Academic literature on the topic 'InP, GaP'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'InP, GaP.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "InP, GaP"
Sun, Yanning, Aristo Yulius, Guohua Li, and Jerry M. Woodall. "Drift dominated InP/GaP photodiodes." Solid-State Electronics 48, no. 10-11 (October 2004): 1975–79. http://dx.doi.org/10.1016/j.sse.2004.05.043.
Full textIshida, K., T. Nomura, H. Tokunaga, H. Ohtani, and T. Nishizawa. "Miscibility gaps in the GaPInP, GaPGaSb, InPInSn and InAsInSb systems." Journal of the Less Common Metals 155, no. 2 (November 1989): 193–206. http://dx.doi.org/10.1016/0022-5088(89)90228-2.
Full textShen, Guozhen, Yoshio Bando, and Dmitri Golberg. "InP-GaP Bi-Coaxial Nanowires and Amorphous GaP Nanotubes." Journal of Physical Chemistry C 111, no. 9 (February 9, 2007): 3665–68. http://dx.doi.org/10.1021/jp067691r.
Full textSaravanan, R., S. Israel, N. Srinivasan, and S. K. Mohanlal. "Charge transfer in GaP and InP." physica status solidi (b) 194, no. 2 (April 1, 1996): 435–41. http://dx.doi.org/10.1002/pssb.2221940202.
Full textWan, J. Z., J. G. Simmons, and D. A. Thompson. "Band gap modification in Ne+-ion implanted In1−xGaxAs/InP and InAsyP1−y/InP quantum well structures." Journal of Applied Physics 81, no. 2 (January 15, 1997): 765–70. http://dx.doi.org/10.1063/1.364440.
Full textЭполетов, В. С., А. Е. Маричев, Б. В. Пушный, and Р. А. Салий. "Электрические контакты к структурам на основе InP с подконтактным слоем к p-InP, легированным Zn." Журнал технической физики 46, no. 23 (2020): 13. http://dx.doi.org/10.21883/pjtf.2020.23.50340.18467.
Full textKurimoto, Takeshi, Noriaki Hamada, and Atsushi Oshiyama. "Electronic structure and band gap of (GaP)1(InP)1(111) superlattice." Superlattices and Microstructures 5, no. 2 (January 1989): 171–73. http://dx.doi.org/10.1016/0749-6036(89)90277-2.
Full textHunter, P. "Analysis extra: Changing platforms span credibility gap." Information Professional 4, no. 2 (April 1, 2007): 38. http://dx.doi.org/10.1049/inp:20070216.
Full textMasselink, W. T., F. Hatami, G. Mussler, and L. Schrottke. "InP quantum dots in GaP: Growth and luminescence." Materials Science in Semiconductor Processing 4, no. 6 (December 2001): 497–501. http://dx.doi.org/10.1016/s1369-8001(02)00008-2.
Full textLi, Zhengrong, and Dominick J. Casadonte. "Facile sonochemical synthesis of nanosized InP and GaP." Ultrasonics Sonochemistry 14, no. 6 (September 2007): 757–60. http://dx.doi.org/10.1016/j.ultsonch.2006.12.015.
Full textDissertations / Theses on the topic "InP, GaP"
Beaudoin, Mario. "Electrical transport properties of n-Type InP." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61237.
