To see the other types of publications on this topic, follow the link: InP nanowire.

Books on the topic 'InP nanowire'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 books for your research on the topic 'InP nanowire.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Deshpande, U. P., T. Shripathi, and A. V. Narlikar. Iron-oxide nanostructures with emphasis on nanowires. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.23.

Full text
Abstract:
This article examines the properties of iron-oxide nanostructures, with particular emphasis on nanowires. It begins with an overview of iron-oxide nanostructures and nanowires, followed by a discussion of the synthesis of aligned ?-Fe2O3 nanowires and nanosheets by a simple thermal oxidation route. It then describes the preferential bending of [110] grown ?-Fe2O3 nanowires about the C-axis and quantitative estimation of nanowire alignment using X-ray diffraction and grazing incidence X-ray diffraction. It also considers the growth mechanism of ?-Fe2O3 nanowires and nanosheets, different nanowire morphologies, rotational slip in ?-Fe2O3 nanosheets, and the influence of local environment and substrate microstructure on nanowire growth.
APA, Harvard, Vancouver, ISO, and other styles
2

Kirczenow, George. Molecular nanowires and their properties as electrical conductors. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.4.

Full text
Abstract:
This article describes the properties of molecular nanowires as electrical conductors. It begins by defining a molecular nanowire and describing a specific example of a molecular nanowire, along with the concept of molecular nanowire self-assembly. It then considers how molecular nanowires are realized in the laboratory as well as the relationships between these methodologies, the systems that are produced and some experiments being performed on them. It also looks at the different kinds of molecules, electrodes and linkers out of which molecular nanowires are being or may be constructed; the Landauer approach to electrical conduction in molecular nanowires; the principles and limitations of ab-initio and semi-empirical modelling of molecular nanowires in the context of electrical conduction; and four specific experimental systems and the extent to which their observed behavior has been understood theoretically. The article concludes with a summary of key issues for the future development of the field.
APA, Harvard, Vancouver, ISO, and other styles
3

Koblischka, M. R. Growth and Characterization of HTSc Nanowires and Nanoribbons. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.11.

Full text
Abstract:
This article describes the fabrication of high-temperature superconducting nanowires and their characterization by magnetic and electric transport measurements. In the literature, nanowires of high-temperature superconductors (HTSc) are obtained by means of lithography, using thin film material as a base. However, there are two main problems with this approach: first, the substrate often influences the HTSc nanowire, and second, only electric transport measurements can be performed. This article explains how nanowires and nanobelts of high-temperature superconducting cuprates can be prepared by the template method and by electrospinning. It also considers the possibilities for employing substrate-free HTSc nanowires as building blocks to realize new, nanoporous bulk superconducting materials for a variety of applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Shiraishi, K., and T. Nakayama. Role of computational sciences in Si nanotechnologies and devices. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.1.

Full text
Abstract:
This article discusses the role of computational sciences in the fabrication of silicon nanotechnologies and devices, with particular emphasis on new scientific findings that offer great insight into such devices. It first considers how the present Si technology trend is stimulated by scientific knowledge, focusing on the potential of complimentary metaloxide semiconductor (CMOS) technology and the importance of understanding the atomisticprocess of Si thermal oxidation. It then discusses key knowledge for Si nanodevices obtainedby computational science, paying attention to the microscopic process of Si oxidation and the curious properties of high-k gate dielectrics. It also describes the possibility of Si nanowire channels as an example of computational-science-guided channel engineering and concludes with an assessment of the future trend of Si nanotechnologies driven by computational science, including Si nanowires, GaAs nanoWires, and carbon nanotubes.
APA, Harvard, Vancouver, ISO, and other styles
5

Grove-Rasmussen, K. Hybrid Superconducting Devices Based on Quantum Wires. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.16.

Full text
Abstract:
This article reviews the experimental progress in hybrid superconducting devices based on quantum wires, in the form of semiconductor nanowires or carbon nanotubes, which are coupled to superconducting electrodes. It also presents a series of recent examples which illustrate the key phenomena that have allowed detailed investigations of important scenarios, including individual impurities on superconductors and proximitized systems that may hold Majorana quasiparticles. After describing experimental aspects of hybrid devices, including materials and fabrication techniques, the article considers superconducting junctions with normal quantum dots (QDs). It then turns to experiments on superconductivity-enhanced QD spectroscopy, sub-gap states in hybrid QDs, and non-local signals in Cooper pair splitter devices. Finally, it discusses the growth of epitaxial semiconductor–superconductor nanowire hybrids.
APA, Harvard, Vancouver, ISO, and other styles
6

Ansermet, J. Ph. Spintronics with metallic nanowires. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.3.

