Academic literature on the topic 'Inorganic Nanostructures - Synthesis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Inorganic Nanostructures - Synthesis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Inorganic Nanostructures - Synthesis"
Fang, Xiaosheng, Linfeng Hu, Changhui Ye, and Lide Zhang. "One-dimensional inorganic semiconductor nanostructures: A new carrier for nanosensors." Pure and Applied Chemistry 82, no. 11 (August 1, 2010): 2185–98. http://dx.doi.org/10.1351/pac-con-09-11-40.
Full textRíos-Silva, Mirtha, Myriam Pérez, Roberto Luraschi, Esteban Vargas, Claudia Silva-Andrade, Jorge Valdés, Juan Marcelo Sandoval, Claudio Vásquez, and Felipe Arenas. "Anaerobiosis favors biosynthesis of single and multi-element nanostructures." PLOS ONE 17, no. 10 (October 7, 2022): e0273392. http://dx.doi.org/10.1371/journal.pone.0273392.
Full textEscudero, Alberto, Carolina Carrillo-Carrión, Elena Romero-Ben, Ana Franco, Christian Rosales-Barrios, Mª Carmen Castillejos, and Noureddine Khiar. "Molecular Bottom-Up Approaches for the Synthesis of Inorganic and Hybrid Nanostructures." Inorganics 9, no. 7 (July 17, 2021): 58. http://dx.doi.org/10.3390/inorganics9070058.
Full textTian, Yan, Zekun Guo, Tong Zhang, Haojian Lin, Zijuan Li, Jun Chen, Shaozhi Deng, and Fei Liu. "Inorganic Boron-Based Nanostructures: Synthesis, Optoelectronic Properties, and Prospective Applications." Nanomaterials 9, no. 4 (April 3, 2019): 538. http://dx.doi.org/10.3390/nano9040538.
Full textXu, Hui, Yuci Xu, Xinchang Pang, Yanjie He, Jaehan Jung, Haiping Xia, and Zhiqun Lin. "A general route to nanocrystal kebabs periodically assembled on stretched flexible polymer shish." Science Advances 1, no. 2 (March 2015): e1500025. http://dx.doi.org/10.1126/sciadv.1500025.
Full textRao, C. N. R., Ved Varun Agrawal, Kanishka Biswas, Ujjal K. Gautam, Moumita Ghosh, A. Govindaraj, G. U. Kulkarni, K. P. Kalyanikutty, Kripasindhu Sardar, and S. R. C. Vivekchand. "Soft chemical approaches to inorganic nanostructures." Pure and Applied Chemistry 78, no. 9 (January 1, 2006): 1619–50. http://dx.doi.org/10.1351/pac200678091619.
Full textHo, Ghim Wei, and Andrew See Weng Wong. "Aqueous Synthesis towards Vertically-Aligned and Selective Pattern of ZnO Nanostructures Arrays." Advanced Materials Research 67 (April 2009): 7–12. http://dx.doi.org/10.4028/www.scientific.net/amr.67.7.
Full textRen, Haoqi, Jie Cui, and Shaodong Sun. "Water-guided synthesis of well-defined inorganic micro-/nanostructures." Chemical Communications 55, no. 64 (2019): 9418–31. http://dx.doi.org/10.1039/c9cc04293h.
Full textJan, Jeng Shiung, Po Jui Chen, and Yu Han Ho. "Synthesis of Gold Nanoparticle/Silica Nanostructures." Materials Science Forum 688 (June 2011): 321–25. http://dx.doi.org/10.4028/www.scientific.net/msf.688.321.
Full textCai, Jiabai, and Shunxing Li. "Photocatalytic Treatment of Environmental Pollutants using Multilevel- Structure TiO2-based Organic and Inorganic Nanocomposites." Current Organocatalysis 7, no. 3 (November 30, 2020): 161–78. http://dx.doi.org/10.2174/2213337207999200701214637.