Full textTudury, Heloisa Andrade de Paula. "Gap direto-indireto em poços quânticos de camadas tensionadas de InGaAs/InP." [s.n.], 2001. http://repositorio.unicamp.br/jspui/handle/REPOSIP/277786.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica "Gleb Wataghin"
Made available in DSpace on 2018-08-02T02:53:03Z (GMT). No. of bitstreams: 1 Tudury_HeloisaAndradedePaula_M.pdf: 2460328 bytes, checksum: a3be30d81a490ff71b29d80aaf37993f (MD5) Previous issue date: 2001
Resumo:Estudamos a transição de gap direto-indireto em poços quânticos de dopagem modulada de camadas tensionadas de In1-xG axAs/InP. As amostras analisadas foram crescidas por LP-MOCVD. Os poços quânticos têm largura de 6 nm com concentrações de gálio entre x = 0.47 e 0.60. O objetivo da dissertação foi analisar a evolução da estrutura de banda em função da concentração de Ga por medidas ópticas. Realizamos medidas de fotoluminescência com a temperatura da amostra variando entre 2 e 100 K. Observamos que a forma de linha de fotoluminescência é bastante sensível à composição de Ga na liga. Cálculos teóricos baseados no hamiltoniano de Luttinger-Kohn explicam qualitativamente esse comportamento dos espectros, mostrando que realmente há influência da estrutura de bandas nos mesmos. Nos dados experimentais também observamos efeitos de localização possivelmente provenientes da flutuação do potencial da liga, rugosidade das interfaces e defeitos criados pela presença da tensão intrínseca. Realizamos também medidas de fotoluminescencia na presença de uma pressão biaxial externa, utilizando uma célula de pressão baseada na deformação de placa construída em nossos laboratórios, para verificar se o comportamento observado nos espectros de fotoluminescência em diferentes amostras é realmente devido a mudança na estrutura de banda. Os espectros de fotoluminescência medidos na presença de pressão externa mostram realmente as mesmas características - variação na forma da linha de emissão - atribuídas a mudança de gap direto para indireto à medida que aumenta a pressão externa, efeito equivalente àquele decorrente do aumento da concentração do Ga em diferentes amostras. Isso fortalece a nossa interpretação de que o efeito da estrutura de bandas é um dos responsáveis pelo comportamento apresentado nos espectros de fotoluminescência. Este trabalho abre a possibilidade de realizar estudos de efeitos dependentes da estrutura de bandas em poços quânticos aplicando pressão biaxial externa
Abstract:We have studied the direct-to-indirect gap transition in strained-layer modulation-doped In1-xGaxAs/InP quantum wells. The samples were grown by LP-MOCVD. The quantum wellthickness is 6 nm and their Ga content was varied from x = 0.47 to 0.60. Our purpose is to study the influence of Ga content variation on the band structure by optical measurements. Photoluminescence measurements were performed under temperatures varying from 2 to 100K. We have observed that the photoluminescence line shape is very sensitive to the Ga composition in the alloy. Theoretical calculations based on Luttinger-Kohn Hamiltonian explain qualitatively the behavior of the photoluminescence spectra, showing the influence of the valence band structure on them. Our experimental data also show localization effects, possibly arose from the alloy potential fluctuation, interfaces roughness and defects created due to the built-in strain. We also carried out photoluminescence measurements under an externally applied biaxial strain, using a pressure cell based on a plate bending method, in order to verify whether the behavior observed in photoluminescence spectra in different samples is due to the band structure effects. The photoluminescence spectra measured in the presence of an external strain show similar behavior to those observed when the Ga concentration is changed in different samples due to the changing the band structure from direct to indirect-gap. This result reinforces that the band-structure effect is responsible for the behavior observed in photoluminescence spectra. This work opens the possibility of further research on the band-structure dependent effects on quantum wells under externally applied biaxial strain
Mestrado
Física
Mestra em Física
Hatami, Fariba. "Indium phosphide quantum dots in GaP and in In 0.48 Ga 0.52 P." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2002. http://dx.doi.org/10.18452/14873.
Full textThe growth and structural properties of self-assembled InP quantum dots are presented and discussed, together with their optical properties and associated carrier dynamics. The QDs are grown using gas-source molecular-beam epitaxy in and on the two materials InGaP (lattice matched to GaAs) and GaP. Under the proper growth conditions, formation of InP dots via the Stranski-Krastanow mechanism is observed. The critical InP coverage for 2D-3D transition is found to be 3ML for the InP/ InGaP system and 1.8ML for the InP/GaP system. The structural characterization indicates that the InP/GaP QDs are larger and, consequently, less dense compared to the InP/ InGaP QDs; hence, InP dots on GaP tend to be strain-relaxed. The InP/ InGaP QDs tend to form ordered arrays when InP coverage is increased. Intense photoluminescence from InP quantum dots in both material systems is observed. The PL from InP/GaP QDs peaks between 1.9 and 2 eV and is by about 200 meV higher in energy than the PL line from InP/ InGaP QDs. The optical emission from dots is attributed to direct transitions between the electrons and heavy-holes confined in the InP dots, whereas the photoluminescence from a two-dimensional InP layer embedded in GaP is explained as resulting from the spatially indirect recombination of electrons from the GaP X valleys with holes in InP and their phonon replicas. The type-II band alignment of InP/GaP two-dimensional structures is further confirmed by the carrier lifetime above 19 ns, which is much higher than in type-I systems. The observed carrier lifetimes of 100-500 ps for InP/ InGaPQDs and 2 ns for InP/GaP QDs support our band alignment modeling. Pressure-dependent photoluminescence measurements provide further evidence for a type-I band alignment for InP/GaP QDs at normal pressure, but indicate that they become type-II under hydrostatic pressures of about 1.2 GPa and are consistent with an energy difference between the lowest InP and GaP states of about 31 meV. Exploiting the visible direct-bandgap transition in the GaP system could lead to an increased efficiency of light emission in GaP-based light emitters.
