To see the other types of publications on this topic, follow the link: InGaAs-InAlAs on InP.

Journal articles on the topic 'InGaAs-InAlAs on InP'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'InGaAs-InAlAs on InP.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Павленко, И. А., та И. С. Василевский. "ЭЛЕКТРОННЫЕ ТРАНСПОРТНЫЕ СВОЙСТВА СОСТАВНЫХ КВАНТОВЫХ ЯМ INALAS/INGAAS НА ПОДЛОЖКАХ INP. СОДЕРЖАЩИХ НАНОВСТАВКУ INAS". NANOINDUSTRY Russia 96, № 3s (2020): 688–89. http://dx.doi.org/10.22184/1993-8578.2020.13.3s.688.689.

Full text
Abstract:
В результате исследования гетер о структур с составной квантовой ямой InAlAs/InGaAs/InAs/InGaAs/InAlAs экспериментально определены подвижность, концентрация и эффективная масса электронов. Обнаружена анизотропия проводимости. Установлена высокая чувствительность электрофизических параметров к изменениям температуры роста составной квантовой ямы. Выявлена оптимальная температура роста СКЯ. As a result of the study of heterostructures with an InAlAs/InGaAs/InAs/InGaAs/InAlAs composite quantum well, the mobility, concentration and effective mass of electrons have been experimentally determined. A
APA, Harvard, Vancouver, ISO, and other styles
2

Kappelt, M., V. Türck, M. Grundmann, H. Cerva, and D. Bimberg. "InP/InAlAs/InGaAs quantum wires." III-Vs Review 9, no. 6 (1996): 32–38. http://dx.doi.org/10.1016/s0961-1290(96)80096-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mountjoy, G., P. A. Crozier, P. L. Fejes, R. K. Tsui, and G. D. Kramer. "High Resolution Electron Microscopy of InGaAs/InAIAs Interfaces." Proceedings, annual meeting, Electron Microscopy Society of America 54 (August 11, 1996): 120–21. http://dx.doi.org/10.1017/s042482010016306x.

Full text
Abstract:
Recently, quantum wells (QW) have been constructed using the (In0.532Ga0.468)As/ (In0.522Al0.478)As system (hereafter InGaAs/In Al As), which is lattice matched to InP (lattice constant of 5.869Å). In order to understand the properties of such QWs, it is important to have knowledge of the structure and composition of interfaces. For III-V materials, compositional changes affect the <200> frequency component of the high resolution electron microscopy (HREM) image intensity (I200). This underlies the “chemical imaging” approach. Simulations for InGaAs/InAlAs interfaces suggest optimum cond
APA, Harvard, Vancouver, ISO, and other styles
4

Kuznetsov, Kirill, Aleksey Klochkov, Andrey Leontyev, et al. "Improved InGaAs and InGaAs/InAlAs Photoconductive Antennas Based on (111)-Oriented Substrates." Electronics 9, no. 3 (2020): 495. http://dx.doi.org/10.3390/electronics9030495.

Full text
Abstract:
The terahertz wave generation by spiral photoconductive antennas fabricated on low-temperature In0.5Ga0.5As films and In0.5Ga0.5As/In0.5Al0.5As superlattices is studied by the terahertz time-domain spectroscopy method. The structures were obtained by molecular beam epitaxy on GaAs and InP substrates with surface crystallographic orientations of (100) and (111)A. The pump-probe measurements in the transmission geometry and Hall effect measurements are used to characterize the properties of LT-InGaAs and LT-InGaAs/InAlAs structures. It is found that the terahertz radiation power is almost four t
APA, Harvard, Vancouver, ISO, and other styles
5

