To see the other types of publications on this topic, follow the link: Infrared radiometry.

Journal articles on the topic 'Infrared radiometry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Infrared radiometry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Paoloni, S., and H. G. Walther. "Photothermal radiometry of infrared translucent materials." Journal of Applied Physics 82, no. 1 (1997): 101–6. http://dx.doi.org/10.1063/1.365789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Romm, Iliya, and Beni Cukurel. "Quantitative image fusion in infrared radiometry." Measurement Science and Technology 29, no. 5 (2018): 055403. http://dx.doi.org/10.1088/1361-6501/aaab3c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fox, N. P., T. R. Prior, E. Theocharous, and S. N. Mekhontsev. "Solid-state detectors for infrared radiometry." Metrologia 32, no. 6 (1995): 609–13. http://dx.doi.org/10.1088/0026-1394/32/6/42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lev, Aner. "Infrared radiometry of thermally insulated skin using infrared fiber." Optical Engineering 35, no. 2 (1996): 476. http://dx.doi.org/10.1117/1.600918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schmugge, Thomas J., and W. P. Kustas. "Radiometry at infrared wavelengths for agricultural applications." Agronomie 19, no. 2 (1999): 83–96. http://dx.doi.org/10.1051/agro:19990201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brocard, Emmanuel, Marc Schneebeli, and Christian Matzler. "Detection of Cirrus Clouds Using Infrared Radiometry." IEEE Transactions on Geoscience and Remote Sensing 49, no. 2 (2011): 595–602. http://dx.doi.org/10.1109/tgrs.2010.2063033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dubuisson, P., V. Giraud, O. Chomette, H. Chepfer, and J. Pelon. "Fast radiative transfer modeling for infrared imaging radiometry." Journal of Quantitative Spectroscopy and Radiative Transfer 95, no. 2 (2005): 201–20. http://dx.doi.org/10.1016/j.jqsrt.2004.09.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Veeder, Glenn J., Dennis L. Matson, Torrence V. Johnson, Diana L. Blaney, and Jay D. Goguen. "Io's heat flow from infrared radiometry: 1983–1993." Journal of Geophysical Research 99, E8 (1994): 17095. http://dx.doi.org/10.1029/94je00637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cho, K., and C. C. Davis. "Time-resolved infrared radiometry of laser-heated silicon." IEEE Journal of Quantum Electronics 25, no. 5 (1989): 1112–17. http://dx.doi.org/10.1109/3.28007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Michalsky, Joseph J., and Charles N. Long. "ARM Solar and Infrared Broadband and Filter Radiometry." Meteorological Monographs 57 (April 1, 2016): 16.1–16.15. http://dx.doi.org/10.1175/amsmonographs-d-15-0031.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dall'Oglio, G., B. Melchiorri, P. De Bernardis, S. Masi, and A. Moleti. "Ground-based atmospheric radiometry in the far-infrared." Infrared Physics 26, no. 4 (1986): 227–33. http://dx.doi.org/10.1016/0020-0891(86)90074-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Wang, Wenhui, and Changyong Cao. "DCC Radiometric Sensitivity to Spatial Resolution, Cluster Size, and LWIR Calibration Bias Based on VIIRS Observations." Journal of Atmospheric and Oceanic Technology 32, no. 1 (2015): 48–60. http://dx.doi.org/10.1175/jtech-d-14-00024.1.

Full text
Abstract:
AbstractThe Visible and Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-Orbiting Partnership satellite brings new opportunities for improving scientists’ understanding of deep convective cloud (DCC) radiometry with multiple bands in the visible (VIS), near-infrared (NIR), and longwave infrared (LWIR) spectrum. This paper investigated the radiometric sensitivity of DCC reflectance to spatial resolution, brightness temperature of the LWIR band centered at ~11 μm (TB11), TB11 calibration bias, and cluster size using VIIRS VIS (M5), NIR (M7 and I2), and LWIR (M15 and I5
APA, Harvard, Vancouver, ISO, and other styles
13

Libois, Quentin, Liviu Ivanescu, Jean-Pierre Blanchet, et al. "Airborne observations of far-infrared upwelling radiance in the Arctic." Atmospheric Chemistry and Physics 16, no. 24 (2016): 15689–707. http://dx.doi.org/10.5194/acp-16-15689-2016.

