To see the other types of publications on this topic, follow the link: InP, GaP.

Journal articles on the topic 'InP, GaP'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'InP, GaP.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sun, Yanning, Aristo Yulius, Guohua Li, and Jerry M. Woodall. "Drift dominated InP/GaP photodiodes." Solid-State Electronics 48, no. 10-11 (October 2004): 1975–79. http://dx.doi.org/10.1016/j.sse.2004.05.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ishida, K., T. Nomura, H. Tokunaga, H. Ohtani, and T. Nishizawa. "Miscibility gaps in the GaPInP, GaPGaSb, InPInSn and InAsInSb systems." Journal of the Less Common Metals 155, no. 2 (November 1989): 193–206. http://dx.doi.org/10.1016/0022-5088(89)90228-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shen, Guozhen, Yoshio Bando, and Dmitri Golberg. "InP-GaP Bi-Coaxial Nanowires and Amorphous GaP Nanotubes." Journal of Physical Chemistry C 111, no. 9 (February 9, 2007): 3665–68. http://dx.doi.org/10.1021/jp067691r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Saravanan, R., S. Israel, N. Srinivasan, and S. K. Mohanlal. "Charge transfer in GaP and InP." physica status solidi (b) 194, no. 2 (April 1, 1996): 435–41. http://dx.doi.org/10.1002/pssb.2221940202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wan, J. Z., J. G. Simmons, and D. A. Thompson. "Band gap modification in Ne+-ion implanted In1−xGaxAs/InP and InAsyP1−y/InP quantum well structures." Journal of Applied Physics 81, no. 2 (January 15, 1997): 765–70. http://dx.doi.org/10.1063/1.364440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Эполетов, В. С., А. Е. Маричев, Б. В. Пушный, and Р. А. Салий. "Электрические контакты к структурам на основе InP с подконтактным слоем к p-InP, легированным Zn." Журнал технической физики 46, no. 23 (2020): 13. http://dx.doi.org/10.21883/pjtf.2020.23.50340.18467.

Full text
Abstract:
The paper presents the results of using sub-contact layers with a band gap from 0.35 to 0.8 eV to obtain low-resistance electrical contacts to p-InP. An experimental dependence of the contact resistance on the band gap of the sub-contact material In(x)Ga(1-x)As is obtained.
APA, Harvard, Vancouver, ISO, and other styles
7

