To see the other types of publications on this topic, follow the link: Inhibiteurs de la PCSK9.

Journal articles on the topic 'Inhibiteurs de la PCSK9'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Inhibiteurs de la PCSK9.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Petrova-Slater, Iveta, Andrea Denegri, Elena Pasotti, et al. "Inhibiteurs de la PCSK9." Revue Médicale Suisse 13, no. 558 (2017): 821–25. http://dx.doi.org/10.53738/revmed.2017.13.558.0821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vergès, Bruno, Cécile Dubois, and Pauline Legris. "Inhibiteurs PCSK9 en pratique clinique : données et interrogations." Médecine des Maladies Métaboliques 14, no. 6 (2020): 524–28. http://dx.doi.org/10.1016/j.mmm.2020.06.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gencer, Baris, Nicolas Rodondi, and François Mach. "Inhibiteurs de PCSK9: futur traitement pour baisser le cholestérol?" Revue Médicale Suisse 10, no. 420 (2014): 539–44. http://dx.doi.org/10.53738/revmed.2014.10.420.0539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gencer, Baris, Nicolas Rodondi, and François Mach. "Inhibiteurs de la PCSK9 : un nouveau traitement pour l’hypercholestérolémie." Revue Médicale Suisse 12, no. 508 (2016): 440–44. http://dx.doi.org/10.53738/revmed.2016.12.508.0440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dijk, W., C. Le May, and B. Cariou. "Efficacité et sécurité des inhibiteurs de PCSK9 dans le diabète." Médecine des Maladies Métaboliques 13, no. 2 (2019): 147–55. http://dx.doi.org/10.1016/s1957-2557(19)30044-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sabouret, Pierre, Michel Farnier, and Etienne Puymirat. "Inhibiteurs de PCSK9 : quelle place dans la prise en charge actuelle des dyslipidémies ?" La Presse Médicale 48, no. 3 (2019): 227–37. http://dx.doi.org/10.1016/j.lpm.2019.01.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cariou, B. "Traitement innovant de l’hypercholesterolémie (ARN interférence et inhibiteur de PCSK9)." Annales d'Endocrinologie 82, no. 5 (2021): 227. http://dx.doi.org/10.1016/j.ando.2021.07.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Messas, Emmanuel. "Inhibiteurs des SGLT2." JMV-Journal de Médecine Vasculaire 47 (March 2022): S37. http://dx.doi.org/10.1016/j.jdmv.2022.01.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Reboud-Ravaux, Michèle. "Les inhibiteurs d’élastases." Journal de la Société de Biologie 195, no. 2 (2001): 143–50. http://dx.doi.org/10.1051/jbio/2001195020143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chabanon, Roman M., and Sophie Postel-Vinay. "Inhibiteurs de PARP." médecine/sciences 35, no. 10 (2019): 728–31. http://dx.doi.org/10.1051/medsci/2019148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lecompte, T. "Nouveaux inhibiteurs plaquettaires ?" Journal des Maladies Vasculaires 33 (March 2008): S10—S11. http://dx.doi.org/10.1016/j.jmv.2008.01.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Faure, Sébastien. "Inhibiteurs des alphaglucosidases." Actualités Pharmaceutiques 50, no. 511 (2011): 53–55. http://dx.doi.org/10.1016/s0515-3700(11)71107-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Shapiro, Michael D., Hagai Tavori, and Sergio Fazio. "PCSK9." Circulation Research 122, no. 10 (2018): 1420–38. http://dx.doi.org/10.1161/circresaha.118.311227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Seidah, Nabil G., Zuhier Awan, Michel Chrétien, and Majambu Mbikay. "PCSK9." Circulation Research 114, no. 6 (2014): 1022–36. http://dx.doi.org/10.1161/circresaha.114.301621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

McKenney, James M. "Understanding PCSK9 and anti-PCSK9 therapies." Journal of Clinical Lipidology 9, no. 2 (2015): 170–86. http://dx.doi.org/10.1016/j.jacl.2015.01.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Garçon, Damien, François Moreau, Audrey Ayer, et al. "Circulating Rather Than Intestinal PCSK9 (Proprotein Convertase Subtilisin Kexin Type 9) Regulates Postprandial Lipemia in Mice." Arteriosclerosis, Thrombosis, and Vascular Biology 40, no. 9 (2020): 2084–94. http://dx.doi.org/10.1161/atvbaha.120.314194.

