Academic literature on the topic 'Inorganik'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Inorganik.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Inorganik"
Utomo, N. B. P., Winarti, and A. Erlina. "Growth of Spirulina platensis Cultured with Inorganic Fertilizer (Urea, TSP and ZA) and Chicken Manure." Jurnal Akuakultur Indonesia 4, no. 1 (January 1, 2007): 41. http://dx.doi.org/10.19027/jai.4.41-48.
Full textSipan SOYSAL and Murat ERMAN. "Siirt Ekolojik Koşullarında Mikrobiyolojik ve İnorganik Gübrelemenin Nohut (Cicer arietinum l.)’un Kalite Özellikleri Üzerine Etkileri." ISPEC Journal of Agricultural Sciences 4, no. 4 (December 4, 2020): 923–39. http://dx.doi.org/10.46291/ispecjasvol4iss4pp921-937.
Full textRamadhan, Laode Muhamad Asdiq Hamsin, Budi Nugroho, Arief Hartono, and Untung Sudadi. "DINAMIKA FRAKSI FOSFOR DAN SIFAT KIMIA TANAH SAWAH TERKAIT INDEKS PERTANAMAN PADI SAWAH DAN KONDISI PENGGENANGAN." Jurnal Ilmu Tanah dan Lingkungan 19, no. 1 (March 13, 2019): 19. http://dx.doi.org/10.29244/jitl.19.1.19-24.
Full textHandayani, Noer Abyor, Herry Santosa, Bunga Profegama, and Aditya Yuna. "FORTIFIKASI INORGANIK ZINK PADA TEPUNG UBI JALAR UNGU SEBAGAI BAHAN BAKU BUBUR BAYI INSTAN." Reaktor 15, no. 2 (February 27, 2014): 111. http://dx.doi.org/10.14710/reaktor.15.2.111-116.
Full textBentli, İsmail. "Kömür Lavvar Tesisi Atıkların Flokülasyonunda İnorganik Elektrolitlerin Etkisi." Ekoloji 19, no. 76 (August 5, 2010): 71–77. http://dx.doi.org/10.5053/ekoloji.2010.768.
Full textTEKKARIŞMAZ, Nihan, Dilek TORUN, and Rüya ÖZELSANCAK. "What is the Level of Awareness About the Foods Containing Inorganic Phosphorus in Patients with Chronic Renal Failure?" Journal of Traditional Medical Complementary Therapies 2, no. 3 (2019): 130–37. http://dx.doi.org/10.5336/jtracom.2019-72202.
Full textMarwoto, Jarot, Oceana Windyartanti, and Muslim Muslim. "Pengaruh Padatan Tersuspensi terhadap Konsentrasi Klorofil-a dan Fosfat Inorganik Terlarut di Muara Banjir Kanal Barat, Semarang." Jurnal Kelautan Tropis 24, no. 2 (May 30, 2021): 223–31. http://dx.doi.org/10.14710/jkt.v24i2.10703.
Full textSipan SOYSAL and Murat ERMAN. "Siirt Ekolojik Koşullarında Mikrobiyolojik Ve İnorganik Gübrelemenin Nohut (Cicer arietinum l.)’un Verim, Verim Öğeleri Ve Nodülasyonu Üzerine Etkilerinin Araştırılması." ISPEC Journal of Agricultural Sciences 4, no. 3 (September 16, 2020): 649–70. http://dx.doi.org/10.46291/ispecjasvol4iss3pp649-670.
Full textPratikno, Bungkus, and Nurfadhlini Nurfadhlini. "Studi Komposisi Rasio Isotop 13C Air Hujan di Wilayah Lebak Bulus, Jakarta Selatan." Jurnal Ilmiah Aplikasi Isotop dan Radiasi 13, no. 2 (December 20, 2017): 123. http://dx.doi.org/10.17146/jair.2017.13.2.3548.
Full textDemirbağ, Sena, and Sennur Alay Aksoy. "Production and Characterization of Heat Storing Microcapsules with Enhanced." Tekstil ve Mühendis 20, no. 92 (December 31, 2013): 27–35. http://dx.doi.org/10.7216/130075992013209203.
Full textDissertations / Theses on the topic "Inorganik"
Vervacke, Céline. "Sensing and Transport Properties of Hybrid Organic/Inorganic Devices." Doctoral thesis, Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-152484.
Full textAraujo, Márcio Peres de [UNESP]. "Complexos cofaciais de dirutênio contendo haletos em ponte e fosfinas como ligantes: estudos espectrais, eletroquímicos e de reatividade." Universidade Estadual Paulista (UNESP), 2001. http://hdl.handle.net/11449/105810.
Full textO complexo mer-[RuCl3(dppb)H2O] foi utilizado como precursor para a síntese de uma série de complexos binucleares de valência mista, estes apresentam fórmula geral [Ru2Cl5(dppb)(P)2] e [Ru2Cl5(dppb)(P-P)] e forma estudados por técnicas eletroquímicas e espectroscópicas. A maior característica destas espécies é que apresentam acoplamento metal-metal, ou seja transferência de elétrons entre seus centros metálicos em função dessa caracterísitica apresentam absorção na região do infravermelho-próximo do espectro eletrônico, além de dois processos eletroquímicos com separação (ΔE1/2) ~0,60 V, indicativo de forte interação entre os centros metálicos. Complexos com fórmula [Ru2Cl4CO(dppb)(P)2] e [Ru2Cl4(N-het.)(dppb)2] foram sintetizados e caracterizados. Alguns dos complexos obtidos foram testados em reações de hidrogenação de iminas, sendo que alguns mostraram grande atividade. Complexos do tipo [RuCl2(dppb)(N-N)] e [RuCl2(dppb)(N)2] foram utilizados para a redução da acetofenona usando transferência de hidrogênio, as conversões alcançadas foram satisfatórias em função das condições não terem sido optimizadas. Além disso o aqua complexo mer-[RuCl3(dppb)H2O] também foi eficiente para gerar in situ espécies catalíticamente ativas. A reatividade do complexo [Ru2Cl4(dppb)3] com CuCl2.2H2O e [NBu4][AuCl4] foi testada e o produto destas reações foi identificado como [Ru2Cl5(dppb)2]. Estas reações ocorrem via oxidação do complexo de rutênio e posterior fomação do complexo de valência mista contendo três cloretos em ponte. O complexo [RuCl2(PPh3)3] também foi oxidado com excesso de CuCl2.2H2O levando a formação de [CuCl(PPh3)3] (caracterizado por RMN 31P{1H}) e do complexo solvato [RuCl3(PPh3)2MeOH]MeOH (caracterizado por RPE), além destas espécies uma solução amarela é obtida e com a adição de dppm a esta solução o complexo...
The compound mer-[RuCl3(dppb)H2O] was used as precursor for the synthesis of a wide range of mixed valence complexes and present the general formula [Ru2Cl5(dppb)(P)2] and [Ru2Cl5(dppb)(PP)]. These complexes were studied by electrochemical and spectroscopic techniques. The main characteristic of these species is that they present metal-metal coupling or metal-metal electron transfer due to this electron transfer absorptions in the near infrared region can be observed. Cyclic voltammetry studies reveals that these complexes show two reversible electrochemical processes with separation (ΔE1/2) ~0,60 V, which is indicative of strong interaction between metallic centers. Complex with formula [Ru2Cl4(CO)(dppb)(P)2] and [Ru2Cl4(N-het.)(dppb)2] were synthesized and characterized. Some of the compounds synthesized were tested in reactions of imines hydrogenation, and some showed great activity. Complexes of the type [RuCl2(dppb)(N-N)] and [RuCl2(dppb)(N)2] were used for the acetophenone reduction using hydrogen-transfer reactions, conversions were satisfactory due to the conditions has not been optimized. Besides the aqua complex mer-[RuCl3(dppb)H2O] was also efficient to in situ generates active species. The reactivity of the compound [Ru2Cl4(dppb)3] with CuCl2.2H2O and [NBu4][AuCl4] was tested and the product of these reactions was identified as [Ru2Cl5(dppb)2]. These reactions occurs through oxidation and dimerization of the ruthenium complexes to form the mixed valence complex. The compound [RuCl2(PPh3)3] was reacted with excess of CuCl2.2H2O leading to the formation of [CuCl(PPh3)3] (characterized by RMN 31P{1H}) and the compound [RuCl3(PPh3)2MeOH]MeOH (characterized by RPE), besides these species a yellow solution was obtained and with addition of dppm to this solution the compound [Ru2Cl5(dppm)2] is obtained. X-ray structures for the compounds [Ru2Cl5(dppb)2], [Ru2Cl5(dppm)2],...(Complete abstract click electronic access below)
Araujo, Márcio Peres de. "Complexos cofaciais de dirutênio contendo haletos em ponte e fosfinas como ligantes : estudos espectrais, eletroquímicos e de reatividade /." Araraquara : [s.n.], 2001. http://hdl.handle.net/11449/105810.
Full textBanca: Benedito dos Santos Lima Neto
Banca: Edward Ralph Dockal
Banca: Luiz Antonio Andrade de Oliveira
Banca: Wagner Ferraresi de Giovani
Resumo: O complexo mer-[RuCl3(dppb)H2O] foi utilizado como precursor para a síntese de uma série de complexos binucleares de valência mista, estes apresentam fórmula geral [Ru2Cl5(dppb)(P)2] e [Ru2Cl5(dppb)(P-P)] e forma estudados por técnicas eletroquímicas e espectroscópicas. A maior característica destas espécies é que apresentam acoplamento metal-metal, ou seja transferência de elétrons entre seus centros metálicos em função dessa caracterísitica apresentam absorção na região do infravermelho-próximo do espectro eletrônico, além de dois processos eletroquímicos com separação (ΔE1/2) ~0,60 V, indicativo de forte interação entre os centros metálicos. Complexos com fórmula [Ru2Cl4CO(dppb)(P)2] e [Ru2Cl4(N-het.)(dppb)2] foram sintetizados e caracterizados. Alguns dos complexos obtidos foram testados em reações de hidrogenação de iminas, sendo que alguns mostraram grande atividade. Complexos do tipo [RuCl2(dppb)(N-N)] e [RuCl2(dppb)(N)2] foram utilizados para a redução da acetofenona usando transferência de hidrogênio, as conversões alcançadas foram satisfatórias em função das condições não terem sido optimizadas. Além disso o aqua complexo mer-[RuCl3(dppb)H2O] também foi eficiente para gerar in situ espécies catalíticamente ativas. A reatividade do complexo [Ru2Cl4(dppb)3] com CuCl2.2H2O e [NBu4][AuCl4] foi testada e o produto destas reações foi identificado como [Ru2Cl5(dppb)2]. Estas reações ocorrem via oxidação do complexo de rutênio e posterior fomação do complexo de valência mista contendo três cloretos em ponte. O complexo [RuCl2(PPh3)3] também foi oxidado com excesso de CuCl2.2H2O levando a formação de [CuCl(PPh3)3] (caracterizado por RMN 31P{1H}) e do complexo solvato [RuCl3(PPh3)2MeOH]MeOH (caracterizado por RPE), além destas espécies uma solução amarela é obtida e com a adição de dppm a esta solução o complexo...(Resumo completo, clicar acesso eletrônico abaixo)
Abstract: The compound mer-[RuCl3(dppb)H2O] was used as precursor for the synthesis of a wide range of mixed valence complexes and present the general formula [Ru2Cl5(dppb)(P)2] and [Ru2Cl5(dppb)(PP)]. These complexes were studied by electrochemical and spectroscopic techniques. The main characteristic of these species is that they present metal-metal coupling or metal-metal electron transfer due to this electron transfer absorptions in the near infrared region can be observed. Cyclic voltammetry studies reveals that these complexes show two reversible electrochemical processes with separation (ΔE1/2) ~0,60 V, which is indicative of strong interaction between metallic centers. Complex with formula [Ru2Cl4(CO)(dppb)(P)2] and [Ru2Cl4(N-het.)(dppb)2] were synthesized and characterized. Some of the compounds synthesized were tested in reactions of imines hydrogenation, and some showed great activity. Complexes of the type [RuCl2(dppb)(N-N)] and [RuCl2(dppb)(N)2] were used for the acetophenone reduction using hydrogen-transfer reactions, conversions were satisfactory due to the conditions has not been optimized. Besides the aqua complex mer-[RuCl3(dppb)H2O] was also efficient to in situ generates active species. The reactivity of the compound [Ru2Cl4(dppb)3] with CuCl2.2H2O and [NBu4][AuCl4] was tested and the product of these reactions was identified as [Ru2Cl5(dppb)2]. These reactions occurs through oxidation and dimerization of the ruthenium complexes to form the mixed valence complex. The compound [RuCl2(PPh3)3] was reacted with excess of CuCl2.2H2O leading to the formation of [CuCl(PPh3)3] (characterized by RMN 31P{1H}) and the compound [RuCl3(PPh3)2MeOH]MeOH (characterized by RPE), besides these species a yellow solution was obtained and with addition of dppm to this solution the compound [Ru2Cl5(dppm)2] is obtained. X-ray structures for the compounds [Ru2Cl5(dppb)2], [Ru2Cl5(dppm)2],...(Complete abstract click electronic access below)
Doutor
Patarroyo, Rengifo Javier Ivan. "Exploring synthetic strategies for the production of complex inorganic nanoparticles." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/666652.
Full textNanomaterials have been an intriguing area of scientific research over the previous few decades because of their unique physical and chemical properties that make them suitable for applications in fields like photonics, catalysis, biomedicine, environmental remediation, energy conversion and storage, sensors, etc. Advances in nanoscience have been accompanied by improvements in the capabilities to deliver compositional and morphological control of materials. Syntheses of nanoparticles (NPs), where material science elements are addressed with organic chemistry precision techniques, are specially challenging and often difficult to understand, hence to control. This difficulty arises from the increased complexity of the mineralization mechanisms in which molecular precursors are transformed into NPs, along with their strong susceptibility to the reaction kinetics. Therefore, the persisting question is how to correlate the morphological transformations that take place in NPs during their formation with the number of overlapped fundamental processes and competing reactions that are involved. This thesis dissertation present the development of reproducible methodologies for the production of high quality solid and hollow noble metal NPs and hybrid noble metal–metal oxide NPs (heterodimer and core@shell NPs); and, in addition, examine their optical, chemical and catalytic behaviour.
Clancy, Gerald Patrick. "Synthetic inorganic chemistry : novel metallocenes and inorganic fullerenes." Thesis, University of Oxford, 2000. http://ora.ox.ac.uk/objects/uuid:9c7f7c35-bb8f-4117-8e2e-e56a9fbcbeab.
Full textOtsuka, Takeshi. "Functionalization of Organic-Inorganic Nano-Hybrids Utilizing Inorganic Nanoparticles." 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/126813.
Full textVincent, Paul Robert. "Investigation of inorganic materials for the application of inorganic pigments." Thesis, University of Southampton, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415239.
Full textBrinza, Daniel L. "Novel inorganic membranes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0019/MQ58444.pdf.
Full textRidley, Brent (Brent Alan) 1974. "Printed inorganic transistors." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/62382.
Full textIncludes bibliographical references (leaves 146-175).
Forty years of exponential growth of semiconductor technology have been predicated on the miniaturization of the transistors that comprise integrated circuits. While complexity has greatly increased within a given area of processed silicon, the cost per area has not decreased. Current fabrication methods are further hindered by high facility costs and environmentally unfriendly processing. Moving to a new means of semiconductor fabrication may drastically reduce both financial and environmental costs. One such approach is based on the extension of printing techniques to the fabrication of electronic devices. Such printed electronics are envisioned to enable applications in flexible displays and electronic paper, personal fabrication, wearable computing, and disposable medical diagnostics. This dissertation focuses on the development of printable materials, specifically inorganic semiconductor inks. At the outset of this research, organic semiconductors were the only materials known and pursued as printable semiconductors. The ability to process organic semiconductors in common organic solvents makes them amenable to a wide range of printing technologies, but their electrical performance is fundamentally limited and their utility is confined to applications in which only low speeds are required. The goal of this thesis was to demonstrate the feasibility of printing inorganic materials, the same materials that are used to fabricate high quality semiconductor devices. Cadmium selenide was studied as a model inorganic semiconductor and silicon was studied because of its commercial dominance. The insolubility and high processing temperatures of inorganic semiconductors, both of which can prevent
(cont.) their use in printed electronics, were overcome through the use of nanoparticle inks. At very small sizes, nanoparticles can be highly soluble in organic solvents and can have a pronounced melting point depression. Leveraging these size-dependent properties, the first semiconductor nanoparticle inks were developed using cadmium selenide and the first all-printed inorganic thin film transistors were demonstrated. Printed active layers in thin film transistors attained a semiconductor mobility of 1 cm²V⁻¹s⁻¹and an ON/OFF ratio in excess of 10⁴. Further development of inorganic nanoparticle inks and efforts to extend this approach to silicon are described, addressing silicon nanoparticle synthesis, purification, and ink formulation.
Brent Ridley.
Ph.D.
Price, Adam Jacob. "New inorganic catalysts." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621059.
Full textBooks on the topic "Inorganik"
Sanderson, R. T. Simple inorganic substances. Malabar, Fla: Krieger Pub. Co., 1989.
Find full textBertini, Ivano. Inorganic and bio-inorganic chemistry. Oxford: Eolss Publishers, 2009.
Find full textEldik, Rudi van, and Grazyna Stochel. Advances in inorganic chemistry: Inorganic photochemistry. Amsterdam: Academic Press, 2011.
Find full text1932-, Tarr Donald A., ed. Inorganic chemistry. 3rd ed. Upper Saddle River, N.J: Pearson Education, 2004.
Find full textKaesz, Herbert D. Inorganic syntheses. Edited by Wiley online library. New York: Wiley, 1989.
Find full textR, Allcock H., and West Robert 1928-, eds. Inorganic polymers. Englewood Cliffs, N.J: Prentice Hall, 1992.
Find full text1932-, Tarr Donald A., ed. Inorganic chemistry. Englewood Cliffs, N.J: Prentice Hall, 1991.
Find full textBook chapters on the topic "Inorganik"
Gooch, Jan W. "Inorganic." In Encyclopedic Dictionary of Polymers, 390. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_6345.
Full textHeppner, John B., D. G. Boucias, J. C. Pendland, Andrei Sourakov, Timothy Ebert, Roger Downer, Kun Yan Zhu, et al. "Inorganic." In Encyclopedia of Entomology, 1955. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_1532.
Full textPeresypkina, Eugenia, Claudia Heindl, Alexander Virovets, and Manfred Scheer. "Inorganic Superspheres." In Clusters – Contemporary Insight in Structure and Bonding, 321–73. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/430_2016_2.
Full textWilley, Neil. "Inorganic Toxins." In Environmental Plant Physiology, 279–304. New York, NY : Garland Science, 2016.: Garland Science, 2018. http://dx.doi.org/10.1201/9781317206231-12.
Full textFresenius, Wilhelm, Karl Ernst Quentin, and Wilhelm Schneider. "Inorganic Parameters." In Water Analysis, 195–476. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-72610-1_3.
Full textGooch, Jan W. "Inorganic Coatings." In Encyclopedic Dictionary of Polymers, 390. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_6346.
Full textGooch, Jan W. "Inorganic Fibers." In Encyclopedic Dictionary of Polymers, 390. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_6347.
Full textGooch, Jan W. "Inorganic Pigments." In Encyclopedic Dictionary of Polymers, 390. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_6348.
Full textGooch, Jan W. "Inorganic Polymer." In Encyclopedic Dictionary of Polymers, 390. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_6349.
Full textvan der Put, Paul J. "Inorganic Molecules." In The Inorganic Chemistry of Materials, 87–110. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0095-1_3.
Full textConference papers on the topic "Inorganik"
Green, Martin A. "Inorganic nanophotovoltaics." In NOBEL SYMPOSIUM 153: NANOSCALE ENERGY CONVERTERS. AIP, 2013. http://dx.doi.org/10.1063/1.4794699.
Full textYee, Shannon K., Nelson Coates, Jeffrey J. Urban, Arun Majumdar, and Rachel A. Segalman. "A High-Performance Solution-Processable Hybrid Thermoelectric Material." In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75002.
Full textTruong, Vo-Van. "Inorganic ion conductors." In Institutes for Advanced Optical Technologies, edited by Carl M. Lampert and Claes-Göran Granqvist. SPIE, 1990. http://dx.doi.org/10.1117/12.2283628.
Full textNeuroth, Norbert. "Inorganic optical glasses." In Critical Review Collection. SPIE, 1996. http://dx.doi.org/10.1117/12.245186.
Full textAraujo, Roger. "Inorganic photosensitive materials." In Critical Review Collection. SPIE, 1996. http://dx.doi.org/10.1117/12.245194.
Full textKutal, Charles, Bentley J. Palmer, and Zhikai Wang. "Novel inorganic photoinitiators." In SPIE's 1995 Symposium on Microlithography, edited by Robert D. Allen. SPIE, 1995. http://dx.doi.org/10.1117/12.210372.
Full textGoncalves, Rogeria R., Giovanni Carturan, Sergio Scarpari, D. C. Oliveira, Luciano A. Bueno, Sidney J. L. Ribeiro, Younes Messaddeq, et al. "Inorganic nanoparticles in organic-inorganic hybrid hosts for planar waveguides." In International Symposium on Optical Science and Technology, edited by Robert A. Norwood. SPIE, 2002. http://dx.doi.org/10.1117/12.456538.
Full textKasikov, Aarne. "LaF3 as a high-index material in VUV." In Optical Organic and Inorganic Materials. SPIE, 2001. http://dx.doi.org/10.1117/12.496649.
Full textScurtul, K. D. "Thin films of EuO-CeO2 semiconductor system." In Optical Organic and Inorganic Materials. SPIE, 2001. http://dx.doi.org/10.1117/12.425480.
Full textJuska, Gytas. "Transport features of photogenerated and equilibrium charge carriers in thin PPV polymer layers." In Optical Organic and Inorganic Materials. SPIE, 2001. http://dx.doi.org/10.1117/12.425484.
Full textReports on the topic "Inorganik"
Benson, S., P. Sweeny, H. Abrahamson, L. Radonovich, C. Zygarlicke, W. Puffe, and M. Maldonado. Combustion inorganic transformations. Office of Scientific and Technical Information (OSTI), April 1988. http://dx.doi.org/10.2172/6959295.
Full textPhillips, M. L. F., P. I. Pohl, and C. J. Brinker. Selective inorganic thin films. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/494134.
Full textCollord, Andrew, David J. Kissel, C. Jeffrey Brinker, Christopher Alan Apblett, and Eric D. Branson. Polymer/inorganic superhydrophobic surfaces. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/1001016.
Full textFain, D. E. (Advances in inorganic membranes). Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5118694.
Full textPhillips, M. L. F., L. A. Weisenbach, and M. T. Anderson. Selective inorganic thin films. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/105137.
Full textNeilson, Robert H. New Inorganic Polymer Systems. Fort Belvoir, VA: Defense Technical Information Center, February 1991. http://dx.doi.org/10.21236/ada232447.
Full textStone, M. L. Inorganic polymer engineering materials. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10134395.
Full textEgan, B. Z., S. P. N. Singh, D. E. Fain, G. E. Roettger, and D. E. White. Gas separations using inorganic membranes. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/10150064.
Full textThomas, George Harrison. Alkoxide routes to Inorganic Materials. Office of Scientific and Technical Information (OSTI), December 2007. http://dx.doi.org/10.2172/971209.
Full textEgan, B. Z., S. P. N. Singh, D. E. Fain, G. E. Roettger, and D. E. White. Gas separations using inorganic membranes. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/5256184.
Full text