Full text
Abstract:
This article focuses on spintronics with metallic nanowires. It begins with a review of the highlights of spintronics research, paying attention to the very important developments accomplished with tunnel junctions. It then considers the effect of current on magnetization before discussing spin diffusion and especially spin-dependent conductivities, spin-diffusion lengths, and spin accumulation. It also examines models for spin-polarized currents acting on magnetization, current-induced magnetization switching, and current-driven magnetic excitations. It concludes with an overview of resonant-current excitations, with emphasis on spin-valves and tunnel junctions as well as resonant excitation of spin-waves, domain walls and vortices. In addition, the article reflects on the future of spintronics, citing in particular the potential of the spin Hall effect as the method of generating spin accumulation, free of charge accumulation.
APA, Harvard, Vancouver, ISO, and other styles
7

Pirota, Kleber Roberto, Angela Knobel, Manuel Hernandez-Velez, Kornelius Nielsch, and Manuel Vázquez. Magnetic nanowires: Fabrication and characterization. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.22.

Full text
Abstract:
This article describes the fabrication and characterization of magnetic nanowires, focusing on the magnetic properties of patterned arrays of metallic magnetic nanowires electrodeposited into the pores of anodized-alumina membranes. It also discusses the complex magnetization processes, both in isolated nanowires and in collectively patterned arrays. After providing an overview of the state-of-the-art on fabrication techniques of nanowires, the article considers the microstructure of magnetic nanowires and the magnetic properties of single nanowires. It then examines the collective behavior of arrays where the interactions among the magnetic entities play an important role, along with the transport properties of magnetic nanowires, the temperature-dependent effects (such as magnetoelastic-induced anisotropy), and the dynamic properties of magnetization such as ferromagnetic resonance characteristics and spin-wave excitations in ferromagnetic nanowires. Finally, it presents an overview of future research directions.
APA, Harvard, Vancouver, ISO, and other styles
8

Fernandez-Serra, M. V., and X. Blase. Electronic and transport properties of doped silicon nanowires. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.2.

Full text
Abstract:
This article describes a number of theoretical works and methods dedicated to the analysis of the atomic and electronic structure, doping properties and transport characteristics of silicon nanowires (SiNWs). The goal is to show how quantum confinement and dimensionality effects can intrinsically change the behavior of SiNWs as compared to their bulk and thin film counterparts. The article begins with a review of work done on surface reconstructions and electronic structure of SiNWs as a function of system doping and passivation. It then considers the problem of doping in SiNWs as well as the methodology typically used to analyze the problems of transport. It also discusses the electronic transport properties of SiNWs as a function of dopant type, along with their chemical functionalization. Finally, it demonstrates how surface dangling-bond defects trap the impurities in SiNWs and neutralize them.
APA, Harvard, Vancouver, ISO, and other styles
9

Weides, M. P. Barriers in Josephson Junctions: An Overview. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.15.

Full text
Abstract:
This article considers Josephson junction barriers, focusing on barriers made from insulators, metals, semiconductors, magnets, and nanowires. The main characteristic of Josephson junctions is the local reduction or even suppression of the critical current in the barrier. These barriers affect the static and dynamics properties of Josephson junctions, including coupling strength, ground state, phase damping, and tunability of the critical current. The article first provides an overview of the fundamental physics of Josephson junctions, with particular emphasis on the Josephson effect, before describing the properties of two coupled superconductors. It then discusses tunnel barriers, metallic barriers, semiconducting barriers, and magnetic barriers.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Y. Y., and J. F. Jia. Topological Superconductors and Majorana Fermions. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.6.

Full text
Abstract:
This article discusses recent developments relating to the so-called topological superconductors (TSCs), which have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions (MFs). It first provides a background on topological superconductivity as a novel quantum state of matter before turning to topological insulators (TIs) and superconducting heterostructures, with particular emphasis on the vortices of such materials and the Majorana mode within a vortex. It also considers proposals for realizing TSCs by proximity effects through TI/SC heterostructures as well as experimental efforts to fabricate artificial TSCs using nanowires, superconducting junctions, and ferromagnetic atomic chains on superconductors.
APA, Harvard, Vancouver, ISO, and other styles
11

Fu, Huaxiang. Unusual properties of nanoscale ferroelectrics. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.19.

Full text
Abstract:
This article describes the unusual properties of nanoscale ferroelectrics (FE), including widely tunable polarization and improved properties in strained ferroelectric thin films; polarization enhancement in superlattices; polarization saturation in ferroelectric thin films under very large inplane strains; occurrence of ferroelectric phase transitions in one-dimensional wires; existence of the toroidal structural phase in ferroelectric nanoparticles; and the symmetry-broken phase-transition path when one transforms a vortex phase into a polarization phase. The article first considers some of the critical questions on low-dimensional ferroelectricity before discussing the theoretical approaches used to determine the properties of ferroelectric nanostructures. It also looks at 2D ferroelectric structures such as surfaces, superlattices and thin films, along with 1D ferroelectric nanowires and ferroelectric nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
12

Gallop, J., and L. Hao. Superconducting Nanodevices. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.17.