Full text
Abstract:
Objective: Increased postprandial lipemia (PPL) is an independent risk factor for atherosclerotic cardiovascular diseases. PCSK9 (Proprotein convertase subtilisin kexin type 9) is an endogenous inhibitor of the LDLR (low-density lipoprotein receptor) pathway. We previously showed that PCSK9 inhibition in mice reduces PPL. However, the relative contribution of intracellular intestinal PCSK9 or liver-derived circulating PCSK9 to this effect is still unclear. Approach and Results: To address this issue, we generated the first intestine-specific Pcsk9 -deficient (i- Pcsk9 −/− ) mouse model. PPL wa
APA, Harvard, Vancouver, ISO, and other styles
17

Mayne, Janice, Thilina Dewpura, Angela Raymond, et al. "Novel Loss-of-Function PCSK9 Variant Is Associated with Low Plasma LDL Cholesterol in a French-Canadian Family and with Impaired Processing and Secretion in Cell Culture." Clinical Chemistry 57, no. 10 (2011): 1415–23. http://dx.doi.org/10.1373/clinchem.2011.165191.

Full text
Abstract:
BACKGROUND PCSK9 (proprotein convertase subtilisin/kexin type 9) is a polymorphic gene whose protein product regulates plasma LDL cholesterol (LDLC) concentrations by shuttling liver LDL receptors (LDLRs) for degradation. PCSK9 variants that cause a gain or loss of PCSK9 function are associated with hyper- or hypocholesterolemia, which increases or reduces the risk of cardiovascular disease, respectively. We studied the clinical and molecular characteristics of a novel PCSK9 loss-of-function sequence variant in a white French-Canadian family. METHODS In vivo plasma and ex vivo secreted PCSK9 c
APA, Harvard, Vancouver, ISO, and other styles
18

Goksøyr, Louise, Magdalena Skrzypczak, Maureen Sampson, et al. "A cVLP-Based Vaccine Displaying Full-Length PCSK9 Elicits a Higher Reduction in Plasma PCSK9 Than Similar Peptide-Based cVLP Vaccines." Vaccines 11, no. 1 (2022): 2. http://dx.doi.org/10.3390/vaccines11010002.

Full text
Abstract:
Administration of PCSK9-specific monoclonal antibodies, as well as peptide-based PCSK9 vaccines, can lower plasma LDL cholesterol by blocking PCSK9. However, these treatments also cause an increase in plasma PCSK9 levels, presumably due to the formation of immune complexes. Here, we utilize a versatile capsid virus-like particle (cVLP)-based vaccine platform to deliver both full-length (FL) PCSK9 and PCSK9-derived peptide antigens, to investigate whether induction of a broader polyclonal anti-PCSK9 antibody response would mediate more efficient clearance of plasma PCSK9. This head-to-head immu
APA, Harvard, Vancouver, ISO, and other styles
19

A., F. "Thérapeutique : inhibiteurs de SGLT2." Médecine des Maladies Métaboliques 9, no. 1 (2015): 65. http://dx.doi.org/10.1016/s1957-2557(15)30015-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Alexandre, J. "Les inhibiteurs du protéasome." La Revue de Médecine Interne 26, no. 10 (2005): 812–15. http://dx.doi.org/10.1016/j.revmed.2005.06.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Brousse, C. "Les inhibiteurs du TNFα". La Revue de Médecine Interne 24, № 2 (2003): 123–26. http://dx.doi.org/10.1016/s0248-8663(02)00022-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Faure, Sébastien. "Inhibiteurs de tyrosine kinase." Actualités Pharmaceutiques 49, no. 498 (2010): 49–52. http://dx.doi.org/10.1016/s0515-3700(10)70755-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Adnet, P., and R. Krivosic-Horber. "Inhibiteurs calciques et anesthésie." Annales Françaises d'Anesthésie et de Réanimation 7, no. 6 (1988): 494–505. http://dx.doi.org/10.1016/s0750-7658(88)80088-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Izopet, J. "Originalité des inhibiteurs d’entrée." Médecine et Maladies Infectieuses 39, no. 10 (2009): H1—H4. http://dx.doi.org/10.1016/s0399-077x(09)75321-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hantraye, Bénédicte, and Nicolas Clere. "Les inhibiteurs de mTOR." Actualités Pharmaceutiques 54, no. 551 (2015): 28–29. http://dx.doi.org/10.1016/j.actpha.2015.10.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Reyt, Vincent, and Jacques Buxeraud. "Inhibiteurs de la prolactine." Actualités Pharmaceutiques 57, no. 574 (2018): 22–25. http://dx.doi.org/10.1016/j.actpha.2017.12.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Reyt, Vincent, and Jacques Buxeraud. "Inhibiteurs de la parathormone." Actualités Pharmaceutiques 57, no. 574 (2018): 26–28. http://dx.doi.org/10.1016/j.actpha.2017.12.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lecompte, T., and M. Toussaint-Hacquard. "Inhibiteurs du fonctionnement plaquettaire." EMC - Hématologie 2, no. 1 (2005): 35–51. http://dx.doi.org/10.1016/j.emch.2004.12.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lecompte, T., and M. Toussaint-Hacquard. "Inhibiteurs du fonctionnement plaquettaire." EMC - Hématologie 1, no. 1 (2006): 1–12. http://dx.doi.org/10.1016/s1155-1984(05)08319-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Cortot, A., and J. C. Soria. "Les inhibiteurs de mTOR." Oncologie 8, no. 9 (2006): 821–27. http://dx.doi.org/10.1007/s10269-006-0515-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Lecompte, T., and M. Toussaint-Hacquard. "Inhibiteurs du fonctionnement plaquettaire." EMC - Hématologie 16, no. 1 (2005): 1–12. https://doi.org/10.1016/s1155-1984(20)30037-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sirieix, M. E., and A. Simon. "Inhibiteurs du fonctionnement plaquettaire." EMC - Cardiologie 28, no. 3 (2014): 1–7. https://doi.org/10.1016/s1166-4568(14)40139-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Chen, Po-Wei, Shih-Ya Tseng, Hsien-Yuan Chang, Cheng-Han Lee, and Ting-Hsing Chao. "Diverse Effects of Cilostazol on Proprotein Convertase Subtilisin/Kexin Type 9 between Obesity and Non-Obesity." International Journal of Molecular Sciences 23, no. 17 (2022): 9768. http://dx.doi.org/10.3390/ijms23179768.

Full text
Abstract:
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in cholesterol homeostasis. Cilostazol exerts favorable cellular and metabolic effects; however, the effect of cilostazol on the expression of PCSK9 has not been previously reported. Our study aimed to investigate the potential mechanisms of action of cilostazol on the expression of PCSK9 and lipid homeostasis. We evaluated the effects of cilostazol on the expression of PCSK9 in HepG2 cells and evaluated potential molecular mechanisms by measuring signaling molecules in the liver and serum lipid profiles in high-fat diet-in
APA, Harvard, Vancouver, ISO, and other styles
34

Bordicchia, Marica, Francesco Spannella, Gianna Ferretti, et al. "PCSK9 is Expressed in Human Visceral Adipose Tissue and Regulated by Insulin and Cardiac Natriuretic Peptides." International Journal of Molecular Sciences 20, no. 2 (2019): 245. http://dx.doi.org/10.3390/ijms20020245.

Full text
Abstract:
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to and degrades the low-density lipoprotein receptor (LDLR), contributing to hypercholesterolemia. Adipose tissue plays a role in lipoprotein metabolism, but there are almost no data about PCSK9 and LDLR regulation in human adipocytes. We studied PCSK9 and LDLR regulation by insulin, atrial natriuretic peptide (ANP, a potent lipolytic agonist that antagonizes insulin), and LDL in visceral adipose tissue (VAT) and in human cultured adipocytes. PCSK9 was expressed in VAT and its expression was positively correlated with body mass index
APA, Harvard, Vancouver, ISO, and other styles
35

Petersen-Uribe, Álvaro, Marcel Kremser, Anne-Katrin Rohlfing, et al. "Platelet-Derived PCSK9 Is Associated with LDL Metabolism and Modulates Atherothrombotic Mechanisms in Coronary Artery Disease." International Journal of Molecular Sciences 22, no. 20 (2021): 11179. http://dx.doi.org/10.3390/ijms222011179.

Full text
Abstract:
Platelets play a significant role in atherothrombosis. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is critically involved in the regulation of LDL metabolism and interacts with platelet function. The effect of PCSK9 in platelet function is poorly understood. The authors of this article sought to characterize platelets as a major source of PCSK9 and PCSK9’s role in atherothrombosis. In a large cohort of patients with coronary artery disease (CAD), platelet count, platelet reactivity, and platelet-derived PCSK9 release were analyzed. The role of platelet PCSK9 on platelet and monocyte
APA, Harvard, Vancouver, ISO, and other styles
36

Toscano, Arianna, Maria Cinquegrani, Michele Scuruchi, et al. "PCSK9 Plasma Levels Are Associated with Mechanical Vascular Impairment in Familial Hypercholesterolemia Subjects without a History of Atherosclerotic Cardiovascular Disease: Results of Six-Month Add-On PCSK9 Inhibitor Therapy." Biomolecules 12, no. 4 (2022): 562. http://dx.doi.org/10.3390/biom12040562.

Full text
Abstract:
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a key regulator of low-density lipoprotein (LDL) metabolism involved in the degradation of the low-density lipoprotein receptor (LDLR) through complex mechanisms. The PCSK9 plasma levels change according to lipid lowering therapy (LLT). Few data exist regarding the role of PCSK9 in vascular damage. We aimed to evaluate the impact of PCSK9 plasma levels on pulse wave velocity (PWV) and the effect of PCSK9 inhibitors (PCSK9-i) on circulating PCSK9 and PWV in a cohort of heterozygous familial hypercholesterolemia (HeFH) subjects. In a previ
APA, Harvard, Vancouver, ISO, and other styles
37

Sobati, Saeideh, Amir Shakouri, Mahdi Edalati, et al. "PCSK9: A Key Target for the Treatment of Cardiovascular Disease (CVD)." Advanced Pharmaceutical Bulletin 10, no. 4 (2020): 502–11. http://dx.doi.org/10.34172/apb.2020.062.

Full text
Abstract:
Proprotein convertase subtilisin/kexin type 9 (PCSK9), as a vital modulator of low-densitylipoprotein cholesterol (LDL-C) , is raised in hepatocytes and released into plasma where it bindsto LDL receptors (LDLR), leading to their cleavage. PCSK9 adheres to the epidermal growthfactor-like repeat A (EGF-A) domain of the LDLR which is confirmed by crystallography. LDLRexpression is adjusted at the transcriptional level through sterol regulatory element bindingprotein 2 (SREBP-2) and at the post translational stages, specifically through PCSK9, and theinducible degrader of the LDLR PCSK9 inhibitio
APA, Harvard, Vancouver, ISO, and other styles
38

Denegri, Andrea, Iveta Petrova-Slater, Elena Pasotti, et al. "PCSK9 inhibitors." Journal of Cardiovascular Medicine 17, no. 4 (2016): 237–44. http://dx.doi.org/10.2459/jcm.0000000000000360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Sible, Alexandra M., James J. Nawarskas, and Joe R. Anderson. "PCSK9 Inhibitors." Cardiology in Review 24, no. 3 (2016): 141–52. http://dx.doi.org/10.1097/crd.0000000000000102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Mueller, Zachary T., Kaitlyn E. Craddock, Jamie M. Pitlick, and Andrew J. Crannage. "PCSK9 Inhibitors." Journal of Pharmacy Technology 32, no. 5 (2016): 201–9. http://dx.doi.org/10.1177/8755122516653970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Vogt, A. "PCSK9-Inhibitoren." Der Internist 58, no. 2 (2017): 196–201. http://dx.doi.org/10.1007/s00108-016-0179-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hlatky, Mark A., and Dhruv S. Kazi. "PCSK9 Inhibitors." Journal of the American College of Cardiology 70, no. 21 (2017): 2677–87. http://dx.doi.org/10.1016/j.jacc.2017.10.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Farnier, Michel. "PCSK9 inhibitors." Current Opinion in Lipidology 24, no. 3 (2013): 251–58. http://dx.doi.org/10.1097/mol.0b013e3283613a3d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Mullard, Asher. "PCSK9 pipeline." Nature Reviews Drug Discovery 15, no. 12 (2016): 811. http://dx.doi.org/10.1038/nrd.2016.258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Natarajan, Pradeep, and Sekar Kathiresan. "PCSK9 Inhibitors." Cell 165, no. 5 (2016): 1037. http://dx.doi.org/10.1016/j.cell.2016.05.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Laufs, U., F. Custodis, and C. Werner. "PCSK9-Inhibitoren." Herz 41, no. 4 (2016): 296–306. http://dx.doi.org/10.1007/s00059-016-4429-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Müller-Wieland, D., and N. Marx. "PCSK9-Inhibitoren." Herz 41, no. 4 (2016): 290–95. http://dx.doi.org/10.1007/s00059-016-4434-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Vogel, Robert A. "PCSK9 Inhibition." Journal of the American College of Cardiology 59, no. 25 (2012): 2354–55. http://dx.doi.org/10.1016/j.jacc.2012.03.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ungvari, Zoltan. "PCSK9 Inhibition." JACC: Basic to Translational Science 8, no. 10 (2023): 1354–56. http://dx.doi.org/10.1016/j.jacbts.2023.08.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Guo, Yanan, Zhihan Tang, Binjie Yan, et al. "PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) Triggers Vascular Smooth Muscle Cell Senescence and Apoptosis: Implication of Its Direct Role in Degenerative Vascular Disease." Arteriosclerosis, Thrombosis, and Vascular Biology 42, no. 1 (2022): 67–86. http://dx.doi.org/10.1161/atvbaha.121.316902.

Full text
Abstract:
Objective: PCSK9 (proprotein convertase subtilisin/kexin type 9) plays a critical role in cholesterol metabolism via the PCSK9–LDLR (low-density lipoprotein receptor) axis in the liver; however, evidence indicates that PCSK9 directly contributes to the pathogenesis of various diseases through mechanisms independent of its LDL-cholesterol regulation. The objective of this study was to determine how PCSK9 directly acts on vascular smooth muscle cells (SMCs), contributing to degenerative vascular disease. Approach and Results: We first examined the effects of PCSK9 on cultured human aortic SMCs.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!