Kurimoto, Takeshi, Noriaki Hamada, and Atsushi Oshiyama. "Electronic structure and band gap of (GaP)1(InP)1(111) superlattice." Superlattices and Microstructures 5, no. 2 (January 1989): 171–73. http://dx.doi.org/10.1016/0749-6036(89)90277-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hunter, P. "Analysis extra: Changing platforms span credibility gap." Information Professional 4, no. 2 (April 1, 2007): 38. http://dx.doi.org/10.1049/inp:20070216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Masselink, W. T., F. Hatami, G. Mussler, and L. Schrottke. "InP quantum dots in GaP: Growth and luminescence." Materials Science in Semiconductor Processing 4, no. 6 (December 2001): 497–501. http://dx.doi.org/10.1016/s1369-8001(02)00008-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Zhengrong, and Dominick J. Casadonte. "Facile sonochemical synthesis of nanosized InP and GaP." Ultrasonics Sonochemistry 14, no. 6 (September 2007): 757–60. http://dx.doi.org/10.1016/j.ultsonch.2006.12.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Oizumi, Hiroaki, Junichi Iizuka, Hiroyuki Oyanagi, Takashi Fujikawa, Toshiaki Ohta, and Seiji Usami. "K-Edge XANES of GaP, InP and GaSb." Japanese Journal of Applied Physics 24, Part 1, No. 11 (November 20, 1985): 1475–78. http://dx.doi.org/10.1143/jjap.24.1475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Nabetani, Y., K. Sawada, Y. Furukawa, A. Wakahara, S. Noda, and A. Sasaki. "Self-assembled InP islands grown on GaP substrate." Journal of Crystal Growth 193, no. 4 (October 1998): 470–77. http://dx.doi.org/10.1016/s0022-0248(98)00545-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tiginyanu, I. M., S. Langa, L. Sirbu, E. Monaico, M. A. Stevens-Kalceff, and H. Föll. "Cathodoluminescence microanalysis of porous GaP and InP structures." European Physical Journal Applied Physics 27, no. 1-3 (July 2004): 81–84. http://dx.doi.org/10.1051/epjap:2004043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ren, Xiaomin, Hui Huang, Yingzhe Chong, and Yongqing Huang. "1.57-?m InP-based resonant-cavity-enhanced photodetector with InP/air-gap Bragg reflectors." Microwave and Optical Technology Letters 42, no. 2 (2004): 133–35. http://dx.doi.org/10.1002/mop.20230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Yamaguchi, Katsunori, Yoshiyuki Chiba, Masahito Yoshizawa, and Kazuo Kameda. "Low Temperature Specific Heat of GaP, InP, GaAs and InAs Compounds." Journal of the Japan Institute of Metals 60, no. 12 (1996): 1181–86. http://dx.doi.org/10.2320/jinstmet1952.60.12_1181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zardas, G. E. "Persistent photoconductivity and energy gap of GaAs and InP." Nanotechnology Perceptions 4, no. 1 (March 30, 2008): 35–42. http://dx.doi.org/10.4024/n26za07.ntp.04.01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wesch, W., A. Kamarou, E. Wendler, and S. Klaumünzer. "593MeV Au irradiation of InP, GaP, GaAs and AlAs." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 242, no. 1-2 (January 2006): 363–66. http://dx.doi.org/10.1016/j.nimb.2005.08.095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Schubert, M., H. Schmidt, J. Šik, T. Hofmann, V. Gottschalch, W. Grill, G. Böhm, and G. Wagner. "Interband transitions in [001]-(GaP)1(InP)m superlattices." Materials Science and Engineering: B 88, no. 2-3 (January 2002): 125–28. http://dx.doi.org/10.1016/s0921-5107(01)00865-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Abdelouhab, R. M., R. Braunstein, M. A. Rao, and H. Kroemer. "Raman scattering in (GaP)1/(InP)1strained-layer superlattices." Physical Review B 39, no. 9 (March 15, 1989): 5857–60. http://dx.doi.org/10.1103/physrevb.39.5857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Shin, Y. H., B. K. Choi, Yongmin Kim, J. D. Song, D. Nakamura, Y. H. Matsuda, and S. Takeyama. "Anomalous diamagnetic shifts in InP-GaP lateral quantum-wires." Optics Express 23, no. 22 (October 21, 2015): 28349. http://dx.doi.org/10.1364/oe.23.028349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Mirbt, S., N. Moll, K. Cho, and J. D. Joannopoulos. "Cation-rich (100) surface reconstructions of InP and GaP." Physical Review B 60, no. 19 (November 15, 1999): 13283–86. http://dx.doi.org/10.1103/physrevb.60.13283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Luo, J. S., J. F. Geisz, J. M. Olson, and Meng-Chyi Su. "Surface-related optical anisotropy of GaInP, InP, and GaP." Journal of Crystal Growth 174, no. 1-4 (April 1997): 558–63. http://dx.doi.org/10.1016/s0022-0248(97)00041-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Meléndez, Juan, Gaspar Armelles, Angel Mazuelas, Ana Ruiz, Gerard Bacquet, and Fredg Hassen. "Band Offset Transitivity in the AlGaAs/GaP/InP System." Japanese Journal of Applied Physics 33, Part 1, No. 9A (September 15, 1994): 4855–58. http://dx.doi.org/10.1143/jjap.33.4855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Pulci, O., K. Lüdge, P. Vogt, N. Esser, W. G. Schmidt, W. Richter, and F. Bechstedt. "First-principles study of InP and GaP(001) surfaces." Computational Materials Science 22, no. 1-2 (November 2001): 32–37. http://dx.doi.org/10.1016/s0927-0256(01)00161-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Dutta, R., M. A. Shahid, and P. J. Sakach. "Graded band‐gap ohmic contacts ton‐ andp‐type InP." Journal of Applied Physics 69, no. 7 (April 1991): 3968–74. http://dx.doi.org/10.1063/1.348458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Djurišić, Aleksandra B., Aleksandar D. Rakić, Paul C. K. Kwok, E. Herbert Li, and Martin L. Majewski. "Modeling the optical constants of GaP, InP, and InAs." Journal of Applied Physics 85, no. 7 (April 1999): 3638–42. http://dx.doi.org/10.1063/1.369727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hatami, F., W. T. Masselink, and L. Schrottke. "Radiative recombination from InP quantum dots on (100) GaP." Applied Physics Letters 78, no. 15 (April 9, 2001): 2163–65. http://dx.doi.org/10.1063/1.1361277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Millot, Marius, Sylvie George, Fariba Hatami, William T. Masselink, Jean Leotin, Jesus González, and Jean-Marc Broto. "Photoluminescence of InP/GaP quantum dots under extreme conditions." High Pressure Research 29, no. 4 (December 2009): 488–94. http://dx.doi.org/10.1080/08957950903399675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Alonso, M. I., P. Castrillo, G. Armelles, A. Ruiz, M. Recio, and F. Briones. "Raman-scattering study of GaP/InP strained-layer superlattices." Physical Review B 45, no. 16 (April 15, 1992): 9054–58. http://dx.doi.org/10.1103/physrevb.45.9054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wendler, E., W. Wesch, and G. Götz. "Defect production in ion implanted GaAs, GaP and InP." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 55, no. 1-4 (April 1991): 789–93. http://dx.doi.org/10.1016/0168-583x(91)96281-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Fayyadh, Hamid A. "Stability, Structural and Electronic Properties of Indium Phosphide Wurtzite-Diamantane Molecules and Nanocrystals: A Density Functional Theory Study." Journal of Nano Research 69 (August 30, 2021): 1–9. http://dx.doi.org/10.4028/www.scientific.net/jnanor.69.1.