Full text
Abstract:
This article reviews recent progress in superconducting nanodevices, with particular emphasis on fabrication methods developed for superconducting nanowires and nanoscale Josephson junctions based on different barrier materials. It evaluates the future potential of superconducting nanodevices, including nano-superconducting quantum interference devices (nanoSQUIDs), in light of improvements in nanoscale fabrication and manipulation techniques, along with their likely impacts on future quantum technology and measurement. The article first considers efforts to realize devices at the physical scale of 100 nm and below before discussing different types of Josephson junction such as trilayer junctions. It also describes the use of focused ion beam milling and electron beam lithography techniques for junction fabrication at the nanoscale and the improved energy sensitivity detectable with a nanoSQUID. Finally, it looks at a range of applications for nanoSQUIDs, superconducting single photon detectors, and other superconducting nanodevices.
APA, Harvard, Vancouver, ISO, and other styles
13

Narlikar, A. V., and Y. Y. Fu, eds. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.001.0001.

Full text
Abstract:
This Handbook consolidates some of the major scientific and technological achievements in different aspects of the field of nanoscience and technology. It consists of theoretical papers, many of which are linked with current and future nanodevices, molecular-based materials and junctions (including Josephson nanocontacts). Self-organization of nanoparticles, atomic chains, and nanostructures at surfaces are further described in detail. Topics include: a unified view of nanoelectronic devices; electronic and transport properties of doped silicon nanowires; quasi-ballistic electron transport in atomic wires; thermal transport of small systems; patterns and pathways in nanoparticle self-organization; nanotribology; and the electronic structure of epitaxial graphene. The volume also explores quantum-theoretical approaches to proteins and nucleic acids; magnetoresistive phenomena in nanoscale magnetic contacts; novel superconducting states in nanoscale superconductors; left-handed metamaterials; correlated electron transport in molecular junctions; spin currents in semiconductor nanostructures; and disorder-induced electron localization in molecular-based materials.
APA, Harvard, Vancouver, ISO, and other styles
14

Narlikar, A. V. Small Superconductors—Introduction. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.1.

Full text
Abstract:
This article provides an overview of small superconductors, including some of the basic definitions, prominent characteristics, and important effects manifested by such materials. In particular, it discusses size effects, surface effects, electron-mean-free-path effects, phase slips, unusual vortex states, and proximity effects. The article first considers the two characteristic length scales of superconductors, namely the magnetic penetration depth and coherence length, before proceeding with an analysis of two size effects that account for how superconductivity responds when the bulk sample is made smaller and smaller in the nano range: the small size effects and the quantum size effects. It then examines other phenomena associated with small superconductors such as quantum fluctuations, Anderson limit, parity and shell effects, along with the behaviour of nanowires and ultra-thin fims. It also describes some of the experimental techniques commonly used in the synthesis of small superconductors.
APA, Harvard, Vancouver, ISO, and other styles
15

Narlikar, A. V., and Y. Y. Fu, eds. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.001.0001.

Full text
Abstract:
This Handbook presents important developments in the field of nanoscience and technology, focusing on the advances made with a host of nanomaterials including DNA and protein-based nanostructures. Topics include: optical properties of carbon nanotubes and nanographene; defects and disorder in carbon nanotubes; roles of shape and space in electronic properties of carbon nanomaterials; size-dependent phase transitions and phase reversal at the nanoscale; scanning transmission electron microscopy of nanostructures; the use of microspectroscopy to discriminate nanomolecular cellular alterations in biomedical research; holographic laser processing for three-dimensional photonic lattices; and nanoanalysis of materials using near-field Raman spectroscopy. The volume also explores new phenomena in the nanospace of single-wall carbon nanotubes; ZnO wide-bandgap semiconductor nanostructures; selective self-assembly of semi-metal straight and branched nanorods on inert substrates; nanostructured crystals and nanocrystalline zeolites; unusual properties of nanoscale ferroelectrics; structural, electronic, magnetic, and transport properties of carbon-fullerene-based polymers; fabrication and characterization of magnetic nanowires; and properties and potential of protein-DNA conjugates for analytic applications.
APA, Harvard, Vancouver, ISO, and other styles
16

Narlikar, A. V., and Y. Y. Fu, eds. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.001.0001.

Full text
Abstract:
This volume highlights engineering and related developments in the field of nanoscience and technology, with a focus on frontal application areas like silicon nanotechnologies, spintronics, quantum dots, carbon nanotubes, and protein-based devices as well as various biomolecular, clinical and medical applications. Topics include: the role of computational sciences in Si nanotechnologies and devices; few-electron quantum-dot spintronics; spintronics with metallic nanowires; Si/SiGe heterostructures in nanoelectronics; nanoionics and its device applications; and molecular electronics based on self-assembled monolayers. The volume also explores the self-assembly strategy of nanomanufacturing of hybrid devices; templated carbon nanotubes and the use of their cavities for nanomaterial synthesis; nanocatalysis; bifunctional nanomaterials for the imaging and treatment of cancer; protein-based nanodevices; bioconjugated quantum dots for tumor molecular imaging and profiling; modulation design of plasmonics for diagnostic and drug screening; theory of hydrogen storage in nanoscale materials; nanolithography using molecular films and processing; and laser applications in nanotechnology. The volume concludes with an analysis of the various risks that arise when using nanomaterials.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography