Dissertations / Theses on the topic 'Inhalation Aerosols'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 37 dissertations / theses for your research on the topic 'Inhalation Aerosols.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kwok, Philip Chi Lip. "Electrostatics of aerosols for inhalation." Faculty of Pharmacy, 2007. http://hdl.handle.net/2123/1934.
Full textElectrostatics of aerosols for inhalation is a relatively new research area. Charge properties of these particles are largely unknown but electrostatic forces have been proposed to potentially influence lung deposition. Investigation on the relationship between formulation and aerosol charging is required to understand the fundamental mechanisms. A modified electrical low pressure impactor was employed to measure the particles generated from metered dose inhalers and dry powder inhalers. This equipment provides detailed size and charge information of the aerosols. The particles were sized by impaction onto thirteen stages. The net charges in twelve of the size fractions were detected and recorded by sensitive electrometers. The drug deposits were quantified by chemical assay. The aerosol charge profiles of commercial metered dose inhalers were product-dependent, which was due to differences in the drug, formulation, and valve stem material. The calculated number of elementary charges per drug particle of size ≤ 6.06 μm ranged from zero to several ten thousands. The high charge levels on particles may have a potential effect on the deposition of the aerosol particles in the lung when inhaled. New plastic spacers marketed for use with metered dose inhalers were found to possess high surface charges on the internal walls, which was successfully removed by detergent-coating. Detergent-coated spacer had higher drug output than the new ones due to the reduced electrostatic particle deposition inside the spacer. Particles delivered from spacers carried lower inherent charges than those directly from metered dose inhalers. Those with higher charges might be susceptible to electrostatic forces inside the spacers and were thus retained. The electrostatic low pressure impactor was further modified to disperse two commercial Tubuhaler® products at 60 L/min. The DPIs showed drug-specific responses to particle charging at different RHs. The difference in hygroscopicity of the drugs may play a major role. A dual mechanistic charging model was proposed to explain the charging behaviours. The charge levels on drug particles delivered from these inhalers were sufficiently high to potentially affect deposition in the airways when inhaled. Drug-free metered dose inhalers containing HFA-134a and 227 produced highly variable charge profiles but on average the puffs were negatively charged, which was thought to be due to the electronegative fluorine atoms in the HFA molecules. The charges of both HFAs shifted towards neutrality or positive polarity with increasing water content. The spiked water might have increased the electrical conductivity and/or decreased the electronegativity of the bulk propellant solution. The number of elementary charges per droplet decreased with decreasing droplet size. This trend was probably due to the redistribution of charges amongst small droplets following electrostatic fission of a bigger droplet when the Raleigh limit was reached.
Ashurst, Ian C. "Physicochemical characteristics of chlorofluorohydrocarbon based inhalation aerosols." Thesis, Aston University, 1985. http://publications.aston.ac.uk/12546/.
Full textHickey, A. J. "Pharmaceutical inhalation aerosols : their delivery and therapeutic applications." Thesis, Aston University, 2002. http://publications.aston.ac.uk/21776/.
Full textChen, Chi. "Engineering of inhalation aerosols combining theophylline and budesonide." Thesis, University of Bradford, 2014. http://hdl.handle.net/10454/14072.
Full textSherman, Jay Michael. "Inhalation exposure system for diesel exhaust particulates." Morgantown, W. Va. : [West Virginia University Libraries], 2003. http://etd.wvu.edu/templates/showETD.cfm?recnum=2844.
Full textTitle from document title page. Document formatted into pages; contains vii, 112 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 109-112).
Manby, Pedersen Kenneth. "Factors influencing the quality and quantity of continuous inhalation of aerosols : an in vitro study on mechanical ventilation /." Cph. : The Danish University of Pharmaceutical Sciences, Department of Pharmaceutics, 2004. http://www.dfh.dk/phd/defences/Kennethmanbypedersen.htm.
Full textLi, Xiaojian. "MULTI-COMPONENT MICROPARTICULATE/NANOPARTICULATE DRY POWDER INHALATION AEROSOLS FOR TARGETED PULMONARY DELIVERY." UKnowledge, 2014. http://uknowledge.uky.edu/pharmacy_etds/31.
Full textSecondo, Lynn E. "Toxicological Inhalation Effects of Metal-Based Nanoparticle Aerosols as Studied by a Portable In Vitro Exposure Cassette." VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5705.
Full textPieretti, Luis F. "Characterization and Evaluation of Performance of a Whole-Body Human Exposure Chamber." Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3611.
Full textMalapit, Monica, and Evan Mallory. "In vitro aerodynamic analysis of co-spray dried fluticasone propionate (FP) and salmeterol xinafoate (SX) dry powder inhalation aerosols with lactose-alternative excipient." The University of Arizona, 2017. http://hdl.handle.net/10150/624206.
Full textObjectives: Milk protein allergy is estimated to affect 1.2% to as much as 17% of people of all ages. Advair® Diskus® (FP/SX) utilizes lactose as an excipient which limits the utility of this product for this population. Furthermore, Advair® Diskus® is formulated as an interactive physical mixture via a micronization process. Alternatively, spray dried engineering achieves narrow particle size distribution, allowing greater deposition in the targeted respiratory bronchioles. The purpose of this dry powder inhaler (DPI) study was to conduct an in vitro comparative analysis of the aerodynamic performance of a co-spray dried lactose-free formulation of FP/SX with a mannitol excipient as a molecular mixture versus the Advair® Diskus® 250/50 (FP/SX) interactive physical mixture product. Methods: Utilizing mannitol as an excipient, a co-spray dried FP/SX powder was prepared using the Buchi Mini-Spray Dryer B-290 under closed system configuration. The resulting feed solution was spray dried at pump rates of 25%, 50%, and 100% with all other parameters remaining constant (aspiration, atomization rate, nitrogen gas rate). The primary outcome measure, aerodynamic performance, was assessed using the Copley Next-Generation Impactor (NGI). NGI data for the DPIs was used to calculate mass median aerodynamic diameter (MMAD), geometric standard deviation (GSD), and fine particle fraction (FPF) of each powder, including the Advair® Diskus®. Residual water content was quantified by Karl Fischer titration. Particle characteristics were visualized by scanning electron microscopy. Results: FPF, MMAD, and GSD were calculated from NGI data; Wolfram Alpha software was used to calculate MMAD and GSD. T-test regression was used for comparative analysis of spray-dried and Advair® Diskus® powders. MMAD for each spray dried sample was analyzed using a t-test regression against the MMAD values from the Advair® Diskus®. Using aerodynamic analysis studies triplicated for each powder, there was no significant difference between the spray dried powder and Advair® Diskus® for MMAD and GSD (p-values >0.05). The 50% and 100% pump rate samples had similar FPF to the Advair® Diskus® (p-values >0.05). However, the 25% pump rate sample had a significantly improved FPF compared to the Advair® Diskus® (p <0.01). Conclusions: A co-spray-dried lactose-free formulation of FP/SX with a mannitol excipient demonstrated similar aerodynamic performance to the Advair® Diskus® which consists of a physical mixture of two drugs with lactose. Of significance, 25% pump rate spray-dry conditions demonstrated an improved FPF compared to the Advair® Diskus®.
Lundgren, Lennart. "Large organic aerosols in a human exposure chamber : applications in occupational dermatology and lung medicine /." Stockholm, 2006. http://diss.kib.ki.se/2006/91-7140-731-6/.
Full textMorais, Cristiane Luchesi de Mello. "Estudo comparativo da administração intravenosa e por nebulização de vancomicina em pulmão saudável de suínos sob ventilação mecânica." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/5/5152/tde-07022019-151726/.
Full textIntroduction: Ventilator-associated pneumonia caused by Staphylococcus aureus methicillin resistant is a frequent nosocomial infection in critically ill patients. Vancomycin is the treatment of choice, but it has presented high rates of therapeutic failure, possibly due to its low penetration in lung tissue following intravenous administration. Many studies have shown that lung tissue deposition and antibacterial efficiency of nebulized antibiotics were greater than by intravenous administration. However, to date, the literature lacks studies comparing the use of vancomycin intravenously with the inhalation route Objective: The aim of this study was to compare vancomycin concentration in healthy lungs after a single dose nebulized or intravenously administered in anesthetized and ventilated piglets. Methods: Twenty four piglets were anesthetized, intubated and submitted to mechanical ventilation. Twelve animals received a single dose of vancomycin by intravenous infusion (15 mg.kg-1), of which six animals were euthanized one hour after the end of administration and six animals were euthanized after 12 hours and twelve animals received a single dose of vancomycin using a vibrating plate nebulizer (37,5 mg.kg-1), of which six animals were euthanized one hour after the end of administration and six animals were euthanized after 12 hours. Blood samples were collected for serum vancomycin dosage before and at 30\', 1, 2, 4, 6, 8 and 12 hours after the end of administration. After euthanasia, tissue samples from dependent and non-dependent lung tissue were collected for tissue dosage of vancomycin. In animals receiving vancomycin by nebulization, the extrapulmonary deposition of this antibiotic was calculated after washing the parts of the ventilator circuit and the nebulization chamber. The dosage of vancomycin was performed using high performance liquid chromatography (HPLC-UV). Results: Vancomycin lung tissue concentrations in one-hour aerosol group were thirteen times greater than pulmonary concentration in one-hour intravenous group (median and interquartile range): 161 (71-301) Mig.g-1 vs. 12 (4-42) Mig.g-1 (p < 0.05). Vancomycin lung tissue concentration in twelve-hour aerosol group was 63 (23-119) ?g.g-1 and it was undetectable in twelve-hour intravenous group; 0 (0-19) Mig.g-1 (p < 0.05). There was no vancomycin serum peak following the end of administration by nebulization in the 12-hour group compared to intravenous administration. Conclusion: Administration of vancomycin by nebulization showed higher lung tissue concentrations than intravenous route. The results suggest a slower passage of vancomycin through alveolar capillary barrier after nebulization
Fernandez, Art. "On inhalation health effects of combustion generated ash aerosol particles." Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/280123.
Full textNerbrink, Ola. "Characterisation of aerosol delivery devices and their influence on deposition in humans and animals /." Stockholm, 2001. http://diss.kib.ki.se/2001/91-628-4753-8/.
Full textAl-Hadithi, Dima. "Carrier surface modifications to improve aerosol performance of dry powder inhalation therapy." Thesis, University College London (University of London), 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412883.
Full textRiley, Laura. "Expansion of the Performance Capabilities of the USF Inhalation Challenge Chamber." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6575.
Full textRussell-Lodrigue, Kasi Elizabeth. "An inhalation model of acute Q fever in guinea pigs." [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1209.
Full textScheinherr, Adam. "Glottal motion and its impact on airflow and aerosol deposition in upper airways during human breathing." Thesis, Ecole centrale de Marseille, 2015. http://www.theses.fr/2015ECDM0001/document.
Full textDuring inhaled therapies several factors limits the amount of drug delivered to the lungs. E.g. the upper airways morphology and in particular the glottis, defined by the vocal-fold aperture, causes upper airways to narrow in a minimal cross section, which is determinant on aerosol depo sition by inertial impaction. This thesis aims to (i) investigate evolution of the glottal area during breathing, and (ii) predict the effects of a dynamic glottis and realistic airflow conditions on the aerosol deposition in upper airways using three-dimensional simulations.First, a clinical study was conducted on 20 healthy volunteers (10 males and 10 females) to explore the glottal motion during several specifie slow (below 20 cycles/min) and rapid breathing tasks (up to 90 cycles/min). The breathing was investigated simultaneously for the glottal area variations using laryngoscopie video recordings and for airflow rate using oral flowmeter.The experimental measurements showed that the glottal geometry observed during a breathing cycle can be extremely variable depending on the respiratory phase, tidal volume, and breathing frequency. Testing the dynamic behaviour of the glottis during breathing, two groups of subjects were identified: one with relatively constant glottal area and other with significant variations. In average, the variations for the latter group of subjects was observed for males at 26% comparing maximale and minimal glottal opening during inspiration and expiration respectively.The results of the clinical study together with anatomical morphological data served to create a madel with idealised geometry of upper airways. This madel represents the major geometrical characteristics of upper airways with special interest in the glottal region. Transport and deposition of aerosols was studied using 3D numerical cyclic simulations and parametrical analysis allowed to evaluate the influence of the cyclic flow, glottal dynamics, type of carrier gas (air or helium-oxygen mixture) and particle size on the deposition of aerosols in the upper airways.The numerical simulations demonstrated significant decrease of respiration work with He-02 and jet-like flow with recirculation zone in the oro-pharynx and downstream the glottal plane. The principal deposition mechanism is inertial impaction (for the particle diameters 1 - lOiJ.m) with most significant deposition region in the oro-pharynx. Important parameters for deposition are the particle size and the nature of carrier gas. For He-02 the deposition reaches two times smaller values than for air and the fraction of deposited particles increases significantly with diameter, reaching 80% of deposited efficiency for 10 iJ.m particles. Finally, the CFD results demonstrated negligible differences in aerosol transport and deposition between different glottal characteristics. Therefore, in normal breathing conditions the glottal motion can be neglected
Ollier, Katherine J. "Inhalation Exposure and Respiratory Protection of Home Healthcare Workers Administering Aerosolized Medications (Simulation Study)." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535460244928302.
Full textAziz, Shahir [Verfasser]. "Trehalose physicochemical characteristics as a potential dry powder inhalation carrier for optimized aerosol generation / Shahir Aziz." Kiel : Universitätsbibliothek Kiel, 2015. http://d-nb.info/1075492696/34.
Full textBaumann, Romy [Verfasser]. "Ferrofluid-Aerosole als Drug Carrier für das inhalative magnetische Drug Targeting / Romy Baumann." Greifswald : Universitätsbibliothek Greifswald, 2011. http://d-nb.info/1017185212/34.
Full textGoldbach, Pierre. "Utilisation des liposomes par voie pulmonaire : aspect technologique et application à l'activation des macrophages alvéolaires par inhalation d'immunomodulateurs encapsulés dans des liposomes." Paris 11, 1995. http://www.theses.fr/1995PA114804.
Full textAgrawal, Swati. "Investigation and Optimization of a Solvent / Anti-Solvent Crystallization Process for the Production of Inhalation Particles." VCU Scholars Compass, 2010. http://scholarscompass.vcu.edu/etd/2244.
Full textDelvadia, Renishkumar. "In vitro methods to predict aerosol drug deposition in normal adults." VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/314.
Full textJaafar, Maalej Chiraz. "Nanovecteurs lipidiques inhalables de dipropionate de béclométhasone : développement & caractérisation." Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10336.
Full textThe objective of this work was to prepare and to characterize lipidic nanocarriers systems encapsulating the beclomethasone dipropionate (BDP) and adapted to the nebulized pulmonary drug delivery. Two types of lipidic carriers: the liposomes and the lipidic nanoparticles including the solid lipid nanoparticles (SLN) and the nanostructured lipid carriers (NLC) were developed. Liposomes were prepared by the optimised ethanol injection based technology. The lipid nanoparticles were prepared by using the high shear homogenization process. Small sized particles, with high BDP encapsulation efficiency as well as a prolonged release effect in vitro were successfully obtained. Furthermore, the nebulized suspensions characteristics and deposition mathematical simulation in vitro revealed promising results. Finally, a liposomes production technique using a membrane contactor was investigated in order to produce large batches
Nordqvist, Malin. "Modellering av byggnaders skyddskoefficienter vid utsläpp av radioaktiva ämnen." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-195665.
Full textIn case of a radioactive release, it is important to have good preparedness with the right actions to contribute the best protection for the vulnerable section of the population. Immediately after a release theexposure through inhalation will be the biggest problem, since particles and gases have not beendeposited on land, clouds and so on. Buildings contribute to protection against inhalation. The reason forthis is that the air outside and inside the dwelling is changed relatively slowly. How much of the pollutionthat enter the indoor air and how long time it takes is important information to determine if thepopulation is sufficiently protected inside buildings or if evacuation is needed. In this work knowledgefrom existing literature and modelling has been used to describe general conditions with which apollutant moves in and out of a building. Differential equations with main processes and parameters havebeen studied to give a estimation as to the protection a building can provide against exposure throughinhalation of particles and gases in a radioactive cloud. Different types of ventilation systems, with orwithout associated particle filter are discussed and inhalation dose for different age groups and activitylevels are examined.A buildings protection coefficient is defined by comparing the amount of pollution in the air outside withthe air inside a building. The three main processes that control the transport of the pollution in and outfrom a building are ventilation, penetration and deposition. Ventilation arises of air exchange betweenindoor and outdoor air. Ventilation is controlled either mechanically or naturally. Penetration describesthe proportion of the particles or gases that enter trough the buildings shell. Deposition of particles andgases accurse due to the fact that they tend to stick to the surfaces they pass in transit. The deposition alsooccurs on all surfaces inside the building. After the particles and gases have become deposited, they mayre‐suspend and come back up into the air permitting inhalation before they once more deposit onavailable surfaces. The deposit is seen as a sink while re‐suspension acts as a source for indoor airconcentration.One of the factors that have a large impact of a buildings protection factor is the particle diameter, due tothe deposition and penetration process strongly dependent on particles size. Large and small particlesdeposited easier and the remaining fraction, the midfraction (0.2 to 1 micron in diameter), remains. Thisfraction will stay in the air longer since the deposition process does not affect it strongly. Gases moveeasily in and out of the building and are not prevented by the particle filter. However, there are specialfilters to install that prevent gases to penetrate, such as carbon filters. The rate of decay of the variousradionuclides also affects the protection factor. When nuclides decay the concentration in the airdecreases, the decay is then a sink of the concentration indoors. Ventilation rate has a certain influence onprotection coefficient. An increased ventilation rate leads to the concentration inside approaching thepenetration factor; this is applied if the ventilation rate can be assumed to be much higher than thedeposit rate. Ventilation system equipped with a particle filter can keep a large part of the pollutantoutside the building. Particle filters have different efficiency and are classified as coarse, medium and finefilter. High filter efficiency has a major impact on the protection coefficient. For a filter to functionproperly it demands maintenance and should be replaced in time.Inhalation dose depends on the particle size, since the deposition process affected in respiratory functionis similar to the transport in and out of a building. The midfraction tends to penetrate deep into the lungsafter inhalation. The effect of inhalation is due to an individual's age, size, and physical activity.
Duret, Christophe. "Développement et évaluation de poudres sèches pour inhalation à base d'itraconazole dans le cadre du traitement et de la prévention de l'aspergillose pulmonaire." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209499.
Full textsurvie considérablement bas qui lui est associé dans ses formes les plus graves, l’aspergillose
pulmonaire est encore à l’heure actuelle dévastatrice sur le plan clinique. L’approche
médicamenteuse conventionnelle consiste en l’administration par voie orale ou
intraveineuse (IV) d’agents antifongiques. Ces voies classiques requièrent l’administration de
doses très élevées qui sont nécessaires à l’obtention de concentrations systémiques
suffisantes pour obtenir un effet thérapeutique au niveau pulmonaire. Cependant, ces
concentrations systémiques sont également la cause d’effets secondaires indésirables et
d’interactions médicamenteuses importantes. Une alternative thérapeutique à ces voies
classiques serait de localiser ces antifongiques dans le poumon, en utilisant la voie inhalée.
Cela permettrait d’augmenter le taux de succès thérapeutique en déposant et en
concentrant directement la dose au niveau du site d’infection tout en minimisant les
concentrations systémiques.
Pour ce faire, nous avons choisi de développer des poudres sèches pour inhalation à
base d’itraconazole (ITZ), un antifongique actif à l’égard des souches d’aspergillus. Celles-ci
sont administrable via un inhalateur à poudre sèche pour les avantages que présente ce
mode d’administration comparativement aux nébuliseurs et aux inhalateurs pressurisés. Le
développement des formulations implique entre autres l’obtention de caractéristiques
aérodynamiques appropriées, c’est-à-dire, ayant, après décharge à partir d’un dispositif
d’inhalation, un profil de déposition pulmonaire permettant d’atteindre des doses
pulmonaires pharmacologiquement efficaces. Toutefois, l’ITZ présente une solubilité
aqueuse extrêmement faible (solubilité aqueuse à pH 7 ~ 4 ng/ml à 25°C). Or, une fois
déposée dans le poumon, la dose inhalée doit se solubiliser pour exercer son action
pharmacologique. Nous avons donc inclus dans les concepts de formulation, une stratégie
permettant l’amélioration du profil de dissolution et l’augmentation de la solubilité de l’ITZ.
Cela permettrait en effet d’en potentialiser au maximum l’action pharmacologique au sein
des lésions fongiques avant qu'il ne soit éliminé sous sa forme non dissoute par les
mécanismes de clairance non absorptifs du poumon. De plus, le poumon étant un organe ne
tolérant qu’un nombre limité de substances administrables par inhalation, nous nous
sommes focalisés sur l’utilisation d’excipients présentant un faible potentiel toxique ou bien
tolérés après inhalation. Enfin, nous avons gardé à l’esprit lors du développement des procédés de fabrication qu’ils pouvaient être sujets à la mise à l’échelle industrielle. Nous
avons donc privilégié des procédés de fabrication simples incluant des technologies
transposables telles que l’atomisation par la chaleur et l’homogénéisation à haute pression.
Une attention particulière lors de la caractérisation des poudres a été portée sur les
propriétés d’écoulement des formulations, toujours dans l’optique de faciliter une
potentielle future manutention à plus grande échelle.
Pour répondre à ces critères, durant la première partie de ce travail, nous avons
imaginé deux concepts de formulation qui ont pour but de former des microparticules de
mannitol dans lesquelles est dispersé l’ITZ sous forme « modifiée ».
Le premier concept de formulation qui a été développé consistait à former une
dispersion solide (DS) entre l’ITZ, si possible amorphe pour en augmenter la solubilité, et un
agent matriciel en utilisant le procédé d’atomisation par la chaleur d’une solution contenant
tous les ingrédients sous forme dissoute. Lors de tests préliminaires, nous avons évalué trois
types d’agents matriciels, deux agents hydrophiles (le mannitol et le lactose) et un agent
hydrophobe (le cholestérol). Sur base de la faisabilité, des résultats préliminaires de
solubilité, de dissolution et de déposition pulmonaire in vitro, le mannitol a été retenu.
Après une optimisation des conditions d’atomisation, les formulations ont été produites en
vue d’être caractérisées. Il a été observé, par diffraction de rayons X sur poudre (PXRD) et
par calorimétrie différentielle à balayage (DSC), qu’après atomisation, l’ITZ était obtenu sous
forme amorphe et le mannitol sous forme cristalline. Les tests d’évaluation des propriétés
aérodynamiques ont été réalisés à l’aide d’un impacteur liquide multi-étages (MsLI) en
suivant les recommandations pratiques de la Pharmacopée européenne. Ce type de
compositions, atomisées dans les conditions optimales, permettait d’obtenir des poudres
sèches présentant les caractéristiques de taille (diamètre médian < 5 μm, mesuré par
diffraction laser) et les propriétés aérodynamiques appropriées à l’administration
pulmonaire (fraction de particules fines (FPF) déterminées lors des tests d’impaction
comprises entre 40 % et 70 %). La formation d’une DS avec le mannitol était nécessaire afin
d’augmenter la solubilité et d’accélérer la cinétique de dissolution de l’ITZ comparativement
à son homologue micronisé sous forme cristalline ou encore à sa forme amorphe atomisée
sans mannitol. Par exemple, dans sa configuration amorphe atomisée sans excipient ou sous
sa forme cristalline initiale, l’ITZ présentait une solubilité à saturation (mesurée dans un tampon phosphate contenant 0,02% de dipalmytoyl phosphatidyl choline) inférieure à 10
ng/ml. Après formation d’une DS avec le mannitol suivant notre procédé de formulation,
nous sommes parvenus à des valeurs de solubilité atteignant 450 ng/ml. Il s’est avéré que
l’ajout à la composition d’un surfactant, le tocopherol polyethylène glycol 1000 succinate
(TPGS), permettait d’accélérer la cinétique de dissolution du principe actif. Toutefois,
l’utilisation du TPGS induisait une diminution des performances aérodynamiques des
formulations. Etant donné que cette augmentation de la cinétique de dissolution pouvait
être un avantage après administration pulmonaire, nous avons considéré un autre type de
surfactant, les phospholipides (PL). L’utilisation de la lécithine de soja hydrogéné s’est
révélée être très efficace. Les performances aérodynamiques des formulations ont été
préservées et même améliorées. Leur incorporation à la DS permettait également d’obtenir
une accélération du profil de dissolution de l’ITZ. De plus, l’augmentation de la quantité de
PL dans nos formulations, dans la gamme des concentrations utilisées, était corrélée avec
une amélioration d’autant plus marquée du profil de dissolution de l’ITZ. En outre, les
solubilités de l’ITZ en présence de PL furent considérablement améliorées avec, par
exemple, des concentrations mesurées de 870 ng/ml et 1342 ng/ml pour les formulations
contenant respectivement 10 % (m/mpoudre) et 35 % (m/mpoudre) d’ITZ, ainsi que 10 % de PL
exprimés par rapport à la quantité d’ITZ.
