effective mass 99 C.2 Density of states 100 D Comparison of self-homodyne and pseudo-heterodyne detection 103 Bibliography 105 List of Abbreviations 125 List of Symbols 132 List of Publications 133 Acknowledgments 137 Versicherung 139
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Infrared nanospectroscopy"

1

Dazzi, A., A. Deniset-Besseau, and H. Yang. "Infrared Nanospectroscopy." In Encyclopedia of Biophysics. Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-642-35943-9_10080-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Yawen, Hongchong Guo, and Shengjie Ling. "Secondary Structure Analysis of Single Silk Nanofibril through Infrared Nanospectroscopy." In Methods in Molecular Biology. Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1574-4_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dazzi, Alexandre, and Clotilde Policar. "AFM-IR: photothermal infrared nanospectroscopy." In Biointerface Characterization by Advanced IR Spectroscopy. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-444-53558-0.00009-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Infrared nanospectroscopy"

1

Carr, G. Lawrence, Lukas Wehmeier, Christopher C. Homes, and Mengkun K. Liu. "Far-infrared, broadband nanospectroscopy at NSLS-II." In Enhanced Spectroscopies and Nanoimaging 2024, edited by Prabhat Verma and Yung Doug Suh. SPIE, 2024. http://dx.doi.org/10.1117/12.3027976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carr, G. L., Christopher C. Homes, and L. Wehmeier. "Long wavelength Hg1-xCdxTe at 4.2K as a fast detector for far-infrared nanospectroscopy (Conference Presentation)." In Infrared Sensors, Devices, and Applications XIV, edited by Ashok K. Sood, Priyalal Wijewarnasuriya, and Arvind I. D'Souza. SPIE, 2024. http://dx.doi.org/10.1117/12.3027980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Temperini, Maria Eleonora, Raffaella Polito, Tommaso Venanzi, et al. "Electric-field-dependent Infrared Nanospectroscopy with an atomic-force-microscope in contact mode." In 2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2024. http://dx.doi.org/10.1109/irmmw-thz60956.2024.10697755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jin, Mingzhou, Feng Lu, and Mikhail A. Belkin. "Infrared Nanospectroscopy in Liquid." In CLEO: QELS_Fundamental Science. OSA, 2016. http://dx.doi.org/10.1364/cleo_qels.2016.fm2b.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lu, Feng, Mingzhou Jin, Mohammed Salih, et al. "Terahertz and mid-infrared photoexpansion nanospectroscopy." In SPIE BiOS, edited by Gerald J. Wilmink and Bennett L. Ibey. SPIE, 2013. http://dx.doi.org/10.1117/12.2000743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Polito, R., M. E. Temperini, L. Puskar, et al. "Tip-enhanced infrared nanospectroscopy of microvesiscles." In 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). IEEE, 2021. http://dx.doi.org/10.1109/irmmw-thz50926.2021.9567376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lu, Feng, Mingzhou Jin, and Mikhail A. Belkin. "Background-Free Heterodyne Photoexpansion Infrared Nanospectroscopy." In CLEO: Science and Innovations. OSA, 2015. http://dx.doi.org/10.1364/cleo_si.2015.sm1o.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lu, Feng, Mingzhou Jin, and Mikhail A. Belkin. "Mid-infrared absorption nanospectroscopy via molecular force detection." In CLEO: QELS_Fundamental Science. OSA, 2013. http://dx.doi.org/10.1364/cleo_qels.2013.qtu1b.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mayer, Rafael A., Flavio H. Feres, and Raul O. Freitas. "Synchrotron infrared nanospectroscopy as a game changer in nanophotonics." In 2021 SBFoton International Optics and Photonics Conference (SBFoton IOPC). IEEE, 2021. http://dx.doi.org/10.1109/sbfotoniopc50774.2021.9461984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Intze, A., M. E. Temperini, R. Polito, et al. "Mid-infrared nanospectroscopy of individual DNA-binding protein oligomers." In 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). IEEE, 2022. http://dx.doi.org/10.1109/irmmw-thz50927.2022.9895918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography