Academic literature on the topic 'InP nanowire'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'InP nanowire.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "InP nanowire"
SALIMATH, AKSHAYKUMAR, and BAHNIMAN GHOSH. "SPIN RELAXATION IN InP AND STRAINED InP NANOWIRES." SPIN 04, no. 03 (September 2014): 1450003. http://dx.doi.org/10.1142/s2010324714500039.
Full textZhang, Guoqiang, Masato Takiguchi, Kouta Tateno, Takehiko Tawara, Masaya Notomi, and Hideki Gotoh. "Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature." Science Advances 5, no. 2 (February 2019): eaat8896. http://dx.doi.org/10.1126/sciadv.aat8896.
Full textMiao, Guo Qing, and Zhi Wei Zhang. "Effect of Substrate Orientation and PH3 Thermal Annealing Treatment on Catalyst-Free InP Nanowires." Advanced Materials Research 716 (July 2013): 84–88. http://dx.doi.org/10.4028/www.scientific.net/amr.716.84.
Full textRigutti, Lorenzo, Andres De Luna Bugallo, Maria Tchernycheva, Gwenole Jacopin, François H. Julien, George Cirlin, Gilles Patriarche, Damien Lucot, Laurent Travers, and Jean-Christophe Harmand. "Si Incorporation in InP Nanowires Grown by Au-Assisted Molecular Beam Epitaxy." Journal of Nanomaterials 2009 (2009): 1–7. http://dx.doi.org/10.1155/2009/435451.
Full textGreenberg, Ya’akov, Alexander Kelrich, Shimon Cohen, Sohini Kar-Narayan, Dan Ritter, and Yonatan Calahorra. "Strain-Mediated Bending of InP Nanowires through the Growth of an Asymmetric InAs Shell." Nanomaterials 9, no. 9 (September 16, 2019): 1327. http://dx.doi.org/10.3390/nano9091327.
Full textРезник, Р. Р., Г. Э. Цырлин, И. В. Штром, А. И. Хребтов, И. П. Сошников, Н. В. Крыжановская, Э. И. Моисеев, and А. Е. Жуков. "Когерентный рост нитевидных нанокристаллов InP/InAsP/InP на поверхности Si(111) при молекулярно-пучковой эпитаксии." Письма в журнал технической физики 44, no. 3 (2018): 55. http://dx.doi.org/10.21883/pjtf.2018.03.45579.16991.
Full textJafari Jam, Reza, Axel R. Persson, Enrique Barrigón, Magnus Heurlin, Irene Geijselaers, Víctor J. Gómez, Olof Hultin, Lars Samuelson, Magnus T. Borgström, and Håkan Pettersson. "Template-assisted vapour–liquid–solid growth of InP nanowires on (001) InP and Si substrates." Nanoscale 12, no. 2 (2020): 888–94. http://dx.doi.org/10.1039/c9nr08025b.
Full textMolina, Sergio I., María Varela, Teresa Ben, David L. Sales, Joaquín Pizarro, Pedro L. Galindo, David Fuster, Yolanda González, Luisa González, and Stephen J. Pennycook. "A Method to Determine the Strain and Nucleation Sites of Stacked Nano-Objects." Journal of Nanoscience and Nanotechnology 8, no. 7 (July 1, 2008): 3422–26. http://dx.doi.org/10.1166/jnn.2008.123.
Full textHiruma, K., K. Tomioka, P. Mohan, L. Yang, J. Noborisaka, B. Hua, A. Hayashida, et al. "Fabrication of Axial and Radial Heterostructures for Semiconductor Nanowires by Using Selective-Area Metal-Organic Vapor-Phase Epitaxy." Journal of Nanotechnology 2012 (2012): 1–29. http://dx.doi.org/10.1155/2012/169284.
Full textGAO, Q., H. J. JOYCE, S. PAIMAN, J. H. KANG, H. H. TAN, Y. KIM, L. M. SMITH, et al. "III-V COMPOUND SEMICONDUCTOR NANOWIRES FOR OPTOELECTRONIC DEVICE APPLICATIONS." International Journal of High Speed Electronics and Systems 20, no. 01 (March 2011): 131–41. http://dx.doi.org/10.1142/s0129156411006465.