Peiró, F., J. C. Ferrer, A. Cornet, M. Calamiotou, and A. Georgakilas. "Lateral modulations in InAlAs/InP and InGaAs/InP systems." physica status solidi (a) 195, no. 1 (2003): 32–37. http://dx.doi.org/10.1002/pssa.200306293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mitra, H., B. B. Pal, S. Singh, and R. U. Khan. "Optical effect in InAlAs/InGaAs/InP MODFET." IEEE Transactions on Electron Devices 45, no. 1 (1998): 68–77. http://dx.doi.org/10.1109/16.658813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Feuer, M. D., J. M. Kuo, S. C. Shunk, R. E. Behringer, and T. Y. Chang. "Microwave performance of InGaAs/InAlAs/InP SISFETs." IEEE Electron Device Letters 9, no. 4 (1988): 162–64. http://dx.doi.org/10.1109/55.676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Peng, C. K., M. I. Aksun, A. A. Ketterson, H. Morkoc, and K. R. Gleason. "Microwave performance of InAlAs/InGaAs/InP MODFET's." IEEE Electron Device Letters 8, no. 1 (1987): 24–26. http://dx.doi.org/10.1109/edl.1987.26538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Малеев, Н. А., В. А. Беляков, А. П. Васильев та ін. "Молекулярно-пучковая эпитаксия структур InGaAs/InAlAs/ AlAs для гетеробарьерных варакторов". Физика и техника полупроводников 51, № 11 (2017): 1484. http://dx.doi.org/10.21883/ftp.2017.11.45095.09.

Full text
Abstract:
Представлены результаты исследований по оптимизации технологии молекулярно-пучковой эпитаксии структур InGaAs/InAlAs/AlAs для гетеробарьерных варакторов. Выбор температуры держателя подложки, скорости роста и соотношения потоков элементов III и V групп при синтезе отдельных областей гетероструктуры, толщина AlAs-вставок и качество границ барьерных слоев являются критическими параметрами для получения оптимальных характеристик гетеробарьерных варакторов. Предложенная конструкция трехбарьерных структур гетеробарьерных варакторов с непосредственно примыкающими к гетеробарьеру InAlAs/AlAs/InAlAs т
APA, Harvard, Vancouver, ISO, and other styles
10

Stano, Alessandro. "Chemical Etching Characteristics of InGaAs / InP and InAlAs / InP Heterostructures." Journal of The Electrochemical Society 134, no. 2 (1987): 448–52. http://dx.doi.org/10.1149/1.2100477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Żak, Dariusz, Jarosław Jureńczyk, and Janusz Kaniewski. "Zener Phenomena in InGaAs/InAlAs/InP Avalanche Photodiodes." Detection 02, no. 02 (2014): 10–15. http://dx.doi.org/10.4236/detection.2014.22003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Czuba, Krzysztof, Jaroslaw Jurenczyk, and Janusz Kaniewski. "A study of InGaAs/InAlAs/InP avalanche photodiode." Solid-State Electronics 104 (February 2015): 109–15. http://dx.doi.org/10.1016/j.sse.2014.12.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Muszalski, J., J. Kaniewski, and K. Kalinowski. "Low dark current InGaAs/InAlAs/InP avalanche photodiode." Journal of Physics: Conference Series 146 (January 1, 2009): 012028. http://dx.doi.org/10.1088/1742-6596/146/1/012028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Streit, D. C., K. L. Tan, R. M. Dia, et al. "High performance W-band InAlAs-InGaAs-InP HEMTs." Electronics Letters 27, no. 13 (1991): 1149. http://dx.doi.org/10.1049/el:19910716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Dickmann, J., H. Haspeklo, A. Geyer, H. Daembkes, H. Nickel, and R. Lösch. "High performance fully passivated InAlAs/InGaAs/InP HFET." Electronics Letters 28, no. 7 (1992): 647. http://dx.doi.org/10.1049/el:19920409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Журавлев, К. С., A. M. Гилинский, И. Б. Чистохин та ін. "Мощные СВЧ-фотодиоды на основе гетероструктур InAlAs/InGaAs, синтезируемых методом молекулярно-лучевой эпитаксии". Журнал технической физики 91, № 7 (2021): 1158. http://dx.doi.org/10.21883/jtf.2021.07.50957.347-20.

Full text
Abstract:
Описаны конструкция и технологии изготовления мощных СВЧ-мезафотодиодов с барьером Шоттки диаметром от 10 до 40 μm и обратной засветкой через подложку на основе гетероструктур InAlAs/InGaAs/InP, выращиваемых методом молекулярно-лучевой эпитаксии. Рабочая частота фотодиодов диаметром 10 μm составляет 40 GHz, а максимальная выходная СВЧ-мощность на частоте 20 GHz для фотодиодов диаметром 15 μm достигает 58 mW. Коэффициент амплитудно-фазового преобразования составил 1.5 rad/W, что превосходит литературные данные и делает данную конструкцию фотодиодов перспективной для примене
APA, Harvard, Vancouver, ISO, and other styles
17

ARDARAVICIUS, L., J. LIBERIS, A. MATULIONIS, and M. RAMONAS. "ESTIMATION OF ELECTRON ENERGY RELAXATION TIME IN 2DEG CHANNELS FROM TRANSVERSE AND LONGITUDINAL NOISE." Fluctuation and Noise Letters 02, no. 01 (2002): L53—L63. http://dx.doi.org/10.1142/s0219477502000592.