Shahid, Naeem. "Technology and properties of InP-based photonic crystal structures and devices." Doctoral thesis, KTH, Halvledarmaterial, HMA, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-101662.
Full textQC 20120831
Kristukat, Christian. "High pressure study of the electronic structure of self-assembled InAs/GaAs and InP/GaP quantum dots." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=97877339X.
Full textBENSAOULA, ABDELHAKIM. "Realisation d'un super-reseau a contraintes balancees inp/gaas/gap/gaas par epitaxie par jets moleculaires d'organo-metalliques." Nice, 1995. http://www.theses.fr/1995NICE4857.
Full textAuvray, Laurent. "EPVOM du matériau InGaAs-InP avec l'arsine ou le triméthylarsenic et du nitrure à petit gap GaAsN-GaAs : utilisation de l'azote comme gaz vecteur." Lyon 1, 2001. http://www.theses.fr/2001LYO19001.
Full textShao, Jun. "Effective mass and valence-band structure in Ga Kappa In 1-Kappa As/InP and Ga Kappa In 1-Kappa P/AlGaInP quantum wells." [S.l. : s.n.], 2002. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB9818580.
Full textBraccioli, Marco <1979>. "Study of silicon-on-insulator multiple-gate MOS structures including band-gap engineering and self heating effects." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1515/.
Full textNiessen, Daniel <1983>. "Nonlinear Characterization and Modelling of GaN HEMTs for Microwave Power Amplifier Applications." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5774/.
Full textBooks on the topic "InP, GaP"
Adachi, Sadao. Physical properties of III-V semiconductor compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP. New York: Wiley, 1992.
Find full textPublishing, Ferrari International. Inn places: Gay & lesbian accommodations worldwide. Phoenix, AZ: Ferrari International Pub., 2001.
Find full textAdachi, Sadao. Physical Properties of III-V Semiconductor Compounds: InP, Inas, Gaas, GaP, InGaAs and InGaAsP. Wiley & Sons, Limited, John, 2005.
Find full textLtd, ICON Group. IMP, INC.: International Competitive Benchmarks and Financial Gap Analysis (Financial Performance Series). 2nd ed. Icon Group International, 2000.
Find full textLtd, ICON Group. IBP, INC.: International Competitive Benchmarks and Financial Gap Analysis (Financial Performance Series). 2nd ed. Icon Group International, 2000.
Find full textLtd, ICON Group. IMP, INC.: Labor Productivity Benchmarks and International Gap Analysis (Labor Productivity Series). 2nd ed. Icon Group International, 2000.
Find full textLtd, ICON Group. IBP, INC.: Labor Productivity Benchmarks and International Gap Analysis (Labor Productivity Series). 2nd ed. Icon Group International, 2000.
Find full textLtd, ICON Group. PIZZA INN, INC.: International Competitive Benchmarks and Financial Gap Analysis (Financial Performance Series). 2nd ed. Icon Group International, 2000.
Find full textLtd, ICON Group, and ICON Group International Inc. PIZZA INN, INC.: Labor Productivity Benchmarks and International Gap Analysis (Labor Productivity Series). 2nd ed. Icon Group International, 2000.
Find full textBook chapters on the topic "InP, GaP"
da Silva, E. C. F. "InP: energy gap." In Landolt-Börnstein - Group III Condensed Matter, 232. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23415-6_140.
Full textda Silva, E. C. F. "InP, wurtzite modification: energy gap." In Landolt-Börnstein - Group III Condensed Matter, 231. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23415-6_139.