Full textDissertations / Theses on the topic "InP nanowire"
Saj, Damian, and Izabela Saj. "Nanowire-based InP solar cell materials." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-19455.
Full textAnufriev, Roman. "Optical properties of InAs/InP nanowire heterostructures." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0133/document.
Full textThis thesis is focused upon the experimental investigation of optical properties of InAs/InP NW heterostructures by means of photoluminescence (PL) spectroscopy. First, it was demonstrated that the host-substrate may have significant impacts on the optical properties of pure InP NWs, as due to the strain, created by the difference in the LTECs of the NWs and the host-substrate, as due to some other surface effects. Next, the optical properties of such nanowire heterostructures as quantum rod (QRod) and radial quantum well (QWell) NWs were investigated. The features of obtained spectra were explained using theoretical simulation of similar NW heterostructures. The polarization properties of single InP NWs, InAs/InP QWell-NWs, InAs/InP QRod-NWs and ensemble of the InAs well ordered NWs were studied at different temperatures. Further, we report on the evidences of the strain-induced piezoelectric field in WZ InAs/InP QRod-NWs. Finally, PL QE of NW heterostructures and their planar analogues are measured by means of a PL setup coupled to an integrating sphere. In general, the obtained knowledge of the optical and mechanical properties of pure InP NWs and InAs/InP NW heterostructures will improve understanding of the electrical and mechanical processes taking place in semiconductor NW heterostructures and will serve for the fabrication of future nanodevice applications
Hajji, Maryam. "A comparative study of Nanowire-based InP and Planar ITO/InP Photodetectors." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-15589.
Full textMALEKRAH, MEHDI. "Electrical and Optical Charactristics of InP Nanowire Photodetectors." Thesis, Halmstad University, MPE-lab, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-4835.
Full textIn this project Fourier Transform Infrared Spectroscopy is used to investigate a new kind of photodiode that is based on nanowires. The photo current and I-V curves for different temperatures, different applied biases, in darkness and illumination condition have been studied. The experiment was conducted in the temperature range from 78 K (-195ºC) to 300 K (27ºC). These photo diodes are designed to work on NIR wavelengths. The results show some excellent properties, such as high break down voltage, and that is an important advantage for photo detectors, low and constant reverse saturation current (Is). The results show some defects, most of them come from fabrication. The design of the sample is also discussed.
Ngo, Tuan Nghia, and Irina Zubritskaya. "Electrical and Optical Characterization of InP Nanowire Ensemble Photodetectors." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-17457.
Full textDawei, Jiang. "Electrical and optical characterization of InP nanowire-based photodetectors." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-25733.
Full textAmin, Mohammed, and Md Obaidul Alam. "Electrical and optical characteristics of InP interband nanowire infrared photodetectors." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-6219.
Full textZhao, Guiping. "Fabrication and characterization of nanowire arrays on InP(100) surfaces." Thesis, University of Newcastle Upon Tyne, 2007. http://hdl.handle.net/10443/964.
Full textSingaravelu, Praveen Kumar, and Tawhidul Alam Mohammad. "Electrical and Optical Characterization of InAsP/InP Nanowire-Based Avalanche Photodetectors." Thesis, Högskolan i Halmstad, Fotonik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-30144.
Full textRaval, Divya. "I-V and Optical Characterization of InP/InAsP Quantum Disc-in-Nanowire Infrared Photodetectors." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-40162.
Full textBooks on the topic "InP nanowire"
Deshpande, U. P., T. Shripathi, and A. V. Narlikar. Iron-oxide nanostructures with emphasis on nanowires. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.23.
Full textKirczenow, George. Molecular nanowires and their properties as electrical conductors. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.4.
Full textKoblischka, M. R. Growth and Characterization of HTSc Nanowires and Nanoribbons. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.11.