Full text
Abstract:
Abstract. The first airborne measurements of the Far-InfraRed Radiometer (FIRR) were performed in April 2015 during the panarctic NETCARE campaign. Vertical profiles of spectral upwelling radiance in the range 8–50 µm were measured in clear and cloudy conditions from the surface up to 6 km. The clear sky profiles highlight the strong dependence of radiative fluxes to the temperature inversion typical of the Arctic. Measurements acquired for total column water vapour from 1.5 to 10.5 mm also underline the sensitivity of the far-infrared greenhouse effect to specific humidity. The cloudy cases s
APA, Harvard, Vancouver, ISO, and other styles
14

Osiander, Robert, and Jane W. M. Spicer. "Time-resolved infrared radiometry with step heating. A review." Revue Générale de Thermique 37, no. 8 (1998): 680–92. http://dx.doi.org/10.1016/s0035-3159(98)80046-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

CHRISTENSEN, F. T., Q. M. LU, and L. T. PEDERSEN. "Multi-year sea ice mapping by thermal infrared radiometry." International Journal of Remote Sensing 15, no. 6 (1994): 1229–50. http://dx.doi.org/10.1080/01431169408954157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Walther, H. G., U. Seidel, W. Karpen, and G. Busse. "Application of modulated photothermal radiometry to infrared transparent samples." Review of Scientific Instruments 63, no. 11 (1992): 5479–80. http://dx.doi.org/10.1063/1.1143372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Smith, David, Samuel E. Hunt, Mireya Etxaluze, et al. "Traceability of the Sentinel-3 SLSTR Level-1 Infrared Radiometric Processing." Remote Sensing 13, no. 3 (2021): 374. http://dx.doi.org/10.3390/rs13030374.

Full text
Abstract:
Providing uncertainties in satellite datasets used for Earth observation can be a daunting prospect because of the many processing stages and input data required to convert raw detector counts to calibrated radiances. The Sea and Land Surface Temperature Radiometer (SLSTR) was designed to provide measurements of the Earth’s surface for operational and climate applications. In this paper the authors describe the traceability chain and derivation of uncertainty estimates for the thermal infrared channel radiometry. Starting from the instrument model, the contributing input quantities are identif
APA, Harvard, Vancouver, ISO, and other styles
18

Sade, Sharon, Lev Nagli, and Abraham Katzir. "Scanning near field infrared radiometry for thermal imaging of infrared emitters with subwavelength resolution." Applied Physics Letters 87, no. 10 (2005): 101109. http://dx.doi.org/10.1063/1.2040008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Qin, Lei, Jun Yan Liu, and Yang Wang. "The Study of Infrared Photocarrier Radiometry Based on Si Semiconductor." Applied Mechanics and Materials 268-270 (December 2012): 1623–26. http://dx.doi.org/10.4028/www.scientific.net/amm.268-270.1623.

Full text
Abstract:
Infrared photocarrier radiometry(PCR) has shown advantages of pure detection signal, bigger detection depth and more clear results since it emerges. But it is still in the starting stage. Generation and distribution of photocarrier excitated by modulated laser is stated, and the principle of PCR is discussed. Experiment on different sweeping frequencies is carried out and frequent characteristics are studied.The principle and experimental results are compared with PTR .The results show the most fit modulated frequency of PCR is around 10kHz, and the differences between the defect and non-defec
APA, Harvard, Vancouver, ISO, and other styles
20

Gómez Muñoz, Carlos Quiterio, Fausto Pedro García Márquez, and Juan Manuel Sánchez Tomás. "Ice detection using thermal infrared radiometry on wind turbine blades." Measurement 93 (November 2016): 157–63. http://dx.doi.org/10.1016/j.measurement.2016.06.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ravi, Jyotsna, Yuekai Lu, Stéphane Longuemart, et al. "Optothermal depth profiling by neural network infrared radiometry signal recognition." Journal of Applied Physics 97, no. 1 (2005): 014701. http://dx.doi.org/10.1063/1.1821635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Dankner, Yair, S. Simhony, Y. Shneider, and A. Katzir. "Infrared radiometry for monitoring temperature of photoresist during dry etching." Applied Physics Letters 63, no. 14 (1993): 1999–2001. http://dx.doi.org/10.1063/1.110627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Verevochkin, Yu G., Yu A. Il'yin, G. K. Pogodin, and I. F. Reshchikov. "CALCULATING REFLECTED RADIATION FROM EXTERNAL SOURCES FOR INFRARED-BAND RADIOMETRY." Mapping Sciences and Remote Sensing 27, no. 1 (1990): 22–28. http://dx.doi.org/10.1080/07493878.1990.10641786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Rodrı́guez, M. E., J. A. Garcia, and A. Mandelis. "Infrared photothermal radiometry of deep subsurface defects in semiconductor materials." Review of Scientific Instruments 74, no. 1 (2003): 839–41. http://dx.doi.org/10.1063/1.1524006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kolev, Stanyo V., Hristo I. Hristov, and Kalin L. Dimitrov. "Use of infrared radiometry in temperature measurement of plant leaf." International Journal of Reasoning-based Intelligent Systems 13, no. 4 (2021): 219. http://dx.doi.org/10.1504/ijris.2021.10041241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

MacKenzie, Shannon M., and Ralph D. Lorenz. "Prospects for Detecting Volcanic Events with Microwave Radiometry." Remote Sensing 12, no. 16 (2020): 2544. http://dx.doi.org/10.3390/rs12162544.

Full text
Abstract:
Identifying volcanic activity on worlds with optically thick atmospheres with passive microwave radiometry has been proposed as a means of skirting the atmospheric interference that plagues near infrared observations. By probing deeper into the surface, microwave radiometers may also be sensitive to older flows and thus amenable for investigations where repeat observations are infrequent. In this investigation we explore the feasibility of this tactic using data from the Soil Moisture Active Passive (SMAP) mission in three case studies: the 2018 Kilauea eruption, the 2018 Oct-Nov eruption at F
APA, Harvard, Vancouver, ISO, and other styles
27

Millán, Luis, M. Lebsock, E. Fishbein, P. Kalmus, and J. Teixeira. "Quantifying Marine Boundary Layer Water Vapor beneath Low Clouds with Near-Infrared and Microwave Imagery." Journal of Applied Meteorology and Climatology 55, no. 1 (2016): 213–25. http://dx.doi.org/10.1175/jamc-d-15-0143.1.

Full text
Abstract:
AbstractThis study investigates the synergy of collocated microwave radiometry and near-infrared imagery to estimate the marine boundary layer water vapor beneath uniform cloud fields. Microwave radiometry provides the total column water vapor, while the near-infrared imagery provides the water vapor above the cloud layers. The difference between the two gives the vapor between the surface and the cloud top, which may be interpreted as the boundary layer water vapor. In combining the two datasets, we apply several flags as well as proximity tests to remove pixels with high clouds and/or intrap
APA, Harvard, Vancouver, ISO, and other styles
28

Gero, P. Jonathan, John A. Dykema, and James G. Anderson. "A Blackbody Design for SI-Traceable Radiometry for Earth Observation." Journal of Atmospheric and Oceanic Technology 25, no. 11 (2008): 2046–54. http://dx.doi.org/10.1175/2008jtecha1100.1.

Full text
Abstract:
Abstract Spaceborne measurements pinned to international standards are needed to monitor the earth’s climate, quantify human influence thereon, and test forecasts of future climate change. The International System of Units (SI, from the French for Système International d’Unités) provides ideal measurement standards for radiometry as they can be realized anywhere, at any time in the future. The challenge is to credibly prove on-orbit accuracy at a claimed level against these international standards. The most accurate measurements of thermal infrared spectra are achieved with blackbody-based cal
APA, Harvard, Vancouver, ISO, and other styles
29

Guoqing Yang, 杨国庆, 李周 Zhou Li, 赵晨 Chen Zhao, 余毅 Yi Yu, 乔彦峰 Yanfeng Qiao, and 何锋赟 Fengyun He. "Nonlinear atmospheric correction based on neural network for infrared target radiometry." Infrared and Laser Engineering 49, no. 5 (2020): 20190413. http://dx.doi.org/10.3788/irla.24_2019-0413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Milner, Thomas E. "Noncontact determination of thermal diffusivity in biomaterials using infrared imaging radiometry." Journal of Biomedical Optics 1, no. 1 (1996): 92. http://dx.doi.org/10.1117/12.227537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Fried, Daniel. "Infrared radiometry of dental enamel during Er:YAG and Er:YSGG laser irradiation." Journal of Biomedical Optics 1, no. 4 (1996): 455. http://dx.doi.org/10.1117/12.250668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Alaluf, M., J. Dror, A. Katzir, and N. Croitoru. "Infrared radiometry measurements using plastic hollow waveguides based on thin films." Journal of Physics D: Applied Physics 26, no. 7 (1993): 1036–40. http://dx.doi.org/10.1088/0022-3727/26/7/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bandfield, Joshua L., and Christopher S. Edwards. "Derivation of martian surface slope characteristics from directional thermal infrared radiometry." Icarus 193, no. 1 (2008): 139–57. http://dx.doi.org/10.1016/j.icarus.2007.08.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Eyal, Ophir. "Infrared radiometry using silver halide fibers and a cooled photonic detector." Optical Engineering 33, no. 2 (1994): 502. http://dx.doi.org/10.1117/12.153196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Pandey, G. C., A. C. Boccara, and D. Fournier. "Measurement of Thermal Diffusivity of C60 Fulleremes by Microscopic Infrared Radiometry." Fullerene Science and Technology 5, no. 5 (1997): 1067–74. http://dx.doi.org/10.1080/15363839708013318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Puckrin, Eldon, and Jean-Marc Thériault. "Passive standoff detection of radiological products by Fourier-transform infrared radiometry." Optics Letters 29, no. 12 (2004): 1375. http://dx.doi.org/10.1364/ol.29.001375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Orton, Glenn S., Kevin H. Baines, Jay T. Bergstralh, Robert H. Brown, John Caldwell та Alan T. Tokunaga. "Infrared radiometry of Uranus and Neptune at 21 and 32 μm". Icarus 69, № 2 (1987): 230–38. http://dx.doi.org/10.1016/0019-1035(87)90102-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Viswambharan, N. K., Shubha Sathyendranath, and L. V. Gangadhara Rao. "Remote sensing of sea surface temperature through infrared radiometry — a review." Sadhana 9, no. 4 (1986): 281–97. http://dx.doi.org/10.1007/bf02811970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Matsui, Matsunaga. "Far Infrared Spectral Radiometry of Thermal Radiator in the Low Temperature Range." JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 73, no. 4 (1989): 186–90. http://dx.doi.org/10.2150/jieij1980.73.4_186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Rahkonen, J., and H. Jokela. "Infrared Radiometry for Measuring Plant Leaf Temperature during Thermal Weed Control Treatment." Biosystems Engineering 86, no. 3 (2003): 257–66. http://dx.doi.org/10.1016/s1537-5110(03)00138-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Eyal, O., V. Scharf, and A. Katzir. "Temperature measurements using pulsed photothermal radiometry and silver halide infrared optical fibers." Applied Physics Letters 70, no. 12 (1997): 1509–11. http://dx.doi.org/10.1063/1.118602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Libois, Quentin, and Jean-Pierre Blanchet. "Added value of far-infrared radiometry for remote sensing of ice clouds." Journal of Geophysical Research: Atmospheres 122, no. 12 (2017): 6541–64. http://dx.doi.org/10.1002/2016jd026423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Osiander, R., J. W. M. Spicer, and J. C. Murphy. "Microwave induced time-resolved infrared radiometry for subsurface defect detection and characterization." Le Journal de Physique IV 04, no. C7 (1994): C7–563—C7–566. http://dx.doi.org/10.1051/jp4:19947132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ikari, Tetsuo, Alex Salnick, and Andreas Mandelis. "Theoretical and experimental aspects of three-dimensional infrared photothermal radiometry of semiconductors." Journal of Applied Physics 85, no. 10 (1999): 7392–97. http://dx.doi.org/10.1063/1.369368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Afanas'yev, A. V., I. Ya. Orlov, and A. E. Khrulev. "Infrared Radiometry of High-Temperature Processes During the Spot Heating of Materials." Radiophysics and Quantum Electronics 47, no. 8 (2004): 597–602. http://dx.doi.org/10.1023/b:raqe.0000049557.13178.46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Thériault, Jean-Marc, Eldon Puckrin, and James O. Jensen. "Passive Standoff Detection of Bacillus Subtilis Aerosol by Fourier-Transform Infrared Radiometry." Applied Optics 42, no. 33 (2003): 6696. http://dx.doi.org/10.1364/ao.42.006696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lehman, John H., Bob Lee, and Erich N. Grossman. "Far infrared thermal detectors for laser radiometry using a carbon nanotube array." Applied Optics 50, no. 21 (2011): 4099. http://dx.doi.org/10.1364/ao.50.004099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Li, Zhou, Yi Yu, Qi-Jie Tian, et al. "High-efficiency non-uniformity correction for wide dynamic linear infrared radiometry system." Infrared Physics & Technology 85 (September 2017): 395–402. http://dx.doi.org/10.1016/j.infrared.2017.08.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Feijt, A. J., and W. Kohsiek. "The effect of emissivity variation on surface temperature determined by infrared radiometry." Boundary-Layer Meteorology 72, no. 3 (1995): 323–27. http://dx.doi.org/10.1007/bf00836339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Salnick, A., A. Mandels, and C. Jean. "Detection of Silicon Wafer Contamination by Lifetime Measurement Using Infrared Photothermal Radiometry." physica status solidi (a) 163, no. 1 (1997): R5—R6. http://dx.doi.org/10.1002/1521-396x(199709)163:13.0.co;2-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!