Full text
Abstract:
Microwave noise is investigated in heterostructures subjected to an electric field applied parallel to the interfaces. The longitudinal and transverse noise temperatures are measured and simulated in the plane of electron confinement in the directions perpendicular and parallel to the electric field. Monte Carlo simulation is performed for a subcritically doped InAlAs/InGaAs/InAlAs heterostructure containing a two-dimensional electron gas in a single channel. The simulated longitudinal noise temperature is found to be nearly the same as the transverse one in the field range where the interwell
APA, Harvard, Vancouver, ISO, and other styles
18

Bennett, Brian R., and Jesús A. del Alamo. "Mismatched InGaAs/InP and InAlAs/InP heterostructures with high crystalline quality." Journal of Applied Physics 73, no. 7 (1993): 3195–202. http://dx.doi.org/10.1063/1.352963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Cavassilas, N., F. Aniel, P. Boucaud, et al. "Electroluminescence of composite channel InAlAs/InGaAs/InP/InAlAs high electron mobility transistor." Journal of Applied Physics 87, no. 5 (2000): 2548–52. http://dx.doi.org/10.1063/1.372217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Chen, W. Q., and S. K. Hark. "Strain‐induced effects in (111)‐oriented InAsP/InP, InGaAs/InP, and InGaAs/InAlAs quantum wells on InP substrates." Journal of Applied Physics 77, no. 11 (1995): 5747–50. http://dx.doi.org/10.1063/1.359219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Wallart, X., B. Pinsard, and F. Mollot. "High-mobility InGaAs∕InAlAs pseudomorphic heterostructures on InP (001)." Journal of Applied Physics 97, no. 5 (2005): 053706. http://dx.doi.org/10.1063/1.1858871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sato, H., J. C. Vlcek, C. G. Fonstad, B. Meskoob, and S. Prasad. "InGaAs/InAlAs/InP collector-up microwave heterojunction bipolar transistors." IEEE Electron Device Letters 11, no. 10 (1990): 457–59. http://dx.doi.org/10.1109/55.62995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lott, J. A., J. F. Klem, H. T. Weaver, C. P. Tigges, and V. Radoslovich-Cibicki. "Charge storage in InAlAs/InGaAs/InP floating gate heterostructures." Electronics Letters 26, no. 14 (1990): 972. http://dx.doi.org/10.1049/el:19900632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Streit, Dwight C. "Graded-channel InGaAs–InAlAs–InP high electron mobility transistors." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 13, no. 2 (1995): 774. http://dx.doi.org/10.1116/1.588161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Li, X., W. I. Wang, A. Y. Cho, and D. L. Sivco. "Planar-doped n-type InAlAs/InGaAs MODFETs on InP." IEEE Electron Device Letters 14, no. 4 (1993): 170–72. http://dx.doi.org/10.1109/55.215161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Munns, G. O., M. E. Sherwin, T. Brock, et al. "InAlAs/InGaAs/InP sub-micron HEMTs grown by CBE." Journal of Crystal Growth 120, no. 1-4 (1992): 184–88. http://dx.doi.org/10.1016/0022-0248(92)90388-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ghidoni, Chiara, Rita Magri, and Stefano Ossicini. "The electronic and optical properties of InGaAs/InP and InAlAs/InP superlattices." Surface Science 489, no. 1-3 (2001): 59–71. http://dx.doi.org/10.1016/s0039-6028(01)01128-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kawamura, Y., K. Wakita, Y. Itaya, Y. Yoshikuni, and H. Asahi. "Monolithic integration of InGaAs/InP DFB lasers and InGaAs/InAlAs MQW optical modulators." Electronics Letters 22, no. 5 (1986): 242. http://dx.doi.org/10.1049/el:19860166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mokhtarnejad, Mahshid, Morteza Asgari, and Arash Sabatyan. "Investigating Optical Properties of One-Dimensional Photonic Crystals Containing Semiconductor Quantum Wells." International Journal of Optics 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/7280613.

Full text
Abstract:
This study examined MQWs made of InGaAs/GaAs, InAlAs/InP, and InGaAs/InP in terms of their band structure and reflectivity. We also demonstrated that the reflectivity of MQWs under normal incident was at maximum, while both using a strong pump and changing incident angle reduced it. Reflectivity of the structure for a weak probe pulse depends on polarization, intensity of the pump pulse, and delay between the probe pulse and the pump pulse. So this system can be used as an ultrafast all-optical switch which is inspected by the transfer matrix method. After studying the band structure of the on
APA, Harvard, Vancouver, ISO, and other styles
30

Arbiol, J., F. Peiró, A. Cornet, K. Michelakis, and A. Georgakilas. "Temperature-graded InAlAs buffers applied on InGaAs/InAlAs/InP high electron mobility transistor heterostructures." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 17, no. 6 (1999): 2540. http://dx.doi.org/10.1116/1.591124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Jin-Ping, Ao, Zeng Qing-Ming, Zhao Yong-Lin, et al. "Enhancement-Mode InAlAs/InGaAs/InP High Electron Mobility Transistor with Strained InAlAs Barrier Layer." Chinese Physics Letters 17, no. 8 (2000): 619–20. http://dx.doi.org/10.1088/0256-307x/17/8/027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Hybertsen, Mark S. "Band offset transitivity at the InGaAs/InAlAs/InP(001) heterointerfaces." Applied Physics Letters 58, no. 16 (1991): 1759–61. http://dx.doi.org/10.1063/1.105082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lai, R., H. Wang, K. L. Tan, et al. "A monolithically integrated 120-GHz InGaAs/InAlAs/InP HEMT amplifier." IEEE Microwave and Guided Wave Letters 4, no. 6 (1994): 194–95. http://dx.doi.org/10.1109/75.294290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Moon, Jeong S., Rajesh Rajavel, Steven Bui, Danny Wong, and David H. Chow. "Room-temperature InAlAs∕InGaAs∕InP planar resonant tunneling-coupled transistor." Applied Physics Letters 87, no. 18 (2005): 183110. http://dx.doi.org/10.1063/1.2126108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zhang, Y. G., K. J. Nan, and A. Z. Li. "Characterization of InAlAs/InGaAs/InP mid-infrared quantum cascade lasers." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 58, no. 11 (2002): 2323–28. http://dx.doi.org/10.1016/s1386-1425(02)00047-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ando, Y., A. Cappy, K. Marubashi, K. Onda, H. Miyamoto, and M. Kuzuhara. "Noise parameter modeling for InP-based pseudomorphic HEMTs [InAlAs-InGaAs]." IEEE Transactions on Electron Devices 44, no. 9 (1997): 1367–74. http://dx.doi.org/10.1109/16.622590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wang, S. C., J. S. Liu, K. C. Hwang, et al. "High performance fully selective double recess InAlAs/InGaAs/InP HEMTs." IEEE Electron Device Letters 21, no. 7 (2000): 335–37. http://dx.doi.org/10.1109/55.847372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Tong, M., K. Nummila, A. A. Ketterson, I. Adesida, L. Aina, and M. Mattingly. "Selective Wet Etching Characteristics of Lattice‐Matched InGaAs / InAlAs / InP." Journal of The Electrochemical Society 139, no. 10 (1992): L91—L93. http://dx.doi.org/10.1149/1.2069023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Henderson, T. S., A. H. Taddiken, and Y. C. Kao. "An InAlAs/InGaAs heterojunction bipolar transistor clocked latch on InP." IEEE Transactions on Electron Devices 37, no. 6 (1990): 1537–39. http://dx.doi.org/10.1109/16.106253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Nummila, K., M. Tong, A. Ketterson, I. Adesida, C. Caneau, and R. Bhat. "MOVPE-grown InAlAs/InGaAs/Inp MODFETs with very high fT." Electronics Letters 29, no. 3 (1993): 274. http://dx.doi.org/10.1049/el:19930187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Murata, K., and Y. Yamane. "74 GHz dynamic frequency divider using InAlAs/InGaAs/InP HEMTs." Electronics Letters 35, no. 23 (1999): 2024. http://dx.doi.org/10.1049/el:19991382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Otsuji, T., M. Yoneyama, Y. Imai, T. Enoki, and Y. Umeda. "64 Gbit/s multiplexer IC using InAlAs/InGaAs/InP HEMTs." Electronics Letters 33, no. 17 (1997): 1488. http://dx.doi.org/10.1049/el:19970959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Otsuji, T., K. Murata, T. Enoki, and Y. Umeda. "80 Gbit/s multiplexer IC using InAlAs/InGaAs/InP HEMTs." Electronics Letters 34, no. 1 (1998): 113. http://dx.doi.org/10.1049/el:19980001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Pao, Y. C., and J. S. Harris. "Low-conductance drain (LCD) design of InAlAs/InGaAs/InP HEMT's." IEEE Electron Device Letters 13, no. 10 (1992): 535–37. http://dx.doi.org/10.1109/55.192824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Shigekawa, N., T. Enoki, T. Furuta, and H. Ito. "Electroluminescence of InAlAs/InGaAs HEMTs lattice-matched to InP substrates." IEEE Electron Device Letters 16, no. 11 (1995): 515–17. http://dx.doi.org/10.1109/55.468285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Sommer, V., J. Hedrich, K. Weigel, O. Perillieux, and K. Heime. "Observation and modelling of RTS in InAlAs/InGaAs/InP HFETs." Solid-State Electronics 38, no. 11 (1995): 1917–22. http://dx.doi.org/10.1016/0038-1101(95)00019-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Belenky, G. L., P. A. Garbinski, S. Luryi, et al. "Collector‐up light‐emitting charge injection transistors inn‐InGaAs/InAlAs/p‐InGaAs andn‐InGaAs/InP/p‐InGaAs heterostructures." Journal of Applied Physics 73, no. 12 (1993): 8618–27. http://dx.doi.org/10.1063/1.353393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Малеев, Н. А., М. А. Бобров, А. Г. Кузьменков та ін. "Гетеробарьерные варакторы с неоднородно легированными модулирующими слоями". Письма в журнал технической физики 45, № 20 (2019): 51. http://dx.doi.org/10.21883/pjtf.2019.20.48396.17960.

