Academic literature on the topic 'Insect metamorphosis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Insect metamorphosis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Insect metamorphosis"
Belles, Xavier. "The innovation of the final moult and the origin of insect metamorphosis." Philosophical Transactions of the Royal Society B: Biological Sciences 374, no. 1783 (August 26, 2019): 20180415. http://dx.doi.org/10.1098/rstb.2018.0415.
Full textHall, Martin J. R., and Daniel Martín-Vega. "Visualization of insect metamorphosis." Philosophical Transactions of the Royal Society B: Biological Sciences 374, no. 1783 (August 26, 2019): 20190071. http://dx.doi.org/10.1098/rstb.2019.0071.
Full textNicholson, David B., Andrew J. Ross, and Peter J. Mayhew. "Fossil evidence for key innovations in the evolution of insect diversity." Proceedings of the Royal Society B: Biological Sciences 281, no. 1793 (October 22, 2014): 20141823. http://dx.doi.org/10.1098/rspb.2014.1823.
Full textReynolds, Stuart. "Cooking up the perfect insect: Aristotle's transformational idea about the complete metamorphosis of insects." Philosophical Transactions of the Royal Society B: Biological Sciences 374, no. 1783 (August 26, 2019): 20190074. http://dx.doi.org/10.1098/rstb.2019.0074.
Full textSantos, Carolina G., Ana Fernandez-Nicolas, and Xavier Belles. "Smads and insect hemimetabolan metamorphosis." Developmental Biology 417, no. 1 (September 2016): 104–13. http://dx.doi.org/10.1016/j.ydbio.2016.07.006.
Full textWilliams, D. W., and J. W. Truman. "Remodeling dendrites during insect metamorphosis." Journal of Neurobiology 64, no. 1 (2005): 24–33. http://dx.doi.org/10.1002/neu.20151.
Full textTruman, James W. "Developmental neuroethology of insect metamorphosis." Journal of Neurobiology 23, no. 10 (December 1992): 1404–22. http://dx.doi.org/10.1002/neu.480231005.
Full textTruman, James W., and Lynn M. Riddiford. "The origins of insect metamorphosis." Nature 401, no. 6752 (September 1999): 447–52. http://dx.doi.org/10.1038/46737.
Full textTruman, James W. "The Evolution of Insect Metamorphosis." Current Biology 29, no. 23 (December 2019): R1252—R1268. http://dx.doi.org/10.1016/j.cub.2019.10.009.
Full textOgilvie, Brian W. "Attending to insects: Francis Willughby and John Ray." Notes and Records of the Royal Society 66, no. 4 (October 10, 2012): 357–72. http://dx.doi.org/10.1098/rsnr.2012.0051.
Full textDissertations / Theses on the topic "Insect metamorphosis"
Kamsoi, Orathai 1987. "Factors regulating metamorphosis in hemimetabolan insects." Doctoral thesis, Universitat Pompeu Fabra, 2020. http://hdl.handle.net/10803/669682.
Full textEl projecte consisteix en estudiar diferents aspectes de la regulació de la metamorfosi dels insectes, utilitzant la panerola Blattella germanica i l’efímera Cloeon dipterum com a models de laboratori. A B. germanica, la idea ha estat estudiar el possible paper de la mioglianina en la regulació de la disminució de la producció d’hormona juvenil que es produeix al començament de l’últim instar nimfal. També ha estat previst estudiar el possible paper del factor especificador de l’adult E93 en la destrucció de la glàndula protorácica després de la muda imaginal. A C. dipterum, el pla ha estat estudiar els mecanismes que regulen la metamorfosi, particularment durant la formació del subimago, i comparar aquests mecanismes amb els que operen en insectes neòpters, condensats en l'anomenada via MEKRE93
Chafino, Aixa Silvia 1991. "Endocrine control of insect metamorphosis : Characterization of he "Metamorphic Gene Network"." Doctoral thesis, Universitat Pompeu Fabra, 2018. http://hdl.handle.net/10803/665654.
Full textLa metamorfosi dels insectes està controlada per per dues hormones, l’hidroxiecdisona (20E) i l’hormona juvenil (HJ), que a la vegada regulen l’expressió d’una sèrie de gens. Aquests gens, E93, Krüppel-homolog 1 (Kr-h1) i Broad-complex (Br-C), formen una xarxa de factors de transcripció anomenada “Gene Metamorphic Network” (MGN). Canvis en la regulació de la MGN són la base de l’evolució de la metamorfosi completa, no obstant, el coneixement sobre la MGN en diferents tipus d’insectes és escàs. Aquesta tesi te com a objectiu la caracterització i la regulació de la MGN en diferents tipus d’insectes. En primer lloc, hem co-relacionat l’expressió dels gens de la MGN amb dos moments del desenvolupament associats a la mida de l’organisme que controlen l’inici de la metamorfosi en el coleòpter Tribolium castaneum. En segon lloc, hem caracteritzat la MGN en el desenvolupament neotènic de l’espècie Strepsiptera Xenos vesparum i hem trobat que la neotènia podria ser el resultat de modificacions en l’expressió de E93, Br-C and Kr-h1. Finalment, hem analitzat la funció de la via de senyalització EGFR en la regulació de la síntesis de l’20E en Tribolium castaneum.
Rubio, Martínez Mercedes 1980. "MicroRNAs and metamorphosis in the hemimetabolous insect Blatella germanica (L.) (Dictyopera, Blattellidae)." Doctoral thesis, Universitat Pompeu Fabra, 2012. http://hdl.handle.net/10803/107888.
Full textPrevious work carried out in the host laboratory, using the basal insect Blattella germanica as model, showed that microRNAs (miRNAs) are crucial to complete metamorphosis. The general goal of this thesis was to identify particular miRNAs involved in this process. As a first step, we established a general catalogue of miRNAs in B. germanica using high throughput Solexa sequencing. Thereafter, we prepared two miRNA libraries; one in the metamorphic stage and other one in the non-metamorphic stage, to distinguish miRNAs differentially expressed between the two stages, and to assess the influence of the main metamorphosis hormones on the expression of these miRNAs. Our experiments also showed that Broad complex transcription factors induce the expression of let-7 and miR-100, and that these miRNAs play a role in regulating the size and the vein-intervein patterning of B. germanica wings. Finally, we studied the role of miR-8-3p and miR- 8-5p in regulating the transcript levels of atrophin, a factor involved in neuromuscular coordination, which is important to ensure a proper ecdysis in the metamorphic molt.
Ylla, Bou Guillem 1990. "Comparative transcriptomics of hemimetabolan and holometabolan metamorphosis." Doctoral thesis, Universitat Pompeu Fabra, 2018. http://hdl.handle.net/10803/565925.
Full textL'èxit evolutiu dels insectes ha estat mercat per la innovació de la metamorfosi i, en especial, per la transició de la metamorfosi hemimetàbola a holometàbola. Els mecanismes subjacents en aquesta transició evolutiva representen una qüestió no resolta. Per tal d'estudiar aquesta transició, en aquesta tesi hem utilitzat un enfocament transcriptomic comparant dades de mRNA i miRNA en estadis clau del desenvolupament, incloent-hi estadis embrionaris i post embrionaris en espècies representatives de metamorfosis hemimetàbola i holometàbola. La major part dels anàlisis s'han centrat en l'hemimetàbola Blattella germanica, tot i que s'han utilitzat dades d'altres espècies com a contrast, especialment dels holometàbols Drosophila melanogaster i Tribolium castaneum. Els resultats mostren que no hi ha diferències qualitatives en relació a gens dels hemimetàbols i holometàbols, en canvi les principals diferències consisteixen en els diferents perfils d'expressió de gens comuns i la seva xarxa de d'interacció. Els factors de transcripció, els modificadors epigenètics i els miRNAs emergeixen com a principals protagonistes dels mecanismes reguladors en ambdós models de desenvolupament.
Hazelett, Dennis J. "Gene expression during the segment-specific death of a muscle during insect metamorphosis /." view abstract or download file of text, 2005. http://wwwlib.umi.com/cr/uoregon/fullcit?p3164079.
Full textTypescript. Includes vita and abstract. Includes bibliographical references (leaves 118-133). Also available for download via the World Wide Web; free to University of Oregon users.
Zee, Michele Chi-Wai. "Steroid hormones and cell death : analysis of motorneuron and muscle fates during insect metamorphosis /." view abstract or download file of text, 2004. http://wwwlib.umi.com/cr/uoregon/fullcit?p3136456.
Full textTypescript. Includes vita and abstract. Includes bibliographical references (leaves 99-113). Also available for download via the World Wide Web; free to University of Oregon users.
Westberg, Tove. "Impact of contamination by mining rest products (Zn and Pb) on lake insect abundance, composition, and metamorphosis." Thesis, Umeå universitet, Institutionen för ekologi, miljö och geovetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-151892.
Full textRittenhouse, Kimberley Rochelle. "Bullwinkle, an HMG box protein, is required for proper development during oogenesis, embryogenesis and metamorphosis in Drosophila melanogaster /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/10267.
Full textSoares, Michelle Prioli Miranda. "Genes cuticulares diferencialmente expressos durante eventos da metamorfose de Apis mellifera." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/59/59139/tde-31072012-102425/.
Full textThe insect cuticle is mainly composed of proteins that interact with chitin filaments to form a rigid structure that protects and shapes the organism. Insects grow through the periodic renewal of the cuticle, which is shed at each apolysis episode, and subsequently digested while the epidermis synthesizes the cuticle of the next stage. These molting events are coordinated by hormones, mainly ecdysteroids. The current work aimed to characterize differential gene expression in the integument (cuticle and underlying epidermis) during the ecdysteroid-regulated pupal-to-adult molt. Special attention was given to the structure and expression of genes encoding proteins and enzymes involved in cuticle formation and differentiation. To achieve these goals, we used thoracic integument of newly-ecdysed pupae (Pw), pupae in apolysis (Pp) and pharate adults (Pbl) in cDNA microarray analyses. The microarray analysis showed 761 and 1173 differentially expressed genes in the pharate adult integument (Pbl) in comparison to pupae (Pw) or pupae in apolysis (Pp), respectively. Gene Ontology terms for Biological Process and Molecular Function completely distinguished the integument of pharate adults (Pbl) from the integument of pupae (Pw) or pupae in apolysis (Pp). The microarray analysis discriminated 24 cuticular genes with a significant expression increase in the pharate adult integument. This was validated by real time RT-PCR analysis (qRT-PCR) for 23 of these genes (AmelCPR3, AmelCPR4, AmelCPR6, AmelCPR14, AmelCPR15, AmelCPR17, AmelCPR23, AmelCPR24, AmelCPR25, AmelCPR28, AmelCPR29, AmelCPR30, apd-1, apd-2, apd-3, CPLCP1, Am-C, Am-D, AmelTwdl1, AmelTwdl2, GB12449, GB12811 and GB11550), and by semiquantitative RT-PCR for Amlac2. In addition, the increased expression of other two cuticular genes (AmelCPR1 and AmelCPR2) was confirmed by qRT-PCR. These up-regulated cuticular genes in pharate adult integument apparently are involved in adult cuticle formation and differentiation, which occurs while the ecdysteroids titers decay, after reaching the peak that induces apolysis in the preceding phase (Pp). In contrast, two cuticular genes (AmelCPF1 e AmelCPR1) were confirmed by qRT-PCR analysis as negatively regulated in the integument of pharate adults compared to pupae, suggesting that they are specific to pupal cuticle. Therefore, these genes were inhibited by the increasing ecdysteroid levels that induce apolysis. Twenty one of the 24 cuticular genes differentially expressed in the microarrays encode proteins belonging to the CPF, CPR, Apidermin, CPLCP, Analogous to peritrofins and Tweedle families. The other three differentially expressed genes (GB12449, GB12811, GB11550) had not yet been assigned as cuticular genes. Two of them (GB12449 and GB12811) were sequenced, thus allowing prediction validation and gene structure characterization. In situ hybridization experiments using fluorescent probe (FISH) localized high expression of these genes in the pharate adult epidermis, strongly suggesting their involvement in the construction of the adult exoskeleton. This study is the first global gene expression analysis of the integument from a social hymenopteran species. The expression of genes in the integument was associated to the molting process and to the adult exoskeleton formation. This work contributes with new molecular data for a deeper understanding of A. mellifera metamorphosis.
Maire, Justin. "Immune and developmental regulations in host-symbiont interactions in the cereal weevil Sitophilus spp." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI094.
Full textSymbiosis is ubiquitous in nature and plays a crucial role in evolution. As the scientific community is becoming increasingly aware of the importance of such associations in both biological and pathological processes in animals, understanding how symbiotic populations are controlled, tolerated, and modulated, is becoming a major stake. To address these questions, I studied the mutualistic association between the weevil Sitophilus and the intracellular bacterium Sodalis pierantonius. Sitophilus houses S. pierantonius in specialized host cells, the bacteriocytes, which group together in an organ, the bacteriome. In return, S. pierantonius provides its host with nutrients scarecely present in its cereal-based diet. S. pierantonius being immunogenic for its host, I studied in a first chapter how specific bacteriome immune regulations ensure the maintenance of host immune homeostasis. In a first part, I showed that endosymbiont compartmentalization, which limits host-endosymbiont immune contacts, relies on the IMD-dependent expression of one antimicrobial peptide, a regulation similar to that of immune responses in pathogenic conditions. Then, I showed how endosymbiont immunogenicity, via its peptidoglycan, is tamed by PeptidoGlycan Recognition Proteins (PGRPs). While symbiotic peptidoglycan would not be recognized within the bacteriome, its systemic recognition is circumscribed by PGRP-LB local action. PGRP-LB cleaves symbiotic peptidoglycan, thereby preventing a chronical and detrimental activation of the host systemic immunity. In a second chapter, I studied how, during metamorphosis, the bacteriome is completely remodeled. The larval bacteriome dissociates, bacteriocytes migrate along the midgut, and settle in multiple new bacteriomes. A dual-RNAseq approach allowed us to pinpoint both host and symbiont implication in this drastic morphological reorganization. The results obtained during this PhD show the immeasurable impact bacteria bear on host immune and developmental processes, and more generally on animal evolution
Books on the topic "Insect metamorphosis"
Nancy, Goor, ed. Insect metamorphosis: From egg to adult. New York: Atheneum, 1990.