Full textDissertations / Theses on the topic "Inorganic Nanostructures - Synthesis"
Sadasivan, Sajanikumari. "Surfactant mediated synthesis of inorganic nanostructures." Thesis, University of Bristol, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289641.
Full textLee, Joun. "Biological assembly and synthesis of inorganic nanostructures." Diss., [Riverside, Calif.] : University of California, Riverside, 2009. http://proquest.umi.com/pqdweb?index=0&did=1957320801&SrchMode=2&sid=1&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1269281222&clientId=48051.
Full textIncludes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed March 12, 2010). Includes bibliographical references. Also issued in print.
Xu, Lan. "Synthesis of Perylenediimide-Functionalized Silsesquioxane Nanostructures." TopSCHOLAR®, 2014. http://digitalcommons.wku.edu/theses/1371.
Full textBrown, Treva T. "Fabrication and Characterization of Intricate Nanostructures." ScholarWorks@UNO, 2017. https://scholarworks.uno.edu/td/2399.
Full textChan, Hung-tat, and 陳鴻達. "Synthesis of photosensitizing molecules and fabrication of inorganic nanostructures for dye-sensitized solar cell." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B47849344.
Full textpublished_or_final_version
Chemistry
Doctoral
Doctor of Philosophy
Dolcet, Paolo. "Synthesis and Chemico-Physical and Structural Characterization of Nanocrystalline Inorganic Materials obtained via Miniemulsions." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423646.
Full textIn questa tesi di dottorato, diverse nanostrutture inorganiche sono state sintetizzate mediante un approccio sintetico per via umida. In particolare, l’approccio della miniemulsione è stato sfruttato per indurre la formazione in spazio confinato di composti binari (ossidi, solfuri e fluoruri) e ternari (idrossidi), sia in forma pura che drogati, e di nanocompositi metallo/ossido e nanoparticelle ibride organiche/inorganiche. Attraverso questa metodologia, i sistemi investigati sono stati ottenuti in forma cristallina già a temperatura ambiente. Miniemulsioni con varie formulazioni sono state usate per controllare le dimensioni e la morfologia dei sistemi investigati, ottenendo emulsioni con stabilità differenti e diversa resa in termini di prodotti cristallini. I materiali ottenuti sono stati caratterizzati in dettaglio attraverso numerose tecniche, sia dal punto di vista composizionale che da quello strutturare e funzionale. In particolare, l’XRD (X-Ray Diffraction) è stato utilizzato per valutare la formazione di materiali cristallini e, attraverso rifinimento Rietveld, calcolare le dimensioni medie dei cristalliti; i dati così ottenuti sono stati confrontati con le micrografie TEM (Transmission Electron Microscopy). Quest’ultima microscopia, affiancata al SEM (Scanning Electron Microscopy), è stata anche utilizzata per investigare la morfologia delle nanostrutture sintetizzate. In aggiunta, la composizione superficiale è stata esplorata attraverso XPS (X-ray Photoelectron Spectroscopy) e, specialmente nel caso dei sistemi drogati con ioni di metalli di transizione o lantanidi, i rapporti molari registrati sono stati confrontati con quelli ottenuti attraverso ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy) o ICP-MS (Inductively Coupled Plasma-Mass Spectroscopy). Analisi TGA-DSC (ThermoGravimetric Analysis-Differential Scanning Calorimetry) hanno invece permesso di valutare la presenza e la quantità di residui di tensioattivi adsorbiti sulla superficie del materiale. Nel caso dei sistemi drogati, sono state effettuate misure XAS (X-ray Absorption Spectroscopy) al fine di studiare in dettaglio la struttura locale intorno agli ioni droganti, in relazione alle matrici ospitanti. I dati così ottenuti sono stati inoltre correlati con le proprietà di fotoluminescenza. Questi materiali, anche grazie alla biocompatibilità delle matrici selezionate, potrebbero potenzialmente essere utilizzati nel campo del bioimaging ottico. A questo riguardo sono state quindi effettuate prove di citotossicità e di influenza sulla vitalità cellulare su alcuni dei sistemi sintetizzati.