Full textDöscher, Henning. "GaP(100) and InP(100) Surfaces." In GaP Heteroepitaxy on Si(100), 67–90. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02880-4_4.
Full textHoheisel, B., J. Stuke, M. Stutzmann, and W. Beyer. "Electron Spin Resonance of Amorphous GaAs, GaP, and InP." In Proceedings of the 17th International Conference on the Physics of Semiconductors, 877–80. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4615-7682-2_195.
Full textButler, N., J. Jouglar, B. Salce, L. J. Challis, A. Ramdane, and P. L. Vuillermoz. "Phonon Scattering by Cr Ions in GaP and InP." In Phonon Scattering in Condensed Matter V, 123–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82912-3_36.
Full textMićić, O. I., J. R. Sprague, C. J. Curtis, K. M. Jones, and A. J. Nozik. "Synthesis and Characterization of GaP, InP, and GaInP2 Quantum Dots." In Fine Particles Science and Technology, 317–30. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0259-6_24.
Full textTorres, Vitor J. B., J. Coutinho, and Patrick R. Briddon. "Local Vibrational Modes of Zn-H-P in GaP, InP and ZnTe." In Defect and Diffusion Forum, 31–36. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-37-x.31.
Full textWollschläger, J. "Structure of domain boundaries: other III–V compounds: GaP, GaSb, InAs, InP, InSb." In Physics of Solid Surfaces, 222–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_42.
Full textLüdge, K., P. Vogt, O. Pulci, N. Esser, F. Bechstedt, and W. Richter. "Atomic Structure of GaP(00l) and InP(00l) Reconstructions: Scanning Tunneling Microscopy and ab initio Theory." In Springer Proceedings in Physics, 445–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_207.
Full textYu, S., J. H. Chu, J. I. Lee, D. Kim, Y. Yee, D. S. Kim, and J. H. Lee. "Femtosecond Degenerate Four-Wave Mixing in a 350 μm Undoped InP at Far Below Band Gap." In Springer Series in Chemical Physics, 418–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80314-7_183.
Full textConference papers on the topic "InP, GaP"
Lin, Chao-Kun, David P. Bour, Jintian Zhu, William H. Perez, Michael H. Leary, Ashish Tandon, Scott W. Corzine, and Michael R. T. Tan. "Long-wavelength VCSELs with InP/air-gap DBRs." In Integrated Optoelectronic Devices 2004, edited by Chun Lei, Kent D. Choquette, and Sean P. Kilcoyne. SPIE, 2004. http://dx.doi.org/10.1117/12.538327.
Full textKvitsiani, O., D. Laperashvil, T. Laperashvili, and V. Mikelashvili. "Solar cells based on InP/GaP/Si structure." In SPIE/COS Photonics Asia, edited by Xuping Zhang, Baojun Li, and Changyuan Yu. SPIE, 2016. http://dx.doi.org/10.1117/12.2248086.
Full textYoshida, Toshiyuki, and Tamotsu Hashizume. "Air-gap capacitance-Voltage analysis of p-InP surfaces." In 2010 22nd International Conference on Indium Phosphide and Related Materials (IPRM). IEEE, 2010. http://dx.doi.org/10.1109/iciprm.2010.5516369.
Full textLIU, ZHENGANG, YUJUN BAI, MEIYAN YU, QILONG WANG, SHOUYI DONG, and DELIANG CUI. "DIRECT SYNTHESIS OF SELF-ASSEMBLED InP AND GaP NANOCRYSTALS." In Proceedings of the Seventh International Symposium on Hydrothermal Reactions. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705228_0041.
Full textKusserow, T., N. Dharmarasu, and H. Hillmer. "Tailored Stress in InP/GaInAs Layers for InP/Air-Gap DBR-Filters with Photonic Crystals." In IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference, 2006. IEEE, 2006. http://dx.doi.org/10.1109/omems.2006.1708278.
Full textHuang, Yongqing, Xiaomin Ren, Hui Huang, Qi Wang, and Xingyan Wang. "High-performance InP-based resonant-cavity-enhanced photodetector based on InP/air-gap Bragg reflectors." In Asia-Pacific Optical Communications, edited by Chung-En Zah, Yi Luo, and Shinji Tsuji. SPIE, 2005. http://dx.doi.org/10.1117/12.580157.