Le deuxième concept de formulation développé consistait à produire des
microparticules de mannitol dans lesquelles étaient dispersées des nanoparticules (NP)
cristallines d’ITZ. Le procédé de fabrication était le suivant. Une suspension de nanocristaux
d’ITZ produite par homogénéisation à haute pression (HPH) était re-suspendue dans une
solution de mannitol qui était par la suite atomisée pour obtenir les microparticules de
poudres sèches. Après optimisation des conditions d’homogénéisation, nous sommes
parvenus à produire des nanosuspensions d’ITZ dont les particules présentaient un diamètre
médian inférieur à 250 nm. Nous avons alors évalué l’influence qu’avait l’ajout du mannitol
et du taurocholate sodique sur l’état d’agrégation des NP avant l’étape d’atomisation et sur
les performances des formulations sous forme sèche. Il a été observé que l’ajout de
mannitol était nécessaire à la production de solutions sursaturées en ITZ avec une solubilité
maximale d’ITZ mesurées à 96 ng/ml dans le tampon phosphate précédemment cité. L’ajout
de mannitol s’est avéré nécessaire afin de minimiser le phénomène d’agrégation des NP durant l’étape d’atomisation. De plus, l’ajout de taurocholate de sodium permettait
également d’inhiber leur agrégation. La cristallinité des NP d’ITZ a été confirmée par PXRD et
DSC. Ce type de formulation présentait des tailles et des performances aérodynamiques
compatibles à l’administration pulmonaire (tailles des particules < 5 μm et FPF entre 35 % et
46 %). Néanmoins, comparativement aux DS précédemment décrites, ces formulations à
base de NP s’avèrent sensiblement moins performantes. En effet, au niveau des
caractéristiques aérodynamiques, les formulations à base de NP présentent des FPF
nettement inférieures à celles obtenues pour les DS (FPF de ~40 % pour les formulations
nanoparticulaires contre ~70 % pour les DS d’ITZ amorphe). De plus, à partir des
formulations à bases de NP, les taux de sursaturation en ITZ atteints étaient nettement
inférieurs à ceux obtenus avec les DS (~100 ng/ml Vs > 1000 ng/ml pour les meilleurs DS). En
outre, la production des nanosuspensions nécessitait l’étape supplémentaire d’un minimum
de 300 cycles d’homogénéisation, ce qui représente un désavantage considérable en termes
de rendement économique en cas de transposition à échelle industrielle comparativement à
l’étape unique nécessaire pour la fabrication des DS. Pour ces raisons, seules les DS ont été
évaluées in vivo.
Après la mise au point des formulations, la seconde partie de ce projet consistait à
évaluer les DS développés dans un système biologique complet, la souris. Nous avons en
premier lieu réalisé une pharmacocinétique (PK) après administration pulmonaire pour
déterminer l’effet de l’augmentation de la solubilité observée in vitro et de l’ajout de PL dans
la formulation. Ensuite, nous avons entrepris une étude d’activité sur un modèle murin
d’aspergillose pulmonaire invasive (API) permettant de comparer l’efficacité thérapeutique
ou prophylactique de nos formulations comparativement à une thérapie standard par voie
orale. Pour effectuer ces deux études, nous avons préalablement validé une méthode
d’administration des poudres sèches chez la souris à l’aide d’un insufflateur (DP-4M®, Penn
Century, Wyndmoor, USA) en utilisant la voie endotrachéale. Le premier point de cette
investigation avait pour objet de déterminer si l’intervalle de taille particulaire généré lors de
la décharge de nos formulations au sortir de l’insufflateur permettait une répartition
homogène dans les poumons ainsi qu’une pénétration profonde des particules jusqu’aux
alvéoles pulmonaires. Le deuxième point sur lequel nous nous sommes également attardés était la reproductibilité des doses pulmonaires générées après insufflation, facteur
déterminant lors de la réalisation d’une étude PK.
Sur base des observations constatées durant la validation du dispositif
d’administration, nous avons entrepris une étude PK après administration pulmonaire d’une
dose de 0,5 mg/kg d’ITZ, représentant une quantité inhalable par l’homme et pouvant
garantir des taux pulmonaires en antifongiques théoriquement adéquats. Cette étude a
permis de comparer les concentrations pulmonaires et plasmatiques en ITZ après
l’administration de poudres sèches à base d’une DS de mannitol et d’ITZ qui était soit
cristallin soit amorphe, avec ou sans PL. Après administration de la DS à base d’ITZ sous sa
forme amorphe, une augmentation de la quantité d’ITZ absorbée vers le compartiment
systémique a été observée. En effet, il a été observé une augmentation d’un facteur 2,7 de
l’aire sous la courbe des concentrations plasmatiques en ITZ de 0 à 24 heures (AUC0-24h)
comparativement à celle obtenue après administration de la DS à base d’ITZ sous sa forme
cristalline. Le temps pour atteindre la concentration plasmatique maximale (tmax) était
également plus court pour la formulation à base ITZ sous sa forme amorphe (tmax de 10 min
vs 30 min pour la formulation cristalline). De plus, dans cette configuration amorphe, les
temps de rétention pulmonaire en ITZ étaient considérablement plus élevés (t1/2
d’élimination de 6,5 h pour l'ITZ cristallin vs 14 ,7 h pour l’ITZ amorphe) permettant de
maintenir une concentration pulmonaire en ITZ supérieure à la CMI de la souche
d’aspergillus la plus fréquente (A. fumigatus ;2 μg/gpoumon) pendant plus de 24h. L’ajout de
PL dans un rapport ITZ:PL:mannitol (1:3:97) dans la DS influençait le profil PK de l’ITZ
amorphe en accentuant et accélérant d’avantage la phase d’absorption initiale de l’ITZ
observée (Cmax et tmax plasmatique supérieur et inférieur à ceux obtenus pour l’ITZ amorphe,
respectivement). Toutefois, cette formulation a été éliminée plus rapidement des poumons
(t1/2 d’élimination pulmonaire de l’ITZ de 4,1h pour les formulations avec PL vs 14,7h sans
PL). Pour cette raison, nous avons décidé d’évaluer l’efficacité des formulations à base d’ITZ
sous forme amorphe sans phospholipides dans un modèle murin d’aspergillose pulmonaire
invasive (API) que nous avons développé.
Nous ne sommes pas parvenus à mettre en évidence un effet thérapeutique de
l’administration des poudres sèches administrées dans ce modèle murin neutropénique
d’API. Nous justifions ce manque d’activité par une agressivité du modèle trop prononcée et par l’impossibilité de pouvoir administrer de manière plus fréquente le traitement par
inhalation en raison de l’anesthésie nécessaire pour la procédure d’administration
endotrachéale. Toutefois, des essais complémentaires vont être envisagés (modification de
la charge fongique, administration des poudres par une tour d’inhalation, optimisation du
dosage et de la fréquence d’administration). En revanche, il a été mis en évidence que
l’administration prophylactique (début des administrations 2 jours avant l’infection) d’une
dose de 5 mg/kg/48h d’une DS d’ITZ amorphe augmentait significativement le taux de survie
de 12 jours après l’infection par A. fumigatus comparativement aux animaux non traités
(taux de survivants :50 % vs 0 %). A titre de comparaison, le pourcentage de survie obtenu
après prophylaxie quotidienne d’une dose de 12,5 mg/kg/12h de solution orale de VCZ (la
thérapie recommandée pour l’API) n’était que de 25 %.
En conclusion, les DS d’ITZ destinées à être administrées par inhalation constituent
une approche thérapeutique prometteuse dans le cadre de la prévention et du traitement
de l’aspergillose pulmonaire.
Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished
Tronde, Ann. "Pulmonary Drug Absorption : In vitro and in vivo investigations of drug absorption across the lung barrier and its relation to drug physicochemical properties." Doctoral thesis, Uppsala University, Department of Pharmacy, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-2557.
Full textAlthough, pulmonary drug delivery is a well established means for targeting of drugs to the lungs for the treatment of respiratory diseases as well as for the systemic delivery of volatile anesthetic agents, drug absorption kinetics in the lung have not been subjected to extensive research. The main objective of this thesis was to investigate drug absorption characteristics of the lung barrier, using the isolated and perfused rat lung model and in vivo pharmacokinetic studies in rats. Physicochemically diverse drugs (i.e. atenolol, budesonide, cromolyn, cyanocobalamin, enalapril, enalaprilate, formoterol, imipramine, losartan, metoprolol, propranolol, talinolol, terbutaline, and the tetrapeptide TArPP) were used as model compounds. In connection to these investigations, a nebulization catheter device was successfully adapted and evaluated as a new technique for delivery of defined aerosol doses to the rat lung. In addition, a physicochemical profile of the inhaled drugs on the market worldwide during 2001 was made.
The pulmonary first-order absorption rate constant and bioavailability were found to correlate to the drug lipophilicity, the molecular polar surface area, and the apparent permeability of Caco-2 cell monolayers. In contrast to the intestinal mucosa and the blood-brain barrier, the pulmonary epithelium was highly permeable to drugs with a high molecular polar surface area. Accordingly, a small hydrophilic tetrapeptide (oral bioavailability ~0.5%) showed a complete bioavailability after pulmonary delivery to rats in vivo. Regional differences in bioavailability, absorption rate, and first-pass metabolism of the peptide was demonstrated after targeted delivery to different regions of the respiratory tract in rats in vivo. The high pulmonary bioavailability of the efflux transporter substrates losartan and talinolol provides functional evidence for an insignificant role of efflux transporters such as P-glycoprotein in limiting the absorption of these drugs from the rat lung.
The results of this thesis demonstrate that the lung efficiently absorbs drugs with a wide range of lipophilicity. The pulmonary route should thus be regarded as a potential alternative for administration of drugs with low oral bioavailability. In addition, drug inhalation present an opportunity to attain a more rapid onset of drug action than can be attained by the oral route.
"Influence of operating parameters and formulation additives on the physical properties, surface energetics and aerosol performance of spray dried salbutamol sulphate powders." 2002. http://library.cuhk.edu.hk/record=b5891352.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2002.
Includes bibliographical references (leaves 139-143).
Abstracts in English and Chinese.
Table of Contents --- p.I
Acknowledgement --- p.VII
Abstract --- p.VIII
Abstract (Chinese) --- p.X
List of Tables --- p.XV
List of Figures --- p.XXIV
List Symbols and Abbreviations
Chapter Chapter One --- Introduction
Chapter 1.1. --- Rationale of study --- p.2
Chapter 1.2. --- Drug Delivery to the lungs --- p.5
Chapter 1.3. --- Particle transport and deposition mechanisms --- p.8
Chapter 1.4. --- Factors affecting particulate interactions --- p.9
Chapter 1.4.1. --- Particle size --- p.9
Chapter 1.4.2. --- Particle shape --- p.10
Chapter 1.4.3. --- Surface texture --- p.10
Chapter 1.4.4. --- Surface energy --- p.11
Chapter 1.4.5. --- Contact area --- p.12
Chapter 1.4.6. --- Relative humidity --- p.12
Chapter 1.4.7. --- Electrical properties --- p.13
Chapter 1.5. --- Fine powder production technologies applicable to dry powder inhalation formulations --- p.13
Chapter 1.5.1. --- Batch crystallization and micronization --- p.14
Chapter 1.5.2. --- Spray drying --- p.15
Chapter 1.5.3. --- Supercritical fluid crystallization --- p.17
Chapter 1.6. --- Physical characterization of aerosol powders --- p.18
Chapter 1.6.1. --- Microscopy and particle size analysis --- p.19
Chapter 1.6.2. --- Powder X-ray diffractometry --- p.19
Chapter 1.6.3. --- Thermal analysis --- p.20
Chapter 1.6.4. --- In-vitro deposition assessment --- p.20
Chapter 1.6.5. --- Surface energy measurement by inverse gas chromatography (IGC) --- p.21
Chapter 1.7. --- Scope of study --- p.22
Chapter Chapter Two --- Materials and Methods
Chapter 2.1. --- Materials --- p.25
Chapter 2.2. --- Equipment --- p.25
Chapter 2.3. --- Methods --- p.27
Chapter 2.3.1. --- Determination of aqueous solubility of salbutamol sulphate in water --- p.27
Chapter 2.3.2. --- Preparation of spray-dried salbutamol sulphate powders under different operating conditions --- p.27
Chapter 2.3.3. --- Preparation of spray-dried salbutamol sulphate powders at various lecithin concentrations --- p.30
Chapter 2.3.4. --- Preparation of spray-dried salbutamol sulphate powders at various oleic acid concentrations --- p.32
Chapter 2.3.5. --- Physical characterization of spray-dried salbutamol sulphate powders --- p.34
Chapter 2.3.5.1. --- Scanning electron microscopy --- p.34
Chapter 2.3.5.2. --- Specific surface area determination --- p.34
Chapter 2.3.5.3. --- Particle size distribution measurements --- p.35
Chapter 2.3.5.4. --- Water content determination --- p.36
Chapter 2.3.5.5. --- Isothermal water vapour sorption studies --- p.37
Chapter 2.3.5.6. --- Powder X-ray diffraction --- p.37
Chapter 2.3.5.7. --- Thermal analysis --- p.38
Chapter 2.3.5.8. --- Surface energy measurement by inverse gas chromatography --- p.39
Chapter 2.3.5.8.1. --- Calculation of surface thermodynamic parameters --- p.40
Chapter 2.3.5.8.1.1. --- Standard Free Energy of Adsorption and Related Thermodynamic Parameters --- p.40
Chapter 2.3.5.8.1.2. --- Dispersive Component of Surface Free Energy and Related Thermodynamic Parameters --- p.41
Chapter 2.3.5.8.1.3. --- Specific Interactions and Associated Acid-Base Properties --- p.42
Chapter 2.3.5.9. --- In-vitro deposition measurement by multi-stage liquid impinger --- p.43
Chapter Chapter Three --- Results and discussion
Chapter 3.1. --- Influence of spray drying operating parameters --- p.46
Chapter 3.1.1. --- Drying temperature --- p.46
Chapter 3.1.1.1. --- "Particle size, particle morphology, and specific surface area" --- p.46
Chapter 3.1.1.2. --- "Crystallinity, moisture sorption and thermal behaviour" --- p.53
Chapter 3.1.1.3. --- Surface thermodynamic properties --- p.60
Chapter 3.1.1.4. --- Aerodynamic properties and in-vitro deposition --- p.64
Chapter 3.1.2. --- Feed solution concentration --- p.67
Chapter 3.1.2.1. --- "Particle size, particle morphology and specific surface area" --- p.69
Chapter 3.1.2.2. --- "Crystallinity, moisture sorption and thermal behaviour" --- p.69
Chapter 3.1.2.3. --- Surfacethermodynamicproperties --- p.70
Chapter 3.1.2.4. --- Aerodynamic properties and in-vitro deposition --- p.70
Chapter 3.1.3. --- Feed speed --- p.72
Chapter 3.1.3.1. --- "Particle size, particle morphology, and specific surface area" --- p.72
Chapter 3.1.3.2. --- "Crystallinity, moisture sorption and thermal behaviour" --- p.73
Chapter 3.1.3.3. --- Surfacethermodynamicproperties --- p.73
Chapter 3.1.3.4. --- Aerodynamic properties and in-vitro deposition --- p.73
Chapter 3.2. --- Influence of formulation additives --- p.78
Chapter 3.2.1. --- Influence of lecithin as additive --- p.78
Chapter 3.2.1.1. --- "Particle morphology, particle size and specific surface area" --- p.79
Chapter 3.2.1.2. --- "Crystallinity, moisture sorption and thermal behaviour" --- p.84
Chapter 3.2.1.3. --- Surfacethermodynamicproperties --- p.90
Chapter 3.2.1.4. --- Aerodynamic properties and in-vitro deposition --- p.94
Chapter 3.2.2. --- Influence of oleic acid as additive --- p.101
Chapter 3.2.2.1. --- "Particle morphology, particle size and specific surface area" --- p.101
Chapter 3.2.2.2. --- "Crystallinity, moisture sorption and thermal behaviour" --- p.106
Chapter 3.2.2.3. --- Surfacethermodynamicproperties --- p.123
Chapter 3.2.2.4. --- Aerodynamic properties and in-vitro deposition --- p.127
Chapter Chapter Four --- Conclusion and Future Work
Chapter 4.1. --- Conclusion --- p.134
Chapter 4.1.1. --- Influence of spray drying operating parameters --- p.134
Chapter 4.1.2. --- Influence of formulation additives --- p.135
Chapter 4.2. --- Future Work --- p.137
References --- p.139
"Studies on the use of bovine serum albumin as aerosol performance enhancer in dry powder inhalation formulations prepared by spray drying." 2010. http://library.cuhk.edu.hk/record=b5896629.