James, Derak. "New approaches to chalcogenide materials for thermoelectrics| Lead telluride-based nanostructures and facile synthesis of tetrahedrite and doped derivatives." Thesis, Wayne State University, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3735125.
Full textThe overall purpose of this work is to address several of the roadblocks to use of thermoelectric materials for generation of electricity, namely inefficient processing of materials and low performance, commonly rated by the figure of merit, ZT=T?2?/?tot. The ZT includes ? as the Seebeck coefficient, ? as electrical resistivity, T as the average temperature, and ?tot as total thermal conductivity. ?tot is the sum of electronic charge carrier (?C) and lattice (?L) contributions to thermal conductivity. Attempts to increase ZT in the literature to values >1 have focused on decreasing the thermal conductivity via nanostructuring or optimizing the electrical conductivity and Seebeck coefficient by doping. In this work, two separate approaches are taken to tackle these issues: (1) Target higher ZT by assembling lead telluride (PbTe) nanoparticles from a multi-gram synthesis utilizing ligand stripping techniques or deliberately including discrete lead sulfide (PbS) NCs. (2) Develop a rapid, convenient synthesis of tetrahedrite (Cu12Sb4S13). Approach (1): Nanostructuring of PbTe and PbTe?PbS. Nanostructured PbTe and nanocomposites of PbTe?PbS are hypothesized to increase ZT by lowering thermal conductivity, while ligand stripping of PbTe NCs by sulfide or iodide is expected to increase ZT because it has been demonstrated to increase electrical conductivity in thin films of PbS. A new synthesis is in demand because mixing PbTe and PbS NCs requires that the PbTe be dispersible, and literature syntheses of such NCs suffer from small yields (<200 mg). Thus, applications of dispersible PbTe NCs are largely limited to thin films. The ZT values of these thin films are not reported due to difficulty in quantifying thermal conductivity. In the dissertation research, nanostructured PbTe pellets are prepared by hot-pressing PbTe NCs after either mixing with PbS NCs by incipient wetness, or ligand stripping with sulfide salt, iodide salt, or both. The PbTe NCs themselves are prepared in multi-gram quantities by hot-injection methods in solution. The NCs are characterized for crystallinity by powder X-ray Diffraction (XRD). The size and morphology of the NCs are probed via Transmission Electron Microscopy (TEM), and their composition is determined by Energy Dispersive Spectroscopy (EDS). The thermoelectric properties are studied on hot-pressed pellets of each sample. Approach (2): Developing a facile route to tetrahedrite and doped derivatives. Tetrahedrite is exciting the thermoelectric community due to its lack of rare or toxic elements, the tunability of its electronic properties by doping, the ability to dope by ball-milling with the plentiful natural mineral, and the ability to achieve a ZT of unity. However, the natural mineral is unsuitable on its own due to an excess of natural dopant, and reported tetrahedrite syntheses require heating at high temperature 650 ?C in a three day process followed by two weeks of heating at 450 ?C. This work establishes a new synthesis amenable to industrial production that reduces the heating time from over 2 weeks to 2 days for simultaneous batch production at moderate temperature (155 ?C for one day and 430 ?C for 30 min, cooling naturally). The tetrahedrite powder is prepared from chloride-free metal salts and thiourea by solvothermal methods and characterized by XRD for crystallinity. The composition is determined by Inductively Coupled Plasma analysis. Products from multiple batches are mixed by ball-milling alone or combined with the natural mineral as a means to dope with Zn2+ as a solid solution. The resulting powder is then hot-pressed to pellet form for thermoelectric characterization. The tetrahedrite is also doped in-situ by zinc over a range of 0.79 to 1.40 mol equivalents using chloride-free metal salts.
Adireddy, Shivaprasad Reddy. "High Yield Solvothermal Synthesis of Hexaniobate Based Nanocomposites via the Capture of Preformed Nanoparticles in Scrolled Nanosheets." ScholarWorks@UNO, 2013. http://scholarworks.uno.edu/td/1726.
Full textChen, Rong, and 陳嶸. "Synthesis, characterization and biological applications of inorganic nanomaterials." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B36840907.
Full textBassett, David. "Synthesis and applications of bioinspired inorganic nanostructured materials." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97064.
Full textMalgré le fait que l'étude des biomatériaux remonte à plusieurs siècles, ce n'est que récemment que des principes biologiques furent appliqués à des systèmes synthétiques dans des procédés de "biomimetic" et "bioinspirés", permettant ainsi de nouveaux matériaux de synthèses tout en réduisant l'expansion d'énergie et/ou d'éliminer les résultantes toxiques. Plusieurs chercheurs se sont inspirés des formes inusuelles dès plus intéressantes créées par des organismes, formés par un procédé de biominéralisation, qui modifie la nanostructure des matériaux synthétiques. Toutefois, les champs d'études des synthèses de nanoparticules et de la biominéralisation demeurent grandement à part, et cette thèse tente d'appliquer de nouvelles études de biominéralisation par rapport à la science des nanomatériaux.Les protéines sériques qui influencent la biominéralisation sont chargées négativement de résidus d'aspartate. Cette recherche déterminera l'habileté de ces protéines et des diverses molécules bio–organiques qui stabilisent biologiquement d'important minéraux aux multiples formes qui influencent la formation de matériaux non biogènes sur une nano échelle; l'or et le dioxyde de titane ont permis de démontrer ce résultat. L'or fut transformé en nanoparticules de cristal par l'action des protéines sériques, et c'est l'utilité de ces nanoparticules en tant que biocapteurs qui fut explorée. L'influence des molécules bios-organiques sur le choix de la phase ainsi que sur la restriction de la grosseur du cristal de dioxyde de titane, un important semi-conducteur dans plusieurs applications, fut explorée. Les nanoparticules dérivant bio-organiquement du dioxyde de titane ont dès lors démontrées leur action hautement efficace comme photo catalyseur. Le carbonate de calcium, un biominéral commun, a su démontré sa capacité à auto-former des structures à multiples échelles ainsi que différents polymorphes cristallins sous l'influence d'une protéine modèle. De plus, la manipulation des structures à former divers arrangements est une variable qui fut démontrée. Finalement, la stabilité des nanoparticules du phosphate de calcium à se disperser dans le sérum de culture fut modifiée afin d'optimiser l'efficacité du transfert dans deux lignes de cellules.Plusieurs grandes recherches ont accomplis de façon significative; (i) l'évaluation de l'habileté relative du sérum, le dérivé des protéines sériques et de leur capacité à stabiliser les phases de leurs multiples formes, (ii) la formation simple cristalline de l'or former par un anticorps, (iii) la formation de nanoparticules très actives photocatalytiquement d'anatase formées par un ester cyclique phosphorylée, (iv) la formation de structures coniques à l'interface air liquide par la capacité de gabarits d'une protéine, (iv) l'optimisation de transfection médiation par des nanoparticules de phosphate de calcium dans deux lignées cellulaires par filtration méchanique.
Books on the topic "Inorganic Nanostructures - Synthesis"
Cao, Huaqiang. Synthesis and Applications of Inorganic Nanostructures. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527698158.
Full textRao, C. N. R. Essentials of inorganic materials synthesis. Hoboken, New Jersey: Wiley, 2014.
Find full textBerridge, Timothy Edward. The synthesis and characterisation of hybrid nanostructures containing both organic and inorganic regions. Birmingham: University of Birmingham, 1998.
Find full textAlain, Tressaud, ed. Functionalized inorganic fluorides: Synthesis, characterization & properties of nanostructured solids. Hoboken, N.J: Wiley, 2010.
Find full textSohn, Hong Yong. Chemical vapor synthesis of inorganic nanopowders. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textAresta, M., and Angela Dibenedetto. Inorganic micro- and nanomaterials: Synthesis and characterization. Berlin: Walter de Gruyter GmbH & Co. KG, 2013.
Find full textEduardo, Ruiz-Hitzky, Ariga Katsuhiko 1962-, and Lvov Yuri 1952-, eds. Bio-inorganic hybrid nanomaterials: Strategies, syntheses, characterization and applications. Weinheim: Wiley-VCH, 2008.
Find full textWinterer, Markus. Nanocrystalline Ceramics: Synthesis and Structure. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.
Find full textNazario, Martin, ed. Carbon nanotubes and related structures: Synthesis, characterization, functionalization, and applications. Weinheim: Wiley-VCH, 2010.
Find full textBook chapters on the topic "Inorganic Nanostructures - Synthesis"
Xu, Xuemei, Pia Winterwerber, David Ng, and Yuzhou Wu. "DNA-Programmed Chemical Synthesis of Polymers and Inorganic Nanomaterials." In DNA Nanotechnology, 57–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54806-3_3.
Full textLiu, Jian-Wei. "Synthesis of One-Dimensional Te Nanostructures." In Well-Organized Inorganic Nanowire Films, 33–37. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3947-8_2.
Full textBourlinos, A. B., N. Boukos, and D. Petridis. "Shape Fabrication of Cotton-Derived Inorganic Hollow Ribbons." In Nanostructures: Synthesis, Functional Properties and Applications, 111–16. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-1019-1_5.
Full textAntonoglou, Orestis, and Catherine Dendrinou-Samara. "CHAPTER 3. Polyols as a Toolbox for the Preparation of Inorganic-based Nanostructures." In Reducing Agents in Colloidal Nanoparticle Synthesis, 51–72. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839163623-00051.
Full textGross, Silvia. "Sustainable and Very-Low-Temperature Wet-Chemistry Routes for the Synthesis of Crystalline Inorganic Nanostructures." In Green Processes for Nanotechnology, 1–33. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15461-9_1.
Full textRamm, Beatrice, Alena Khmelinskaia, Henri G. Franquelim, and Petra Schwille. "Patterning DNA Origami on Membranes Through Protein Self-Organization." In Natural Computing Series, 411–31. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9891-1_22.
Full textSumanth Kumar, D., B. Jai Kumar, and H. M. Mahesh. "Quantum Nanostructures (QDs): An Overview." In Synthesis of Inorganic Nanomaterials, 59–88. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-08-101975-7.00003-8.
Full textAshik, U. P. M., Shinji Kudo, and Jun-ichiro Hayashi. "An Overview of Metal Oxide Nanostructures." In Synthesis of Inorganic Nanomaterials, 19–57. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-08-101975-7.00002-6.
Full textQi, Limin. "Reverse Micelles: Synthesis of Inorganic Nanostructures." In Encyclopedia of Surface and Colloid Science, Third Edition, 6451–74. Taylor & Francis, 2015. http://dx.doi.org/10.1081/e-escs3-120023694.
Full textThankachan, Rahul M., and Raneesh Balakrishnan. "Synthesis Strategies of Single-Phase and Composite Multiferroic Nanostructures." In Synthesis of Inorganic Nanomaterials, 185–211. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-08-101975-7.00008-7.
Full textConference papers on the topic "Inorganic Nanostructures - Synthesis"
BAVASSO, IRENE, FRANCESCA SBARDELLA, MARIA PAOLA BRACCIALE, JACOPO TIRILLÒ, LUCA DI PALMA, LUCA LAMPANI, and FABRIZIO SARASINI. "HIERARCHICAL ELECTROSPUN VEILS AS POTENTIAL TOUGHENING MATERIALS FOR STRUCTURAL COMPOSITE LAMINATES." In Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35780.
Full textRavi, B. G., S. Sampath, R. Gambino, P. S. Devi, and J. B. Parise. "Plasma Spray Synthesis from Precursors: Progress, Issues and Considerations." In ITSC2006, edited by B. R. Marple, M. M. Hyland, Y. C. Lau, R. S. Lima, and J. Voyer. ASM International, 2006. http://dx.doi.org/10.31399/asm.cp.itsc2006p0871.
Full text