Full textShiraishi, K., and T. Nakayama. Role of computational sciences in Si nanotechnologies and devices. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.1.
Full textGrove-Rasmussen, K. Hybrid Superconducting Devices Based on Quantum Wires. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.16.
Full textAnsermet, J. Ph. Spintronics with metallic nanowires. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.3.
Full textPirota, Kleber Roberto, Angela Knobel, Manuel Hernandez-Velez, Kornelius Nielsch, and Manuel Vázquez. Magnetic nanowires: Fabrication and characterization. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.22.
Full textFernandez-Serra, M. V., and X. Blase. Electronic and transport properties of doped silicon nanowires. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.2.
Full textWeides, M. P. Barriers in Josephson Junctions: An Overview. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.15.
Full textLi, Y. Y., and J. F. Jia. Topological Superconductors and Majorana Fermions. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.6.
Full textBook chapters on the topic "InP nanowire"
Zhang, Guoqiang, Kouta Tateno, Takehiko Tawara, and Hideki Gotoh. "InP/InAs Quantum Heterostructure Nanowires Toward Telecom-Band Nanowire Lasers." In Fundamental Properties of Semiconductor Nanowires, 433–54. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9050-4_10.
Full textGodfrey, James R., Golnaz Azodi, James A. H. Stotz, and James M. Fraser. "InAsP Quantum Dots in InP Nanowire Waveguides as Sources of Quantum Light." In NATO Science for Peace and Security Series B: Physics and Biophysics, 369–70. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-024-1544-5_21.
Full textSikdar, Subhrajit, Basudev Nag Chowdhury, and Sanatan Chattopadhyay. "Designing InP-Nanowire Based Vertical Metal-Oxide-Semiconductor Capacitors for Wavelength Selective Visible Light Sensing." In Springer Proceedings in Physics, 957–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_145.
Full textColakerol Arslan, L., and K. E. Smith. "Electron Accumulation in InN Thin Films and Nanowires." In Low-Dimensional and Nanostructured Materials and Devices, 309–26. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25340-4_13.
Full textStoica, Toma, Eli Sutter, and Raffaella Calarco. "GaN and InN Nanowires: Growth and Optoelectronic Properties." In Engineering Materials, 73–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12070-1_4.
Full textLi, Guijun, and Hoi-Sing Kwok. "Silicon Nanowire Solar Cells." In Advances in Silicon Solar Cells, 269–98. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69703-1_10.
Full textBen Jamaa, M. Haykel. "Fabrication of Nanowire Crossbars." In Lecture Notes in Electrical Engineering, 33–73. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0650-7_2.
Full textMoşoarcă, Cristina, Radu Bănică, and Petrica Linul. "Nanospheres–Nanocubes–Nanowires." In New Frontiers in Nanochemistry, 327–37. Includes bibliographical references and indexes. | Contents: Volume 1. Structural nanochemistry – Volume 2. Topological nanochemistry – Volume 3. Sustainable nanochemistry.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9780429022944-29.
Full textNegri, Marco, Giovanni Attolini, Paola Lagonegro, and Matteo Bosi. "Silicon Carbide Nanowires." In New Frontiers in Nanochemistry, 385–98. Includes bibliographical references and indexes. | Contents: Volume 1. Structural nanochemistry – Volume 2. Topological nanochemistry – Volume 3. Sustainable nanochemistry.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9780429022944-34.
Full textSun, Xuhui, and Tsun-Kong Sham. "Group IV Nanowires." In Springer Series in Optical Sciences, 223–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44362-0_11.
Full textConference papers on the topic "InP nanowire"
Zhong, Z. Q., Z. Y. Li, L. Fu, Q. Gao, Z. Li, K. Peng, L. Li, et al. "InP single nanowire solar cells." In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/pv.2015.ptu3b.3.
Full textMathai, Sagi, Nobuhiko P. Kobayashi, Xuema Li, Joseph Straznicky, Shih-Yuan Wang, Michael R. T. Tan, Denny Houng, and R. Stanley Williams. "InP Nanowire Diodes on Quartz Substrates." In 2008 8th IEEE Conference on Nanotechnology (NANO). IEEE, 2008. http://dx.doi.org/10.1109/nano.2008.160.
Full textStorm, Kristian, Gustav Nylund, Magnus Borgström, Jesper Wallentin, Carina Fasth, Claes Thelander, Lars Samuelson, Jisoon Ihm, and Hyeonsik Cheong. "Dual-gate induced InP nanowire diode." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666362.
Full textYan, Xin, Junshuai Li, Fukuan Sun, Yao Wu, Bang Li, Xia Zhang, and Xiaomin Ren. "A Single InP Nanowire Room-Temperature Photodetector." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/acpc.2015.am2a.4.
Full textRamesh, V., Q. Gao, H. H. Tan, S. Paiman, Y. N. Guo, J. Zou, and C. Jagadish. "InP/InGaAs coreshell nanowire heterostructures: Growth and characterisation." In Devices (COMMAD). IEEE, 2010. http://dx.doi.org/10.1109/commad.2010.5699792.
Full textCui, Y., S. Plissard, J. Wang, T. T. T. Vu, E. Smalbrugge, E. J. Geluk, T. de Vries, et al. "InP nanowire array solar cell with cleaned sidewalls." In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE, 2013. http://dx.doi.org/10.1109/pvsc.2013.6745176.
Full textSarkar, Ataur, Anurag Chaudhry, V. J. Logeeswaran, Sungsoo Yi, and M. Saif Islam. "InP nanowire photodetectors heteroepitaxially grown between silicon electrodes." In Optics East 2007, edited by Nibir K. Dhar, Achyut Kumar Dutta, and M. Saif Islam. SPIE, 2007. http://dx.doi.org/10.1117/12.752513.
Full textJackson, H. E., S. Perera, M. A. Fickenscher, L. M. Smith, J. M. Yarrison-Rice, H. J. Joyce, Q. Gao, et al. "Optical properties of single InP and GaAs nanowire heterostructures." In LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2008). IEEE, 2008. http://dx.doi.org/10.1109/leos.2008.4688673.
Full textZeng, Xulu, Gaute Otnes, Magnus Heurlin, and Magnus T. Borgstrom. "Growth and optimization of GaInP/InP nanowire tunnel diode." In 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC). IEEE, 2017. http://dx.doi.org/10.1109/pvsc.2017.8366460.
Full textMaeda, S., K. Tomioka, S. Hara, and J. Motohisa. "Fabrication and Characterization of InP Nanowire Light Emitting Diodes." In 2011 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2011. http://dx.doi.org/10.7567/ssdm.2011.p-13-1.
Full textReports on the topic "InP nanowire"
Brueck, Steven R. Radiation Effects in III-V Nanowire Devices. Fort Belvoir, VA: Defense Technical Information Center, September 2016. http://dx.doi.org/10.21236/ad1018179.
Full textGoldman, Allen M. Tunneling and Transport in Nanowires. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1295659.
Full textGhita, Marius. Frequency Multiplication in Silicon Nanowires. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.3077.
Full textPotma, Eric O. Ultrafast electron transport across nano gaps in nanowire circuits. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1206544.
Full textLai, Ying-Cheng. STIR: Multistability and Chaos in a Driven Nanowire System. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada586665.
Full textMi, Zetian. 1.55 micro m In(Ga)N Nanowire Lasers on Silicon. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada587147.
Full textLeBlanc, Saniya A., and Kenneth E. Goodson. Electrothermal phenomena in zinc oxide nanowires and contacts. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1051735.
Full textWang, Zhong. Fundamental Piezotronic and Piezo-phototronic Effects in Nanowires. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1572284.
Full textNosho, B. Z., B. R. Bennett, L. J. Whitman, and M. Goldenberg. Spontaneous Growth of an InAs Nanowire Lattice in an InAs/GaSb Superlattice. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada447719.
Full textBarnes, Michael D. Directional Charge Separation in Isolated Organic Semiconductor Crystalline Nanowires. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1429404.
Full text