Academic literature on the topic 'Insects, vectors, virus diseases'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Insects, vectors, virus diseases.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Insects, vectors, virus diseases"
Wu, Xiujuan, and Jian Ye. "Manipulation of Jasmonate Signaling by Plant Viruses and Their Insect Vectors." Viruses 12, no. 2 (January 27, 2020): 148. http://dx.doi.org/10.3390/v12020148.
Full textZongoma, A. M., D. B. Dangora, M. Sétamou, M. D. Alegbejo, and O. J. Alabi. "Identification of mealybugs, soft scale insects and their predators in vineyards across the savannah agro-ecological region of Nigeria." Zoologist (The) 18, no. 1 (April 8, 2021): 27–32. http://dx.doi.org/10.4314/tzool.v18i1.5.
Full textMadden, L. V., M. J. Jeger, and F. van den Bosch. "A Theoretical Assessment of the Effects of Vector-Virus Transmission Mechanism on Plant Virus Disease Epidemics." Phytopathology® 90, no. 6 (June 2000): 576–94. http://dx.doi.org/10.1094/phyto.2000.90.6.576.
Full textMubarik, Muhammad Salman, Sultan Habibullah Khan, Aftab Ahmad, Ali Raza, Zulqurnain Khan, Muhammad Sajjad, Reda Helmy Ahmed Sammour, et al. "Controlling Geminiviruses before Transmission: Prospects." Plants 9, no. 11 (November 12, 2020): 1556. http://dx.doi.org/10.3390/plants9111556.
Full textDi Mattia, Jérémy, Faustine Ryckebusch, Marie-Stéphanie Vernerey, Elodie Pirolles, Nicolas Sauvion, Michel Peterschmitt, Jean-Louis Zeddam, and Stéphane Blanc. "Co-Acquired Nanovirus and Geminivirus Exhibit a Contrasted Localization within Their Common Aphid Vector." Viruses 12, no. 3 (March 10, 2020): 299. http://dx.doi.org/10.3390/v12030299.
Full textMellor, P. S., J. Boned, C. Hamblin, and S. Graham. "Isolations of African horse sickness virus from vector insects made during the 1988 epizootic in Spain." Epidemiology and Infection 105, no. 2 (October 1990): 447–54. http://dx.doi.org/10.1017/s0950268800048020.
Full textMoya Fernández, Marcia Beatriz, Wenwen Liu, Lu Zhang, Jamal-U.-Ddin Hajano, and Xifeng Wang. "Interplay of Rice Stripe Virus and Rice Black Streaked Dwarf Virus during Their Acquisition and Accumulation in Insect Vector." Viruses 13, no. 6 (June 10, 2021): 1121. http://dx.doi.org/10.3390/v13061121.
Full textBurova, O. A., O. I. Zakharova, N. N. Toropova, N. A. Gladkova, and A. A. Blokhin. "The efficiency of methods for catching insects - vectors of vector-borne diseases of animals and their species composition." Agricultural Science Euro-North-East 22, no. 5 (October 27, 2021): 761–69. http://dx.doi.org/10.30766/2072-9081.2021.22.5.761-769.
Full textKhorramnejad, Ayda, Hugo D. Perdomo, Umberto Palatini, Mariangela Bonizzoni, and Laila Gasmi. "Cross Talk between Viruses and Insect Cells Cytoskeleton." Viruses 13, no. 8 (August 20, 2021): 1658. http://dx.doi.org/10.3390/v13081658.
Full textHommay, Gérard, Antoine Alliaume, Catherine Reinbold, and Etienne Herrbach. "Transmission of Grapevine leafroll-associated virus-1 (Ampelovirus) and Grapevine virus A (Vitivirus) by the Cottony Grape Scale, Pulvinaria vitis (Hemiptera: Coccidae)." Viruses 13, no. 10 (October 15, 2021): 2081. http://dx.doi.org/10.3390/v13102081.
Full textDissertations / Theses on the topic "Insects, vectors, virus diseases"
Ninio, Camille. "Fièvre catarrhale ovine dans les Ardennes : étude de la biologie des Culicoïdes et de leur rôle épidémiologique." Thesis, Reims, 2011. http://www.theses.fr/2011REIMP203/document.