Full text"November, 2009."
Thesis (M.Phil.)--Chinese University of Hong Kong, 2010.
Includes bibliographical references (leaves 108-114).
Abstracts in English and Chinese.
Table of Contents --- p.i
Acknowledgement --- p.vi
Abstract --- p.vii
Abstract (Chinese) --- p.ix
Chapter Chapter One --- Introduction
Chapter 1.1. --- Pulmonary Route for Drug Delivery --- p.2
Chapter 1.2. --- Factors Affecting the Performance of Inhaled Formulations --- p.3
Chapter 1.2.1. --- Particle Aerodynamic Diameter --- p.4
Chapter 1.2.2. --- Dispersibility of Particles --- p.5
Chapter 1.2.3. --- Clearance Mechanism in Lung and Dissolution of Particles --- p.6
Chapter 1.3. --- Production of Dry Powder Inhalation by Spray Drying --- p.7
Chapter 1.4. --- Approaches to Enhance Aerosol Performance of Spray Dried Particles --- p.8
Chapter 1.4.1 --- Porous/Hollow Particles --- p.9
Chapter 1.4.2 --- Non-Porous Corrugated Particles --- p.10
Chapter 1.4.3 --- Blends and Ternary Systems --- p.10
Chapter 1.4.4 --- Surface Energy and Crystallinity Modification --- p.11
Chapter 1.4.5 --- Other Approaches to Enhancing Aerosol Performance --- p.12
Chapter 1.5 --- Objectives and Rationale of the Present Study --- p.13
Chapter 1.6 --- Scope of Present Study and Particle Characterization Techniques Employed --- p.14
Chapter 1.6.1 --- Microscopy and Particle Density Measurements --- p.14
Chapter 1.6.2 --- Particle Size Analysis and Particle Dispersibility --- p.15
Chapter 1.6.3 --- Thermal Analysis and Particle Crystallinity --- p.15
Chapter 1.6.4 --- Particle Surface Characterization --- p.16
Chapter 1.6.5 --- Inverse Gas Chromatography --- p.18
Chapter 1.6.6 --- Fractal Analysis --- p.19
Chapter 1.6.6.1 --- Background and Origin of Fractal Analysis --- p.19
Chapter 1.6.6.2 --- Use of Fractal Analysis in Pharmaceutical Research --- p.20
Chapter 1.6.6.3 --- Methods for fractal analysis --- p.21
Chapter 1.6.7 --- Atomic Force Microscopy --- p.23
Chapter 1.6.7.1 --- Background of Atomic Force Microscopy --- p.23
Chapter 1.6.7.2 --- Characterization of Surface Topography by Atomic Force Microscopy --- p.23
Chapter 1.6.7.3 --- Measurement of Interaction Forces by Colloid Probe 226}0Ø Microscopy --- p.25
Chapter 1.6.7.4 --- Use of Atomic Force Microscopy in Pharmaceutical Research --- p.27
Chapter Chapter Two --- Materials and Methods
Chapter 2.1. --- Materials --- p.30
Chapter 2.2. --- Equipment --- p.31
Chapter 2.3. --- Methods --- p.33
Chapter 2.3.1. --- Powder Preparation --- p.33
Chapter 2.3.1.1 --- Preparation of Salbutamol Sulphate Samples --- p.33
Chapter 2.3.1.2 --- Preparation of Disodium Cromoglycate Samples --- p.33
Chapter 2.3.1.3 --- Preparation of ß-Galactosidase (BG) Samples --- p.34
Chapter 2.3.2. --- Determination of Aerosol Performance --- p.35
Chapter 2.3.3. --- Determination of Protein Activity for BG Samples --- p.36
Chapter 2.3.3.1. --- Enzyme Assay Procedure --- p.37
Chapter 2.3.3.2. --- Calculation of Enzyme Activity --- p.38
Chapter 2.3.3.3. --- Determination of Enzyme Activity Retained in Spray-dried Samples --- p.38
Chapter 2.3.4. --- Physicochemical Characterization of Particles --- p.39
Chapter 2.3.4.1. --- Scanning Electron Microscopy --- p.39
Chapter 2.3.4.2. --- Particle Density Determination --- p.39
Chapter 2.3.4.3. --- Particle Size Analysis --- p.40
Chapter 2.3.4.4. --- Thermal analysis --- p.41
Chapter 2.3.4.5. --- Powder X-ray Diffraction --- p.42
Chapter 2.3.4.6. --- Surface Area Determination --- p.42
Chapter 2.3.4.7. --- Surface Composition Characterization --- p.43
Chapter 2.3.4.8. --- Surface Tension Measurement --- p.44
Chapter 2.3.4.9. --- Inverse Gas Chromatography --- p.45
Chapter 2.3.4.9.1. --- Calculation of Standard Free Energy of Adsorption --- p.46
Chapter 2.3.4.9.2. --- Calculation of Dispersive Component of Surface Free Energy --- p.47
Chapter 2.3.4.9.3. --- Determination of Specific Interactions and Associated Acid-Base Properties --- p.48
Chapter 2.3.4.10. --- Fractal Analysis --- p.49
Chapter 2.3.4.11. --- Atomic Force Microscopy --- p.49
Chapter Chapter Three --- Results
Chapter 3.1. --- In vitro Aerosol Performance --- p.52
Chapter 3.2. --- Enzyme Activity Retained in BG Samples --- p.55
Chapter 3.3. --- Scanning Electron Microscopy (SEM) --- p.56
Chapter 3.3.1. --- SEM of Salbutamol Sulphate Formulations --- p.56
Chapter 3.3.2. --- SEM of DSCG Formulations --- p.59
Chapter 3.3.3. --- SEM of BG Formulations --- p.61
Chapter 3.4. --- Density Measurements --- p.65
Chapter 3.4.1. --- Densities of Salbutamol Sulphate Formulations --- p.65
Chapter 3.4.2. --- Densities of DSCG Formulations --- p.66
Chapter 3.4.3. --- Densities of BG Formulations --- p.67
Chapter 3.5. --- Particle Size Analysis by Laser Diffraction --- p.68
Chapter 3.5.1. --- Volume Mean Diameter Measurements --- p.68
Chapter 3.5.2. --- Particle Size Distributions and Dispersion Patterns of Formulations --- p.70
Chapter 3.6. --- Thermal Analysis --- p.75
Chapter 3.7. --- Powder X-ray Diffraction --- p.80
Chapter 3.8. --- Surface Area Measurements --- p.84
Chapter 3.9. --- Surface Composition Characterization --- p.85
Chapter 3.9.1. --- Surface Composition of Salbutamol Sulphate Formulations --- p.85
Chapter 3.9.2. --- Surface Composition of DSCG Formulations --- p.88
Chapter 3.9.3. --- Surface Composition of BG/BSA Formulations --- p.89
Chapter 3.10. --- Surface Tension Measurements --- p.91
Chapter 3.11. --- Inverse Gas Chromatography --- p.92
Chapter 3.12. --- Fractal Analysis --- p.93
Chapter 3.13. --- Atomic Force Microscopy --- p.94
Chapter Chapter Four --- Discussion
Chapter 4.1. --- Influence of BSA on Aerosol Performance and Protein Integrity --- p.98
Chapter 4.2. --- Influence of BSA on Physicochemical Properties of Particles --- p.98
Chapter 4.2.1. --- Influence of BSA on surface corrugation --- p.98
Chapter 4.2.2. --- Influence of BSA on particle size and dispersion behavior --- p.99
Chapter 4.2.3. --- Influence of BSA on crystallinity and thermal properties of particles --- p.100
Chapter 4.2.4. --- Influence of BSA on surface energetics of particles --- p.100
Chapter 4.3. --- Relationship between Surface Corrugation and Aerosol Performance --- p.101
Chapter 4.4. --- Mechanism of Surface Modification for BSA on Spray-dried Particles --- p.103
Chapter Chapter Five --- Conclusions and Future Work
Chapter 5.1. --- Conclusions --- p.106
Chapter 5.1.1. --- General Aerosolization-Enhancing Effect of BSA --- p.106
Chapter 5.1.2. --- Surface Modifying Effect of BSA --- p.106
Chapter 5.1.3. --- Relationship between Surface Corrugation and Aerosol Performance --- p.106
Chapter 5.2. --- Future Work --- p.107
References --- p.108
Abdelrahim, M. E. A., Khaled H. Assi, and Henry Chrystyn. "Dose emission and aerodynamic characterization of the terbutaline sulphate dose emitted from a Turbuhaler at low inhalation flow." 2013. http://hdl.handle.net/10454/10106.
Full textPreviously, dose emission below 30 L min(-1) through DPI has not been routinely determined. However, during routine use some patients do not achieve 30 L min(-1) inhalation flows. Hence, the aim of the present study was to determine dose emission characteristics for low inhalation flows from terbutaline sulphate Turbuhaler. Total emitted dose (TED), fine particle dose (FPD) and mass median aerodynamic diameter (MMAD) of terbutaline sulphate Turbuhaler were determined using inhalation flows of 10-60 L min(-1) and inhaled volume of 4 L. TED and FPD increase significantly with the increase of inhalation flows (p <0.05). Flows had more pronounced effect on FPD than TED, thus, faster inhalation increases respirable amount more than it increases emitted dose. MMAD increases with decrease of inhalation flow until flow of 20L min(-1) then it decreases. In vitro flow dependent dose emission has been demonstrated previously for Turbuhaler for flow rates above 30 L min(-1) but is more pronounced below this flow. Minimal FPD below 30 L min(-1) suggests that during routine use at this flow rate most of emitted dose will impact in mouth. Flow dependent dose emission results suggest that Pharmacopoeias should consider the use variety of inhalation flows rather than one that is equivalent to pressure drop of 4 KPa.
Huang, Pei-chen, and 黃佩真. "Oxygen Radicals in Citric Acid Aerosol Inhalation-induced Bronchoconstriction of Guinea Pigs." Thesis, 2000. http://ndltd.ncl.edu.tw/handle/36552631438264361799.
Full text國立臺灣大學
生理學研究所
88
It was demonstrated previously that inhalation of citric acid aerosol induced noncholinergic airway constriction, which was suppressed by antioxidants, in guinea pigs. In this study, we attempted to examine the direct relationship between oxygen radicals and noncholinergic airway constriction. Guinea pigs were divided into two groups: control and dimethylthiourea (DMTU, 250 mg/kg, ip. ×3 days). DMTU is a hydroxyl radical scavenger. Each animal was anesthetized, cannulated, paralyzed, and artificially ventilated. Animals in each group were further separated into four subgroups: baseline, recovery 2-3 min, recovery 10 min, and recovery 20 min. In the first subgroup, we measured pulmonary function and collected bronchoalveolar lavage (BAL) fluid after surgical preparation. In the other three subgroups, we gave each animal citric acid aerosol inhalation (0.6 M, 4 ml/breath, 50 breaths) after measuring the baseline function, then we measured function again and collected BAL samples during 2-3, 10, or 20 min into the recovery period. Citric acid inhalation caused decreases in both dynamic compliance and maximal expiratory flow at 30 % vital capacity, two indices of bronchoconstriction, for at least 20 min in the control group. This airway constriction was totally blocked by DMTU. In addition, we detected significant increases in luminol-amplified t-butyl hydroperoxide-initiated chemiluminescence counts, an index of oxidative stress, in the BAL samples during the whole recovery period (at least 20 min) in the control group, but not in the DMTU group. On the contrary, substance P (SP) levels, an index of tachykinin releasing, in the BAL samples revealed an increasing tendency (without statistical significance) only during the early recovery period (2-3 min) in the control group. In addition, we found that the total cell numbers in the BAL were larger in the late recovery period (20 min) than either the baseline or the early recovery period, and differential cell counts revealed significant increase in neutrophil infiltration after citric acid aerosol inhalation. This inflammatory cell infiltration phenomenon was prevented by DMTU pretreatment. These results suggest that citric acid inhalation may induce an initial tachykinin release which, in turn, augments oxygen radicals production. We speculate that oxygen radicals cause a further neutrophil infiltration, which lead to continuous oxygen radical generation. Therefore, the continuous increase in oxygen radicals may be essential for the extended noncholinergic airway constriction.
Wu, Li Ling, and 吳莉玲. "Bradykinin, mast cell and reactive oxygen species in citric acid aerosol inhalation-induced bronchoconstriction of guinea pigs." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/88292431788185306511.
Full text國立臺灣大學
生理學研究所
90
Citric acid inhalation causes bronchoconstriction in guinea pigs, but the mechanism of this effect has not been fully clarified. We examined the role of bradykinin, mast cells and reactive oxygen species in citric acid-induced bronchoconstriction. Guinea pigs were divided into 7 groups: saline (SA) + SA; SA + citric acid (CA); bradykinin (BK) + CA; cromolyn sodium (CS) + CA; BK + CS + CA; compound 48/80 + CA; and compound 48/80 + BK + CA. Each animal was anesthetized, cannulated, paralyzed, and artificially ventilated. Bradykinin (0.1 nmol/kg) and cromolyn sodium (10 mg/kg) were intravenously injected 15 min prior to the citric acid aerosol inhalation. Compound 48/80 (total dose of 25 mg/kg s.c.), a mast cell degranulating agent, was given to the animals for 3 days before the study. All animals were pretreated with propranolol (1 mg/kg i.v.) and atropine (1 mg/kg i.v.) to block adrenergic and cholinergic neural effects, respectively. In addition, the animals were pretreated with indomethacin (5 mg/kg i.v.) and captopril (1 mg/kg i.v.) to avoid, respectively, the indirect effects of bradykinin by producing prostaglandins and the endogenous breakdown of bradykinin via angiotensin converting enzyme. Citric acid aerosol inhalation caused decreases in dynamic respiratory compliance, forced expiratory parameters and maximal expiratory flow at 50% vital capacity, indicating bronchoconstriction. This citric acid-induced airway constriction was significantly attenuated by cromolyn sodium and compound 48/80. We detected significant increase in lucigenin-initiated chemiluminescence counts of the bronchoalveolar lavage (BAL) sample in only the BK + CA group. On the contrary, substance P (SP) levels, an index of tachykinin releasing, in the BAL samples significantly increased 3 min into the recovery period in the SA+CA, BK+CA, BK+CS+CA, 48/80+CA and BK+48/80+CA groups. In addition, we found that the total cell numbers in the BAL significantly increased at 3 and 20 min of the recovery period, with a higher value at 20 min than that at 3 min. Differential cell counts revealed significant increase in neutrophil infiltration after citric acid aerosol inhalation. On the other hand, we found that the inflammatory cell infiltration in the lung tissue samples increased in the SA+CA group. In addition, we found also that mast cell counts in the lung tissue samples increased in the SA+CA group. These results suggest that bradykinin augments citric acid-induced superoxide production which, in turn, enhances mast cell-dependent noncholinergic bronchoconstriction.
Phillips, Elaine Mary. "Effects of formulation variables upon drug solubility in inhalation aerosol propellants : relationship to crystal growth in metered dose inhalers /." 1991. http://www.gbv.de/dms/bs/toc/172745454.pdf.
Full text(6955364), Nivedita J. Shetty. "Effect of Storage Humidity on Physical Stability and Aerosol Performance of Spray-Dried Dry Powder Inhaler Formulations." Thesis, 2019.
Find full textDry Powder inhalers (DPIs) have been one of the most promising developments in pulmonary drug delivery systems. In general, DPIs are more effective than systemic administrations and convenient to use. However, delivering high-dose antibiotics through a DPI is still a challenge because high powder load may need a very large inhaler or increase the incidence of local adverse effects. Spray drying has been increasingly applied to produce DPI formulations for high-dose antibiotics; nevertheless, many spray-dried particles are amorphous and physically unstable during storage, particularly under the humid environment.
My research focuses on addressing critical challenges in physical stability of DPIs for spray-dried high-dose antibiotics. The effects of moisture-induced crystallization on physical stability and aerosol performance of spray-dried amorphous Ciprofloxacin DPI formulations stored at different humidity conditions were studied. Our study not only provided a mechanistic understanding in the impact of crystallization on aerosol performance but also developed novel approaches for improving stability of spray-dried formulations used in DPI.
Our work has shown that recrystallization of amorphous spray-dried Ciprofloxacin led to significant changes in aerosol performance of DPIs upon storage, which cause critical quality and safety concerns. These challenges have been solved through co-spray-drying Ciprofloxacin with either excipient such as leucine or synergistic antibiotic like Colistin. Co-spray-drying Ciprofloxacin with Colistin not only improved physical and aerosol stability but also enhanced antibacterial activity which is a great advantage for treating ‘difficult to cure’ respiratory infections caused by multidrug resistant bacteria.
My research work is a sincere effort to maximize the utility and efficacy of high-dose DPI, an effective delivery tool for treating severe resistant bacterial respiratory infections.
Wenzel, Claudia Margarete Susanne [Verfasser]. "Die unspezifische bronchiale Provokation mit Methacholin : Vergleich der Aerosol-Bolus-Methode mit einer neu entwickelten Methode der kontrollierten Inhalation / vorgelegt von Claudia Margarete Susanne Wenzel." 2008. http://d-nb.info/988196328/34.
Full text"Comparative studies on the dispersion-enhancing mechanisms of phenylalanine and leucine in spray-dried salbutamol sulphate powder formulations." 2010. http://library.cuhk.edu.hk/record=b5894263.
Full text"October 2009."
Thesis (M.Phil.)--Chinese University of Hong Kong, 2010.
Includes bibliographical references (leaves 160-165).
Abstracts in English and Chinese.
Table of Contents --- p.I
Acknowledgements --- p.IV
Abstract --- p.V
Abstract (Chinese version) --- p.VIII
List of Figures --- p.X
List of Tables --- p.XVIII
Chapter Chapter One. --- Introduction
Chapter 1.1 --- Pulmonary drug delivery --- p.1
Chapter 1.2 --- Inhalation drug delivery systems --- p.4
Chapter 1.3 --- Dry powder inhalation aerosols --- p.5
Chapter 1.3.1 --- Principle of operation of DPIs --- p.5
Chapter 1.3.2 --- Aerodynamic diameter --- p.6
Chapter 1.3.2.1 --- Fine particle fraction --- p.8
Chapter 1.3.3 --- Dispersibility --- p.8
Chapter 1.3.4 --- Factors that affect dispersibility --- p.9
Chapter 1.3.4.1 --- Particle Size --- p.9
Chapter 1.3.4.2 --- Particle Density and Morphology --- p.10
Chapter 1.3.4.3 --- Interparticulate interactions一Cohesion and adhesion --- p.11
Chapter 1.3.4.3.1 --- Surface energetics --- p.11
Chapter 1.3.4.3.2 --- Effect of hygroscopicity and electrostatic charges --- p.12
Chapter 1.4 --- Particle formation techniques for DPI formulation --- p.14
Chapter 1.4.1 --- Spray-drying --- p.14
Chapter 1.4.2 --- Surface modification --- p.16
Chapter 1.5 --- Physical characterization --- p.17
Chapter 1.5.1 --- Laser diffraction --- p.17
Chapter 1.5.2 --- X-ray powder diffraction --- p.18
Chapter 1.5.3 --- Thermal analysis --- p.19
Chapter 1.5.4 --- Particle morphology and surface area --- p.20
Chapter 1.5.5 --- In vitro aerosol performance --- p.21
Chapter 1.6 --- Surface characterization --- p.21
Chapter 1.6.1 --- X-ray photoelectric spectroscopy (XPS) --- p.21
Chapter 1.6.2 --- Inverse gas chromatography --- p.22
Chapter 1.7 --- Atomic force microscopy in pharmaceutical science --- p.23
Chapter 1.7.1 --- Principle of operation --- p.24
Chapter 1.7.1.1 --- Tapping mode --- p.27
Chapter 1.7.1.2 --- Contact mode --- p.27
Chapter 1.8 --- Scope of thesis --- p.29
Chapter Chapter Two. --- Materials and Methods
Chapter 2.1 --- Materials --- p.32
Chapter 2.2 --- Methods --- p.32
Chapter 2.2.1 --- Optimization of spray-drying parameters --- p.32
Chapter 2.2.2 --- Preparation of spray-dried salbutamol sulphate powders containing different concentrations of amino acid additive --- p.33
Chapter 2.2.3 --- Physical characterization of spray-dried powders --- p.34
Chapter 2.2.3.1 --- Particle size and size distribution --- p.34
Chapter 2.2.3.2 --- Specific surface area --- p.35
Chapter 2.2.3.3 --- X-ray powder diffraction --- p.35
Chapter 2.2.3.4. --- Scanning electron microscopy --- p.36
Chapter 2.2.3.5. --- Thermal analysis --- p.36
Chapter 2.2.3.5.1 --- Thermogravimetric analysis (TGA) --- p.36
Chapter 2.2.3.5.2 --- Differential scanning calorimetry (DSC) --- p.36
Chapter 2.2.3.6 --- Water vapour sorption isotherm --- p.37
Chapter 2.2.3.7 --- Density measurements --- p.37
Chapter 2.2.3.8 --- In vitro particle deposition (MSLI) --- p.38
Chapter 2.2.4 --- Surface characterization of the spray-dried powders --- p.39
Chapter 2.2.4.1 --- X-ray photoelectric spectroscopy (XPS) --- p.39
Chapter 2.2.4.2 --- Surface energy measurement by inverse gas chromatography (IGC) --- p.40
Chapter 2.2.4.2.1 --- Calculation of standard free energy of adsorption --- p.41
Chapter 2.2.4.2.2 --- Dispersive component of surface free energy and related thermodynamic parameters --- p.42
Chapter 2.2.4.2.3 --- Specific interactions and associated acid-base properties --- p.43
Chapter 2.2.5. --- Atomic Force Microscopy (AFM) --- p.43
Chapter 2.2.5.1. --- Imaging --- p.43
Chapter 2.2.5.2. --- Force measurements --- p.44
Chapter 2.2.5.2.1 --- Adhesion force measurements --- p.44
Chapter 2.2.5.2.2 --- Force curve data conversions --- p.44
Chapter Chapter Three. --- "Optimal Spray-drying Conditions, Physical Characterization and Aerosol Performance of Additive-modified Spray-dried Salbutamol Sulphate particles"
Chapter 3.1 --- Optimization of spray-drying conditions --- p.46
Chapter 3.2 --- Effect of phenylalanine on the spray-dried SS particles --- p.52
Chapter 3.2.1. --- Phenylalanine as the additive --- p.52
Chapter 3.2.1.1 --- In vitro aerosol performance --- p.53
Chapter 3.2.1.2 --- Particle morphology --- p.55
Chapter 3.2.1.3 --- Crystallinity --- p.62
Chapter 3.2.1.4 --- Particle size distribution and specific surface area --- p.63
Chapter 3.2.1.5 --- Density --- p.65
Chapter 3.2.1.6 --- Thermal analysis --- p.66
Chapter 3.2.1.7 --- Water vapour isotherm --- p.70
Chapter 3.3 --- Effect of leucine on the spray-dried SS particles --- p.77
Chapter 3.3.1. --- L-Leucine as the additive --- p.77
Chapter 3.3.1.1 --- In vitro aerosol performance --- p.78
Chapter 3.3.1.2 --- Particle morphology --- p.80
Chapter 3.3.1.3 --- Crystallinity --- p.86
Chapter 3.3.1.4 --- Particle size distribution and specific surface area --- p.87
Chapter 3.3.1.5 --- Density --- p.90
Chapter 3.3.1.6 --- Thermal analysis --- p.92
Chapter 3.3.1.7 --- Water vapour isotherm --- p.95
Chapter Chapter Four. --- Surface Characterization of Additive-modified Spray-dried Salbutamol Sulphate Particles
Chapter 4.1 --- X-ray photoelectric spectroscopy --- p.103
Chapter 4.1.1 --- Phenylalanine --- p.103
Chapter 4.1.2 --- Leucine --- p.104
Chapter 4.2 --- Inverse gas chromatography --- p.105
Chapter 4.2.1 --- Phenylalanine --- p.105
Chapter 4.2.2 --- Leucine --- p.107
Chapter 4.3 --- Atomic force microscopy --- p.109
Chapter 4.3.1 --- Surface topography --- p.109
Chapter 4.3.2 --- Adhesive force measurements --- p.118
Chapter Chapter Five. --- Conclusions and Suggestions for Future Works
Chapter 5.1 --- Conclusions --- p.139
Chapter 5.1.1 --- Physical properties --- p.139
Chapter 5.1.2 --- Surface characteristics and aerosol performance --- p.140
Chapter 5.2 --- Future studies --- p.142
Appendix --- p.143
References --- p.160