Full text
Abstract:
The density functional theory is applied for examining the electronic structure and spectroscopic properties for InP wurtzite molecules and nanocrystals. In this paper we present calculations of the energy gap, bond lengths, IR and Raman spectrum, reduced mass and force constant. The results of the presented work showing that the InP’s energy gap was fluctuated about to experimental bulk energy gap (1.49 eV). Results of spectroscopic properties including IR and Raman spectrum, reduced mass and force constant as a function of frequency were in accordance with the provided experimental results. In addition, the study of the Gibbs free energy proved the stability phase of InP wurtzoids against transition to InP diamondoids structure.
APA, Harvard, Vancouver, ISO, and other styles
32

KARLSSON, LISA S., MAGNUS W. LARSSON, JAN-OLLE MALM, L. REINE WALLENBERG, KIMBERLY A. DICK, KNUT DEPPERT, WERNER SEIFERT, and LARS SAMUELSON. "CRYSTAL STRUCTURE OF BRANCHED EPITAXIAL III–V NANOTREES." Nano 01, no. 02 (September 2006): 139–51. http://dx.doi.org/10.1142/s1793292006000203.

Full text
Abstract:
In this review we discuss the morphology and crystal structure of branched epitaxial III–V semiconductor structures, so called nanotrees, based on our own work with GaP , InAs and GaP/InP . These structures are formed by epitaxial growth in a step-wise procedure where each level can be individually controlled in terms of diameter, length and composition. Poly-typism is commonly observed for III–Vs with zinc blende, wurtzite or combinations thereof as the resulting crystal structure. Here we review GaP as an example of zinc blende and InAs of wurtzite type of growth in terms of nanotrees with two to three levels of growth. Included are also previously unpublished results on the growth of GaP/InP nanotrees to demonstrate effects of heteroepitaxial growth with substantial mismatch. For these structures a topotaxial growth behavior was observed with InP wires crawling along or spiraling around the GaP nanowires acting as a free-standing substrates.
APA, Harvard, Vancouver, ISO, and other styles
33

Ishizaka, Fumiya, Yoshihiro Hiraya, Katsuhiro Tomioka, and Takashi Fukui. "Growth of wurtzite GaP in InP/GaP core–shell nanowires by selective-area MOVPE." Journal of Crystal Growth 411 (February 2015): 71–75. http://dx.doi.org/10.1016/j.jcrysgro.2014.10.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Рубан, А. С., and В. В. Данилов. "Фотодинамика переноса возбуждения носителями заряда в гибридной наносистеме InP/InAsP/InP." Оптика и спектроскопия 129, no. 7 (2021): 948. http://dx.doi.org/10.21883/os.2021.07.51087.2101-21.

Full text
Abstract:
The results of processing the luminescence attenuation kinetics of an InP/InAsP/InP hybrid semiconductor nanostructure with deposited colloidal layers of CdSe/ZnS quantum dots (QD) under excitation at wavelengths of 532 and 633 nm and temperatures of 80 and 300 K. Such a nanostructure is characterized by a significant increase in the duration and intensity of the luminescence of the INASP nanostructure. The mechanism of increasing the luminescence duration is presumably associated with the interaction of the QD CdSe/ZnS-TORO colloid with the InP surface, which leads to the formation of new hybrid states in the band gap that are energetically close to the radiating state and are able to capture electrons, which in turn is compensated by the increasing role of the electron reverse transfer process, which leads to an increase in the duration of radiative recombination.
APA, Harvard, Vancouver, ISO, and other styles
35

MALOZOVSKY, Y., L. FRANKLIN, E. C. EKUMA, G. L. ZHAO, and D. BAGAYOKO. "AB-INITIO CALCULATIONS OF ELECTRONIC PROPERTIES OF InP AND GaP." International Journal of Modern Physics B 27, no. 15 (June 4, 2013): 1362013. http://dx.doi.org/10.1142/s0217979213620130.

Full text
Abstract:
We present results from ab-initio, self-consistent local density approximation (LDA) calculations of electronic and related properties of zinc blende indium phosphide (InP) and gallium phosphide (GaP) . We employed a LDA potential and implemented the linear combination of atomic orbitals (LCAO) formalism. This implementation followed the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW–EF). This method searches for the optimal basis set that yields the minima of the occupied energies. This search entails increases of the size of the basis set and the related modifications of angular symmetry and of radial orbitals. Our calculated, direct band gap of 1.398 eV (1.40 eV), at the Γ point, is in excellent agreement with experimental values, for InP , and our preliminary result for the indirect gap of GaP is 2.135 eV, from the Γ to X high symmetry points. We have also calculated electron and hole effective masses for both InP and GaP . These calculated properties also agree with experimental findings. We conclude that the BZW–EF method could be employed in calculations of electronic properties of high-Tc superconducting materials to explain their complex properties.
APA, Harvard, Vancouver, ISO, and other styles
36

Yu, W., J. L. Sullivan, S. O. Saied, and G. A. C. Jones. "Ion bombardment induced compositional changes in GaP and InP surfaces." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 135, no. 1-4 (February 1998): 250–55. http://dx.doi.org/10.1016/s0168-583x(97)00599-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Micic, O. I., J. R. Sprague, C. J. Curtis, K. M. Jones, J. L. Machol, A. J. Nozik, H. Giessen, B. Fluegel, G. Mohs, and N. Peyghambarian. "Synthesis and Characterization of InP, GaP, and GaInP2 Quantum Dots." Journal of Physical Chemistry 99, no. 19 (May 1995): 7754–59. http://dx.doi.org/10.1021/j100019a063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hatami, F., W. T. Masselink, V. Lordi, and J. S. Harris. "Green emission from InP-GaP quantum-dot light-emitting diodes." IEEE Photonics Technology Letters 18, no. 7 (April 2006): 895–97. http://dx.doi.org/10.1109/lpt.2006.872288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