Full textSince the late 90’s, Bluetongue disease (BT) can be considered as an emerging arbovirose inEurope. This disease is mainly transmitted to ruminants by the bites of minute size midges,the Culicoides (Diptera: Ceratopogonidae), also known as biting midges. An outbreak of BTserotype 8 occurred during summer 2006, in the region of Maastricht (Netherlands) andspread quickly to the Ardennes region. The epizooty lead to severe losses in cattle and sheepholdings. These events highlighted the lack of knowledge on the vectorial capacity ofpaleartic Culicoides species, and more generally on their biology.Three approaches are successively treated in this document. They are all based on field workconducted mainly in two holdings located in the Ardennes region.First, an experiment to assess oral susceptibility of Culicoides to Bluetongue virus (BTV) 8was undertaken. Field collected and emerging Culicoides coming from the Ardennes wereengorged on viremic small ruminants. At the end of the experiments, one Culicoides obsoletusfemale was found bloodfed and laid eggs. She was tested for BTV and was found weaklypositive for BTV genome. This result and the difficulties met during the experiment havebeen discussed.The second study focused on the bloodmeal origin of engorged females of Culicoides. Thesewere collected by light traps set in different kinds of environment. Molecular markers wereused in order to amplify the DNA of vertebrates present in the stomach of bloodfed females.Some of the species processed belonging to the Obsoletus or the Pulicaris complex, andCulicoides dewulfi fed on a wide variety of hosts, including domestic ruminants and wildanimals. Moreover, this kind of study brings information on the ecology of different speciesof Culicoides.Finally, a faunistic survey is presented. It was achieved through light trap collections ofmidges and also thanks to the sampling of potential breeding sites. Biodiversity in thecollection of midges captured by light traps between the two holdings were compared.Differences observed are discussed taking into account the differences in breeding practicesbetween the two holdings and the breeding sites investigations. Numerous species ofCulicoides emerged in the laboratory from soil samples which were macroscopicallydescribed. Breeding sites of C. obsoletus, which were not well documentated in the literature,were found in both farms. These were monitored over some months.This work contributes to a better knowledge of the Culicoides present in the Ardennes andtheir biology. It highlights the species which are closely related to the cattle holdingenvironment, and those which are ubiquist. Some of these studies could be continued in orderto highlight the species more related to the forested areas, and to set new experiments onvectorial competence and capacity
Ally, Hadija Mussa. "Genetic diversity and structure of the superabundant whitefly populations, vectors of viruses causing diseases of cassava in three East African countries (Malawi, Tanzania, and Uganda)." Thesis, La Réunion, 2019. http://www.theses.fr/2019LARE0012.
Full textHigh population of the whitefly, Bemisia tabaci Gennadius, a cryptic species complex had been associated with the vectoring and spread of viruses causing two diseases of cassava in East Africa: the cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). Among the B. tabaci species, sub-Saharan Africa 2 (SSA2) was the vector associated with an epidemic of CMD since the 1990s in Uganda. However, this species is now replaced by the SSA1 and led to development of another epidemic by CBSD since the mid 2000s. The spread of both diseases toward South and West Africa is feared with this new supposed invader. In my thesis I have used ecological data and molecular approaches (mitochondrial and nuclear markers) to better understand the factors driving the presence of the superabundant whitefly populations on cassava in East Africa. We have analyzed: i) species abundance, diversity and distribution (geographic and host plants) along a transect survey over three East African countries: Uganda, Tanzania, Malawi, ii) the genetic diversity and structure of current populations of B. tabaci species, and iii) comparing genetic changes between the old and new populations collected in 1997 and 2017, respectively.This study involving large number of samples provided insights of a more complex picture than expected. SSA1 was found to be the source of the some observed outbreaks although other species, notably IO and sub-group 3 of SSA1 (SSA1-SG3) have also shown this capability. The observed outbreaks are therefore not just related to a single species in East Africa. In addition, we showed that the species community and its genetic diversity differ from one country to another, involving different epidemiological situations, without any clear pattern of invasion detected between the countries. Analysis of old samples did not show the involvement of a new species or the emergence of a new population in 20 years, although the dynamics within the whitefly genetic groups was observed over time. Our results contributed new knowledge on the super abundant populations on cassava in Eastern Africa and help develop targeted control measures for the local populations
Manley, Robyn Anna. "Emerging viral diseases of pollinating insects." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/29677.
Full textSrivatsavai, Venkata Suresh Kumar Huettel Robin Norton. "Identification, distribution and vector biology of brome mosaic virus of wheat in Alabama." Auburn, Ala., 2005. http://hdl.handle.net/10415/1266.
Full textWalter, Cheryl Tracy. "Establishing experimental systems for studying the replication biology of Providence virus." Thesis, Rhodes University, 2009. http://hdl.handle.net/10962/d1003987.
Full textFreitas, Debora Maria Sansini. "Tomato severe rugose virus (ToSRV) e Tomato chlorosis virus (ToCV): relações com a Bemisia tabaci biótipo B e eficiência de um inseticida no controle da transmissão do ToSRV." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/11/11135/tde-25102012-083603/.
Full textTomato (Solanum lycopersicum) is one of the leading vegetables grown and consumed in Brazil and in the world, after potato. The importance of tomato is related to its high consumption worldwide and also its nutritive value. Presently the most important virus diseases responsible for yield losses on tomato crops in Brazil are those caused by begomovirus and crinivirus, both transmitted by Bemisia tabaci biotype B. At the moment the prevalent species of begomovirus is Tomato severe rugose virus (ToSRV). From 2002 to 2004, researchers reported incidence of this virus in more than half of the symptomatic tomato samples collected in several Brazilian states. In 2006, a crinivirus, Tomato chlorosis virus (ToCV), was reported for the first time in Brazil, infecting tomato plants in the State of São Paulo and at present the virus occurs in several Brazilian states. The objectives of this study were to determine the minimum acquisition and inoculation access periods of ToSRV and ToCV by B. tabaci biotype B; identify the retention period of ToSRV in the insect; and the interaction of ToSRV and ToCV on the transmission by this aleyrodidae. It was also evaluated the effectiveness of the insecticide cartap hydrochloride in controlling the primary and secondary spread of ToSRV by B. tabaci biotype B on tomato plants in a greenhouse. Finally, it was evaluated the efficiency of Trialeurodes vaporariorum in the transmission of a Brazilian isolate of ToCV. The minimum acquisition and inoculation access periods for both viruses by B. tabaci biotype B were five minutes. The maximum retention time of ToSRV in B. tabaci biotype B was 25 days. The efficiency of a single adult of B. tabaci to simultaneously transmit ToSRV and ToCV to tomato plants was 44.7%, similar to the transmission of ToRSV (47.4%), and ToCV (44.7%) separately. T. vaporariorum was less efficient than B. tabaci on the transmission of ToCV. Using 40 insects per pot with two plants, transmission efficiencies were 57.7% and 100%, respectively. The insecticide cartap hydrochloride reduced secondary infection of ToSRV transmitted by B. tabaci biotype B, but was not effective in reducing the primary infection in tomato.
Fletcher, Michael Gordon. "Determination of the possible role of arthropods as vectors for "Potomac Horse Fever" in equines." Diss., Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/76514.
Full textPh. D.
Tah, Tapashree Schoelz James E. "Chloroplast GFP expression in tobacco plants agroinfiltrated with tobacco mosaic virus based vectors." Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/6604.
Full textWong, Tik-wun Lina, and 黃荻媛. "Construction of an infectious PRRSV cDNA clone and its use as a vectorfor foreign gene expression." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44251841.
Full textVan, Eeden C. (Christiaan). "The construction of gene silencing transformation vectors for the introduction of multiple-virus resistance in grapevines." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/53764.
Full textENGLISH ABSTRACT: Viruses are some of the most important pathogens of grapevines. There are no effective chemical treatments, and no grapevine- or other natural resistance genes have been discovered against grapevine infecting viruses. The primary method of grapevine virus control is prevention by biological indexing and molecular- and serological screening of rootstocks and scions before propagation. Due to the spread of grapevine viruses through insect vectors, and in the case of GRSPaV the absence of serological screening, these methods of virus control are not always effective. In the past several methods, from cross-protection to pathogen derived resistance (PDR), have been applied to induce plant virus resistance, but with inconsistent results. In recent years the application of post-transcriptional gene silencing (PTGS), a naturally occurring plant defense mechanism, to induce targeted virus resistance has achieved great success. The Waterhouse research group has designed plant transformation vectors that facilitate specific virus resistance through PTGS. The primary focus of this study was the production of virus specific transformation vectors for the introduction of grapevine virus resistance. The Waterhouse system has been successfully utilised for the construction of three transformation vectors with the pHannibal vector as backbone. Each vector contains homologous virus coat protein (CP) gene segments, cloned in a complementary conformation upstream and downstream of an intron sequence. The primary vector (pHann-SAScon) contains complementary CP gene segments of both GRSPaV and GLRaV-3 and was designed for the introduction of multiple-virus resistance. For the construction of the primary vector the GRSPaV CP gene was isolated from RSP infected grapevines. A clone of the GLRaV-3 CP gene was acquired. The second vector (pHann- LR3CPsas) contains complementary CP gene segments of GLRaV-3. The third vector (pHann-LR2CPsas) contains complementary CP gene segments of GLRaV-2. The cassette containing the complementary CP gene segments of both GRSPaV and GLRaV-3 was cloned into pART27 (pART27-HSAScon), and used to transform N tabacum cv. Petit Havana (SRI), through A. tumefaciens mediated transformation. Unfortunately potential transformants failed to regenerate on rooting media; hence no molecular tests were performed to confirm transformation. Once successful transformants are generated, infection with a recombinant virus vector (consisting of PYX, the GFP gene as screenable marker and the complementary CP gene segments of both GRSPaV and GLRaV-3) will be used to test for the efficacy of the vectors to induce resistance. A secondary aim was added to this project when a need was identified within the South African viticulture industry for GRSPaV specific antibodies to be used in serological screening. To facilitate future serological detection of GRSPaV, the CP gene was isolated and expressed with a bacterial expression system (pETI4b) within the E. coli BL2I(DE3)pLysS cell line. The expressed protein will be used to generate GRSPaV CP specific antibodies.
AFRIKAANSE OPSOMMING: Virusse is van die belangrikste patogene by wingerd. Daar bestaan geen effektiewe chemiese beheer nie, en geen wingerd- of ander natuurlike weerstandsgene teen wingerdvirusse is al ontdek nie. Die primêre metode van beheer t.o.v. wingerdvirusse is voorkoming deur biologiese indeksering, en molekulêre- en serologiese toetsing van onderstokke en entlote voor verspreiding. As gevolg van die verspreiding van wingerdvirusse deur insekvektore, en in die geval van GRSPa V die tekort aan serologiese toetsing, is dié metodes van virusbeheer nie altyd effektief nie. In die verlede is metodes soos kruis-beskerming en patogeen-afgeleide weerstand (PDR) gebruik om virusweerstand te induseer, maar met inkonsekwente resultate. In onlangse jare is post-transkripsionele geenonderdrukking (PTGS), 'n natuurlike plantbeskermingsmeganisme, met groot sukses toegepas om geteikende virusweerstand te induseer. Die Waterhouse-navorsingsgroep het planttransformasievektore ontwerp wat spesifieke virusweerstand induseer d.m.v. PTGS. Die vervaardiging van virus spesifieke tranformasievektore vir die indusering van wingerdvirusweerstand was die primêre doelwit van hierdie studie. Die Waterhouse-sisteem was gebruik vir die konstruksie van drie transformasievektore, met die pHannibal vektor as basis. Elke vektor bevat homoloë virus kapsiedproteïen (CP) geensegmente, gekloneer in 'n komplementêre vorm stroom-op en stroom-af van 'n intronvolgorde. Die primêre vektor (pHann-SAScon) bevat komplementêre CP geensegmente van beide GRSPaV en GLRaV-3, en was ontwerp vir die indusering van veelvoudige-virusweerstand. Die CP-geen van GRSPa V was vanuit RSP-geïnfekteerde wingerd geïsoleer, vir die konstruksie van die primêre vektor. 'n Kloon van die GLRa V-3 CP-geen was verkry. Die tweede vektor (pHann-LR3CPsas) bevat komplementêre CP geensegmente van GLRaV-3. Die derde vektor (pHann-LR2CPsas) bevat komplementêre CP geensegmente van GLRa V-2. Die kasset bestaande uit die komplementêre CP geensegmente van beide GRSPaV en GLRaV-3, was gekloneer in pART27 (pART27-HSAScon), en gebruik om N tabacum cv. Petit Havana (SRI) te transformeer d.m.v. A. tumefaciens bemiddelde transformasie. Ongelukkig het potensiële transformante nie geregenereer op bewortelingsmedia nie; gevolglik was geen molekulêre toetse gedoen om transformasie te bevestig nie. Na suksesvolle transformante gegenereer is, sal infeksie met 'n rekombinante-virusvektor (bestaande uit PYX, die GFP geen as waarneembare merker en die komplementêre CP geensegmente van beide GRSPa V en GLRa V-3) gebruik word om die effektiwiteit van die vektore as weerstandsinduseerders te toets. 'n Sekondêre doelwit is by die projek gevoeg toe 'n behoefte aan GRSPaV spesifieke teenliggame binne die Suid-Afrikaanse wynbedryf geïdentifiseer is, vir gebruik in serologiese toetsing. Om toekomstige serologiese toetsing van GRSPa V te bemiddel, was die CP-geen geïsoleer en in 'n bakteriële uitdrukkingsisteem (PETI4b) uitgedruk, in die E. coli BL21(DE3)pLysS sellyn. Die uitgedrukte proteïne sal gebruik word vir die vervaardiging van GRSPa V CP spesifieke antiliggame.
Books on the topic "Insects, vectors, virus diseases"
Chan, C. K. Aphid-transmitted viruses and their vectors of the world. Vancouver: Research Branch, Agriculture Canada, 1991.
Find full textInternational Symposium on Viruses with Fungal Vectors (1987 St. Andrews University). Viruses with fungal vectors. Wellesbourne, Warwick: Association of Applied Biologists, 1988.
Find full textF, Brown D. J., ed. Nematode vectors of plant viruses. New York: CAB International, 1997.
Find full textMartignoni, Mauro E. A catalog of viral diseases of insects, mites, and ticks. 4th ed. Portland Or: U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 1986.
Find full textIntegrated vector management: Controlling vectors of malaria and other insect vector borne diseases. Chichester, West Sussex, UK: Wiley-Blackwell, 2011.
Find full textMedical entomology for students. 5th ed. Cambridge: Cambridge University Press, 2012.
Find full textP, Ralston Dominick, ed. Insect viruses: Detection, characterization, and roles. Hauppauge, NY: Nova Science Pub., 2009.
Find full textChukhriĭ, M. G. An atlas of the ultrastructure of viruses of lepidopteran pests of plants. Rotterdam: A.A. Balkema, 1988.
Find full textChukhriĭ, M. G. An atlas of the ultrastructure of viruses of lepidopteran pests of plants. Edited by Tarasevich L. M, Vsesoi͡u︡znyĭ nauchno-issledovatelʹskiĭ institut biologicheskikh metodov zashchity rasentiĭ (Soviet Union), and United States. Dept. of Agriculture. New Delhi: Amerind Pub. Co., 1987.
Find full textBook chapters on the topic "Insects, vectors, virus diseases"
Govorushko, Sergey. "Insects as Vectors of Plant Diseases." In Human–Insect Interactions, 248–52. Boca Raton, FL : CRC Press, 2017. | “A science publishers book.”: CRC Press, 2018. http://dx.doi.org/10.1201/9781315119915-16.
Full textChavan, V. M. "Plant Virus Disease Spread Through Insect Vectors and Their Management." In New Horizons in Insect Science: Towards Sustainable Pest Management, 147–58. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2089-3_15.
Full textWeingartner, D. P. "Potato Viruses with Soil-borne Vectors." In Virus and Virus-like Diseases of Potatoes and Production of Seed-Potatoes, 177–94. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-007-0842-6_19.
Full textSeki, Sayuri, and Tetsuro Matano. "Development of Vaccines Using SeV Vectors Against AIDS and Other Infectious Diseases." In Sendai Virus Vector, 127–49. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_5.
Full textNaves, Pedro, Luis Bonifácio, and Edmundo de Sousa. "The Pine Wood Nematode and Its Local Vectors in the Mediterranean Basin." In Insects and Diseases of Mediterranean Forest Systems, 329–78. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24744-1_12.
Full textAntignus, Y., and D. Ben-Yakir. "Ultraviolet-Absorbing Barriers, an Efficient Integrated Pest Management Tool to Protect Greenhouses from Insects and Virus Diseases." In Insect Pest Management, 319–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07913-3_13.
Full textKorenberg, Eduard. "Impact of climate change on ticks and tick-borne infections in Russia." In Climate, ticks and disease, 438–43. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789249637.0063.
Full textWiedenmann, Robert N., and J. Ray Fisher. "The Plague, One More Time." In The Silken Thread, 112–22. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780197555583.003.0007.
Full textOrtega-Parra, Nelia, Zafeiro Zisi, and Inge M. Hanssen. "The use of mild viruses for control of plant pathogenic viruses." In Microbial bioprotectants for plant disease management, 507–40. Burleigh Dodds Science Publishing, 2021. http://dx.doi.org/10.19103/as.2021.0093.19.
Full textDoherty, Peter C. "Virus Vectors." In Pandemics. Oxford University Press, 2013. http://dx.doi.org/10.1093/wentk/9780199898107.003.0006.
Full textConference papers on the topic "Insects, vectors, virus diseases"
Silva, Diego, and Gustavo Batista. "Signal classification by similarity and feature extraction with application in automatic insect identification." In XXVIII Concurso de Teses e Dissertações da SBC. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/ctd.2015.10006.
Full textReports on the topic "Insects, vectors, virus diseases"
Gottlieb, Yuval, and Bradley A. Mullens. Might Bacterial Symbionts Influence Vectorial Capacity of Biting Midges for Ruminant Viruses? United States Department of Agriculture, September 2010. http://dx.doi.org/10.32747/2010.7699837.bard.
Full textGottlieb, Yuval, Bradley Mullens, and Richard Stouthamer. investigation of the role of bacterial symbionts in regulating the biology and vector competence of Culicoides vectors of animal viruses. United States Department of Agriculture, June 2015. http://dx.doi.org/10.32747/2015.7699865.bard.
Full textChejanovsky, Nor, and Bruce A. Webb. Potentiation of pest control by insect immunosuppression. United States Department of Agriculture, July 2004. http://dx.doi.org/10.32747/2004.7587236.bard.
Full textChejanovsky, Nor, and Bruce A. Webb. Potentiation of Pest Control by Insect Immunosuppression. United States Department of Agriculture, January 2010. http://dx.doi.org/10.32747/2010.7592113.bard.
Full textBar-Joseph, Moshe, William O. Dawson, and Munir Mawassi. Role of Defective RNAs in Citrus Tristeza Virus Diseases. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575279.bard.
Full textUllman, Diane E., Benjamin Raccah, John Sherwood, Meir Klein, Yehezkiel Antignus, and Abed Gera. Tomato Spotted Wilt Tosporvirus and its Thrips Vectors: Epidemiology, Insect/Virus Interactions and Control. United States Department of Agriculture, November 1999. http://dx.doi.org/10.32747/1999.7573062.bard.
Full textWhitham, Steven A., Amit Gal-On, and Tzahi Arazi. Functional analysis of virus and host components that mediate potyvirus-induced diseases. United States Department of Agriculture, March 2008. http://dx.doi.org/10.32747/2008.7591732.bard.
Full textDawson, William O., and Moshe Bar-Joseph. Creating an Ally from an Adversary: Genetic Manipulation of Citrus Tristeza. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7586540.bard.
Full textKlement, Eyal, Elizabeth Howerth, William C. Wilson, David Stallknecht, Danny Mead, Hagai Yadin, Itamar Lensky, and Nadav Galon. Exploration of the Epidemiology of a Newly Emerging Cattle-Epizootic Hemorrhagic Disease Virus in Israel. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7697118.bard.
Full textWhitham, Steven A., Amit Gal-On, and Victor Gaba. Post-transcriptional Regulation of Host Genes Involved with Symptom Expression in Potyviral Infections. United States Department of Agriculture, June 2012. http://dx.doi.org/10.32747/2012.7593391.bard.
Full text