Full text
Abstract:
Optimal capacitance-voltage characteristic is critical for heterobarrier varactor diode (HBV) performance in terms of multiplication efficiency in mm- and sub-mm wave ranges. Numerical model of capacitance-voltage characteristics and leakage current for HBV with arbitrary heterostructure composition and doping profile was verified on published data and original experimental results. Designed HBV heterostructure with three undoped InAlAs/AlAs/InAlAs barriers surrounded with non-uniformly doped n-InGaAs modulation layers was grown by molecular-beam epitaxy on InP substrate and test HBV diodes ha
APA, Harvard, Vancouver, ISO, and other styles
49

Ahmad, Norhawati, S. S. Jamuar, M. Mohammad Isa, et al. "Extrinsic and Intrinsic Modeling of InGaAs/InAlAs pHEMT for Wireless Applications." Applied Mechanics and Materials 815 (November 2015): 369–73. http://dx.doi.org/10.4028/www.scientific.net/amm.815.369.

Full text
Abstract:
This paper presents the linear modelling of high breakdown InP pseudomorphic High Electron Mobility Transistors (pHEMT) that have been developed and fabricated at the University of Manchester (UoM) for low noise applications mainly for the Square Kilometre Array (SKA) project. The ultra-low leakage properties of a novel InGaAs/InAlAs/InP pHEMTs structure were used to fabricate a series of transistor with total gate width ranging from 0.2 mm to 1.2 mm. The measured DC and S-Parameters data from the fabricated devices were then used for the transistors’ modelling. The transistors demonstrated to
APA, Harvard, Vancouver, ISO, and other styles
50

Галиев, Г. Б., А. Н. Клочков, И. С. Васильевский та ін. "Электронные свойства приповерхностных квантовых ям InGaAs/InAlAs с инвертированным легированием на подложках InP". Физика и техника полупроводников 51, № 6 (2017): 792. http://dx.doi.org/10.21883/ftp.2017.06.44559.8456.

Full text
Abstract:
Сравниваются электронные транспортные и оптические свойства гетероструктур с приповерхностной квантовой ямой InGaAs/InAlAs при использовании инвертированного (снизу от квантовой ямы) и стандартного (сверху от квантовой ямы) delta-легирования атомами Si. Показано, что при использовании инвертированного легирования происходит увеличение плотности двумерных электронов в квантовой яме по сравнению со стандартным расположением легирующего слоя при идентичных составах и толщинах других слоев гетероструктур. Наблюдаемые особенности низкотемпературного электронного транспорта (осцилляций Шубникова--де
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!