Find full textNancy, Goor, ed. Insect metamorphosis: From egg to adult. New York: Aladdin Paperbacks, 1998.
Find full textInsect development: Morphogenesis, molting and metamorphosis. London: Academic, 2009.
Find full textThe poem and the insect: Aspects of twentieth century Hispanic culture. San Francisco: International Scholars Publications, 1999.
Find full textAn obsession with butterflies: Our long love affair with a singular insect. Cambridge, MA: Perseus Publishing, 2003.
Find full textRussell, Sharman Apt. An obsession with butterflies: Our long love affair with a singular insect. London: Heinemann, 2003.
Find full textBook chapters on the topic "Insect metamorphosis"
Singh Dhadialla, Tarlochan, Ronald Ross, and Makoto Hatakoshi. "Insect Molting and Metamorphosis." In Modern Crop Protection Compounds, 957–98. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527644179.ch28.
Full textWillis, Judith H. "Regulating Genes for Metamorphosis: Concepts and Results." In Molecular Insect Science, 91–98. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-3668-4_11.
Full textHildebrand, John G. "Metamorphosis of the Insect Nervous System." In Model Neural Networks and Behavior, 129–48. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4757-5858-0_8.
Full textPagán, Oné R. "Endozepines in Insect Development and Metamorphosis." In Naturally Occurring Benzodiazepines, Endozepines, and their Receptors, 89–97. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367814373-9.
Full textLenoir-Rousseaux, Jean-Jacques. "Variation in Activity of a Major Molecular Form of AChE in Brain and Smooth Muscle During Tenebrio Metamorphosis." In Insect Neurochemistry and Neurophysiology · 1986, 387–92. Totowa, NJ: Humana Press, 1986. http://dx.doi.org/10.1007/978-1-4612-4832-3_58.
Full textNi, Xinzhi, Xianchun Li, Yigen Chen, Fuzhen Guo, Jinian Feng, and Huiyan Zhao. "Metamorphosis of Cisgenic Insect Resistance Research in the Transgenic Crop Era." In Recent Advances in Entomological Research, 258–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17815-3_15.
Full textSEHNAL, FRANTIŠEK, PETR ŠVÁCHA, and JAN ZRZAVÝ. "Evolution of Insect Metamorphosis." In Metamorphosis, 3–58. Elsevier, 1996. http://dx.doi.org/10.1016/b978-012283245-1/50003-8.
Full textBelles, Xavier. "The evolution of ideas on insect metamorphosis." In Insect Metamorphosis, 1–17. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-813020-9.00001-6.
Full textBelles, Xavier. "A spectacular diversity of forms and developmental modes." In Insect Metamorphosis, 19–33. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-813020-9.00002-8.
Full textBelles, Xavier. "The ametabolan development." In Insect Metamorphosis, 35–45. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-813020-9.00003-x.
Full textConference papers on the topic "Insect metamorphosis"
Belles, Xavier. "MicroRNAs and the evolution of insect metamorphosis." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.116990.
Full textBozkurt, Alper, Ayesa Paul, Siva Pulla, Abhishek Ramkumar, Bernd Blossey, John Ewer, Robert Gilmour, and Amit Lal. "Microprobe microsystem platform inserted during early metamorphosis to actuate insect flight muscle." In 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2007. http://dx.doi.org/10.1109/memsys.2007.4432976.
Full textUreña, Enric. "Evolution of insect metamorphosis: Functional analysis of the metamorphic toolkit formed by E93, Krüppel homolog 1, and Broad-Complex transcription factors." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.105708.
Full textKayukawa, Takumi. "How does juvenile hormone prevent pupal metamorphosis in holometabolous insects?" In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.105791.
Full textOzerova, Aleksandra, and Mikhail Gelfand. "Distinct features of the morphogenesis in the insects undergoing radical metamorphosis on the gene expression level." In Информационные технологии и системы. Москва: Институт проблем передачи информации им. А.А. Харкевича РАН, 2020. http://dx.doi.org/10.53921/itas2020_293.
Full textHashimoto, M., N. Kishimoto, Y. Miyazaki, and M. C. Natori. "Numerical Analysis on Deployment Behaviors of Membrane Structure Systems." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15202.
Full text