Full textIshikawa, Masato, Takashi Nakayama, Jisoon Ihm, and Hyeonsik Cheong. "Nitrogen-induced optical absorption spectra of InP and GaP: direct vs. indirect band-gap systems." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666264.
Full textSuwito, Galih R., Hassan R. Mojaver, and Nathaniel J. Quitoriano. "Air Gap/InP Distributed Bragg Reflectors for Mid-Infrared Applications." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/noma.2020.nom4g.4.
Full textRecio, Miguel, Ana Ruiz, Juan Melendez, Jose M. Rodriguez, Gaspar Armelles, Maria L. Dotor, and Fernando Briones. "Novel GaP/InP strained heterostructures: growth, characterization,and technological perspectives." In Physical Concepts of Materials for Novel Optoelectronic Device Applications, edited by Manijeh Razeghi. SPIE, 1991. http://dx.doi.org/10.1117/12.24413.
Full textMasselink, W. T., and F. Hatami. "Light-emitting diodes based on InP quantum dots in GaP." In 2004 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2004. http://dx.doi.org/10.7567/ssdm.2004.g-10-1.
Full textReports on the topic "InP, GaP"
Shul, R. J., A. G. Baca, D. J. Rieger, H. Hou, S. J. Pearton, and F. Ren. ECR etching of GaP, GaAs, InP, and InGaAs in Cl{sub 2}/Ar, Cl{sub 2}/N{sub 2}, BCl{sub 3}/Ar, and BCl{sub 3}/N{sub 2}. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/244631.
Full textGlewwe, Paul, Zoe James, Jongwook Lee, Caine Rolleston, and Khoa Vu. What Explains Vietnam’s Exceptional Performance in Education Relative to Other Countries? Analysis of the Young Lives Data from Ethiopia, Peru, India and Vietnam. Research on Improving Systems of Education (RISE), September 2021. http://dx.doi.org/10.35489/bsg-rise-wp_2021/078.
Full textBustelo, Monserrat, Suzanne Duryea, Claudia Piras, Breno Sampaio, Giuseppe Trevisan, and Mariana Viollaz. The Gender Pay Gap in Brazil: It Starts with College Students' Choice of Major. Inter-American Development Bank, January 2021. http://dx.doi.org/10.18235/0003011.
Full textGandini, Camilla, Andrea Monje Silva, and Pablo Guerrero. Gender and Transport in Haiti: Gender Diagnostic and Gender Action Plan. Edited by Amanda Beaujon Marin. Inter-American Development Bank, February 2021. http://dx.doi.org/10.18235/0003069.
Full textBloom, David E., Victoria Y. Fan, Vadim Kufenko, Osondu Ogbuoji, Klaus Prettner, and Gavin Yamey. Going beyond GDP with a parsimonious indicator: inequality-adjusted healthy lifetime income. Verlag der Österreichischen Akademie der Wissenschaften, March 2021. http://dx.doi.org/10.1553/populationyearbook2021.res1.1.
Full textNepomuceno, Marília R., Vanessa di Lego, and Cássio M. Turra. Gender disparities in health at older ages and their consequences for well-being in Latin America and the Caribbean. Verlag der Österreichischen Akademie der Wissenschaften, June 2021. http://dx.doi.org/10.1553/populationyearbook2021.res2.1.
Full textBertoni, Eleonora, Gregory Elacqua, Luana Marotta, Matias Martínez, Humberto Santos, and Sammara Soares. Is School Funding Unequal in Latin America?: A Cross-country Analysis. Inter-American Development Bank, November 2020. http://dx.doi.org/10.18235/0002854.
Full textPang, Xiaoying, and Lawrence J. Rybarcyk. RF Gap Transformation in PARMILA. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1104902.
Full textSchoolderman, Ruurd, Bulent Bicer, and Adriana M. Valencia. Bridging Skills Gap in the Caribbean. Inter-American Development Bank, December 2017. http://dx.doi.org/10.18235/0000943.
Full textBonet-Morón, Jaime Alfredo, and Jhorland Ayala-García. The territorial fiscal gap in Colombia. Bogotá, Colombia: Banco de la República, March 2017. http://dx.doi.org/10.32468/dtseru.251.
Full text