ASAHI, Hajime, Seong-Jin KIM, Joo-Hyong NOH, Mayuko FUDETA, Kumiko ASAMI, and Shun-ichi GONDA. "Quantum Structures Self-Formed in GaP/InP Short Period Superlattices." Hyomen Kagaku 19, no. 9 (1998): 565–72. http://dx.doi.org/10.1380/jsssj.19.565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Logan, L. R., and J. L. Egley. "Dielectric response inp-type silicon: Screening and band-gap narrowing." Physical Review B 47, no. 19 (May 15, 1993): 12532–39. http://dx.doi.org/10.1103/physrevb.47.12532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Esser, N., W. G. Schmidt, J. Bernholc, A. M. Frisch, P. Vogt, M. Zorn, M. Pristovsek, et al. "GaP(001) and InP(001): Reflectance anisotropy and surface geometry." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 17, no. 4 (1999): 1691. http://dx.doi.org/10.1116/1.590810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hatami, Fariba, W. Ted Masselink, and James S. Harris. "Colour-tunable light-emitting diodes based on InP/GaP nanostructures." Nanotechnology 17, no. 15 (June 27, 2006): 3703–6. http://dx.doi.org/10.1088/0957-4484/17/15/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Franceschetti, Alberto, and Alex Zunger. "Pressure dependence of optical transitions in ordered GaP/InP superlattices." Applied Physics Letters 65, no. 23 (December 5, 1994): 2990–92. http://dx.doi.org/10.1063/1.112486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Tizei, L. H. G., L. F. Zagonel, M. Tencé, O. Stéphan, M. Kociak, T. Chiaramonte, D. Ugarte, and M. A. Cotta. "Spatial modulation of above-the-gap cathodoluminescence in InP nanowires." Journal of Physics: Condensed Matter 25, no. 50 (November 25, 2013): 505303. http://dx.doi.org/10.1088/0953-8984/25/50/505303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hatami, F., V. Lordi, J. S. Harris, H. Kostial, and W. T. Masselink. "Red light-emitting diodes based on InP∕GaP quantum dots." Journal of Applied Physics 97, no. 9 (May 2005): 096106. http://dx.doi.org/10.1063/1.1884752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Gorger, A., and J. M. Spaeth. "Magneto-optical investigation of iron in InP, GaAs and GaP." Semiconductor Science and Technology 6, no. 8 (August 1, 1991): 800–806. http://dx.doi.org/10.1088/0268-1242/6/8/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Dudzik, E., R. Whittle, C. Müller, I. T. McGovern, C. Nowak, A. Märkl, A. Hempelmann, D. R. T. Zahn, A. Cafolla, and W. Braun. "The adsorption of H2S on InP (110) and GaP (110)." Surface Science 307-309 (April 1994): 223–27. http://dx.doi.org/10.1016/0039-6028(94)90398-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kagaya, H. Matsuo, and T. Soma. "Mode Grüneisen parameters and thermal expansion of GaP and InP." Solid State Communications 58, no. 7 (May 1986): 479–82. http://dx.doi.org/10.1016/0038-1098(86)90037-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Shin, Y. H., Yongmin Kim, and J. D. Song. "Optically detected kinetic carrier transfer in InP-GaP lateral nanowires." Journal of Luminescence 202 (October 2018): 107–10. http://dx.doi.org/10.1016/j.jlumin.2018.05.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Böhrer, J., A. Krost, and D. B. Bimberg. "Composition dependence of band gap and type of lineup in In1−x−yGaxAlyAs/InP heterostructures." Applied Physics Letters 63, no. 14 (October 4, 1993): 1918–20. http://dx.doi.org/10.1063/1.110648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography