Academic literature on the topic 'Instrumentation for life-sciences'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Instrumentation for life-sciences.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Instrumentation for life-sciences"
Patou, François, Maria Dimaki, Anja Maier, Winnie E. Svendsen, and Jan Madsen. "Model-based systems engineering for life-sciences instrumentation development." Systems Engineering 22, no. 2 (2018): 98–113. http://dx.doi.org/10.1002/sys.21429.
Full textGriffin, Philippa C., Jyoti Khadake, Kate S. LeMay, et al. "Best practice data life cycle approaches for the life sciences." F1000Research 6 (August 31, 2017): 1618. http://dx.doi.org/10.12688/f1000research.12344.1.
Full textGriffin, Philippa C., Jyoti Khadake, Kate S. LeMay, et al. "Best practice data life cycle approaches for the life sciences." F1000Research 6 (June 4, 2018): 1618. http://dx.doi.org/10.12688/f1000research.12344.2.
Full textSadrozinski, Hartmut F. W. "Radiation effects in life sciences." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 514, no. 1-3 (2003): 224–29. http://dx.doi.org/10.1016/j.nima.2003.08.109.
Full textLeapman, RD. "Nanoscale Elemental Analysis by EELS in the Life Sciences." Microscopy and Microanalysis 14, S2 (2008): 1378–79. http://dx.doi.org/10.1017/s143192760808238x.
Full textBorst, Jan Willem, and Antonie J. W. G. Visser. "Fluorescence lifetime imaging microscopy in life sciences." Measurement Science and Technology 21, no. 10 (2010): 102002. http://dx.doi.org/10.1088/0957-0233/21/10/102002.
Full textWilliams, Robert E. A., David W. McComb, and Sriram Subramaniam. "Cryo-electron microscopy instrumentation and techniques for life sciences and materials science." MRS Bulletin 44, no. 12 (2019): 929–34. http://dx.doi.org/10.1557/mrs.2019.286.
Full textKano, Hideaki, Hiroki Segawa, Masanari Okuno, Philippe Leproux, and Vincent Couderc. "Hyperspectral coherent Raman imaging - principle, theory, instrumentation, and applications to life sciences." Journal of Raman Spectroscopy 47, no. 1 (2015): 116–23. http://dx.doi.org/10.1002/jrs.4853.
Full textJakůbek, J. "Semiconductor Pixel detectors and their applications in life sciences." Journal of Instrumentation 4, no. 03 (2009): P03013. http://dx.doi.org/10.1088/1748-0221/4/03/p03013.
Full textMancuso, Joel, Kirk Czymmek, and Alexandra F. Elli. "Tools for 3D Electron in Life Sciences – Generate meaningful statistics from 3DEM Data Microscopy." Microscopy and Microanalysis 25, S2 (2019): 2676–77. http://dx.doi.org/10.1017/s1431927619014119.
Full textDissertations / Theses on the topic "Instrumentation for life-sciences"
Khayat, Fahad Ali Abdulghany. "Detection of Abnormal Milk with Impedance Microbiology Instrumentation." DigitalCommons@USU, 1986. https://digitalcommons.usu.edu/etd/5332.
Full textMoatamri, Nader. "De l'analyse du pilotage d'un décanteur centrifuge à son instrumentation." Phd thesis, ENSIA (AgroParisTech), 2003. http://pastel.archives-ouvertes.fr/pastel-00003701.
Full textDouiri, Imen. "Instrumentation d'un four pilote pour la cuisson de génoise." Phd thesis, ENSIA (AgroParisTech), 2007. http://pastel.archives-ouvertes.fr/pastel-00004531.
Full textDiaz, Gilberto. "Spectroscopie optique multi-modalités in vivo : instrumentation, extraction et classification diagnostique de tissus sains et hyperplasiques cutanés." Phd thesis, Institut National Polytechnique de Lorraine - INPL, 2009. http://tel.archives-ouvertes.fr/tel-00440463.
Full textAbeille, Fabien. "Automatisation et intégration d'un réacteur de culture cellulaire pour un fonctionnement en continu." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENS036/document.
Full textOver the past six decades, cell culture has become a common practice. It is a major tool in biological research for the understanding of life science, such as the study of disease and the discovery of new drugs. It plays an important role in many industries since it is involved in the production of many food, cosmetic, and pharmaceutical products.However, Research and the industry are now facing some limits and are expressing needs to be addressed. They are both associated with high costs due to a large consumption of resources (cells, reagents, qualified operators). More specifically, cell culture in research is characterized by low throughput of experiments, important variability and risk of contamination due to the recurrent manual operations performed by operators. Additionally, experiments are performed in static conditions and on models (2D cultures, animals…) which poorly resemble the human physiology. Industrial cell culture needs miniaturized systems that mimic the large scale bioreactors and offer higher screening possibilities.Microfluidic cell culture systems represent a promising tool to address the aforementioned issues and needs. The change of physical behaviors at the small-scale in microfluidic devices allow controlling temporally and spatially the cell microenvironment, unattainable with conventional cell culture methods. The level of automation and integration allows the substantial increase of the number of experience per system and considerable reduction of resource consumption. Thus, many small cellular 3D architectures grown under dynamic conditions and in high-throughput have been performed and have demonstrated their ability to quickly re-create more physiological environments. Regarding the industrial culture, miniaturized cultures have already shown their ability to reproduce the characteristics of the culture observed in macrobioreactors with higher screening capabilities.In this framework, a benchtop microfluidic bioreactor, complying with the standard microfluidic platform and format used in the host laboratory, has been successfully fabricated to perform continuous cell cultures. Integrated solutions were developed to provide continuously the adequate conditions for cell proliferation (perfusion, thermal regulation…). Integrated cell harvest was also performed with the final goal to achieve long-term cell culture in the bioreactor.The fabricated system proved to guarantee sterile conditions for cell cultures on a regular lab bench. Moreover, these cultures were achieved autonomously without requiring a cumbersome incubator. In these conditions, the bioreactor demonstrated the possibility to perform continuous cell cultures of various cell types during several days: insects cells were cultured during 5 days and mammalian cells during 3 days. Regarding the mammalian cell cultures performed, a breakthrough has been achieved compared to the cultures performed in microfluidic systems since microcarriers (diam.:175 µm) were used as growth support.Although microcarrier cell culture is routinely performed in the industry, no autonomous microfluidic culture system has addressed this type of culture yet. Such a miniaturization is a major step forward for bioprocess applications where the need to develop scale-down bioreactors that mimic large scale operation has been clearly identified to shorten and reduce the costs associated to bioproduct development
Huisman, Maximiliaan. "Vision Beyond Optics: Standardization, Evaluation and Innovation for Fluorescence Microscopy in Life Sciences." eScholarship@UMMS, 2019. https://escholarship.umassmed.edu/gsbs_diss/1017.
Full textKalyagina, Nina. "Imagerie endoscopique de réflectance diffuse pour le diagnostic des pré-cancers et cancers précoces de la vessie : instrumentation, modélisation et validation expérimentale." Phd thesis, Université de Lorraine, 2012. http://tel.archives-ouvertes.fr/tel-00743605.
Full textPery, Emilie. "Spectroscopie bimodale en diffusion élastiqueet autofluorescence résolue spatialement :instrumentation, modélisation des interactions lumière-tissus et application à la caractérisation de tissus biologiques ex vivo et in vivo pour la détection de cancers." Phd thesis, Institut National Polytechnique de Lorraine - INPL, 2007. http://tel.archives-ouvertes.fr/tel-00199910.
Full textLa première partie des travaux présente l'instrumentation : développement, réalisation et caractérisation expérimentale d'un système de spectrométrie bimodale multi-points fibrée permettant l'acquisition de spectres in vivo (distances variables, acquisition rapide).
La deuxième partie porte sur la modélisation des propriétés optiques du tissu : développement et validation expérimentale sur fantômes d'un algorithme de simulation de propagation de photons en milieux turbides et multi-fluorescents.
La troisième partie propose une étude expérimentale conduite ex vivo sur des anneaux artériels frais et cryoconservés. Elle confirme la complémentarité des mesures spectroscopiques en diffusion élastique et autofluorescence et valide la méthode de spectroscopie multi-modalités et l'algorithme de simulation de propagation de photons. Les résultats originaux obtenus montrent une corrélation entre propriétés rhéologiques et optiques.
La quatrième partie développe une seconde étude expérimentale in vivo sur un modèle pré-clinique tumoral de vessie. Elle met en évidence une différence significative en réflectance diffuse et/ou en autofluorescence et/ou en fluorescence intrinsèque entre tissus sains, inflammatoires et tumoraux, sur la base de longueurs d'onde particulières. Les résultats de la classification non supervisée réalisée montrent que la combinaison de différentes approches spectroscopiques augmente la fiabilité du diagnostic.
Boitte, Jean-Baptiste. "Contribution à l'étude de systèmes divisés alimentaires par observation de microstructures au cours de traitements thermo-mécaniques." Phd thesis, AgroParisTech, 2012. http://pastel.archives-ouvertes.fr/pastel-01059705.
Full textLiu, Honghui. "Caractérisation de tissus cutanés superficiels hypertrophiques par spectroscopie multimodalité in vivo : instrumentation, extraction et classification de données multidimensionnelle." Phd thesis, Université de Lorraine, 2012. http://tel.archives-ouvertes.fr/tel-00745202.
Full textBooks on the topic "Instrumentation for life-sciences"
Anjana, Sharma, ed. Introduction to instrumentation in life sciences. CRC Press, 2013.
Cheng, Ping-chin. X-ray Microscopy: Instrumentation and Biological Applications. Springer Berlin Heidelberg, 1987.
R, Briggs, and International Association on Water Quality., eds. Instrumentation, control and automation of water and wastewater treatment and transport systems 1997: Selected proceedings of the 7th International Workshop on Instrumentation, Control and Automation of Water and Wastewater Treatment and Transport Systems, held at Brighton, UK, 6-9 July 1997. Pergamon, 1998.
Qingjun, Liu, and SpringerLink (Online service), eds. Biomedical Sensors and Measurement. Springer-Verlag Berlin Heidelberg, 2011.
Ciofalo, Michele. Nanoscale fluid dynamics in physiological processes: A review study. WIT Press, 1999.
service), ScienceDirect (Online, ed. Biophysical tools for biologists: In vivo techniques. Elsevier Academic Press, 2008.
G, Richard Michael, Daigger Glen T, and Jenkins David 1935-, eds. Manual on the causes and control of activated sludge bulking, foaming, and other solids separation problems. 3rd ed. Lewis Publishers, 2004.
Bisen, Prakash Singh. Introduction to Instrumentation in Life Sciences. CRC Press, 2012. http://dx.doi.org/10.1201/b12910.
Full textNatural Products Analysis Instrumentation Metods And Applications. John Wiley & Sons Inc, 2014.
Cell Biology and Instrumentation: UV Radiation, Nitric Oxide and Cell Death in Plants: Volume 371 NATO Science Series: Life and Behavioural Sciences (Nato ... Series, Life and Behavioural Sciences). IOS Press, 2006.
Book chapters on the topic "Instrumentation for life-sciences"
"- Centrifugation." In Introduction to Instrumentation in Life Sciences. CRC Press, 2012. http://dx.doi.org/10.1201/b12910-10.
Full text"- Electrophoresis." In Introduction to Instrumentation in Life Sciences. CRC Press, 2012. http://dx.doi.org/10.1201/b12910-11.
Full text"- X-Ray Microanalysis." In Introduction to Instrumentation in Life Sciences. CRC Press, 2012. http://dx.doi.org/10.1201/b12910-12.
Full text"- Techniques with Radioisotopes." In Introduction to Instrumentation in Life Sciences. CRC Press, 2012. http://dx.doi.org/10.1201/b12910-13.
Full text"- Fermentation." In Introduction to Instrumentation in Life Sciences. CRC Press, 2012. http://dx.doi.org/10.1201/b12910-14.
Full text"Conductivity Meters." In Introduction to Instrumentation in Life Sciences. CRC Press, 2012. http://dx.doi.org/10.1201/b12910-15.
Full text"- Microscopy." In Introduction to Instrumentation in Life Sciences. CRC Press, 2012. http://dx.doi.org/10.1201/b12910-5.
Full text"- Micrometry." In Introduction to Instrumentation in Life Sciences. CRC Press, 2012. http://dx.doi.org/10.1201/b12910-6.
Full text"- Electrochemical Techniques." In Introduction to Instrumentation in Life Sciences. CRC Press, 2012. http://dx.doi.org/10.1201/b12910-7.
Full text"- Chromatography." In Introduction to Instrumentation in Life Sciences. CRC Press, 2012. http://dx.doi.org/10.1201/b12910-8.
Full textConference papers on the topic "Instrumentation for life-sciences"
Hines, John W., and Robert D. Ricks. "Sensors 2000: advanced biosensor systems for space life sciences." In SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation, edited by Nona K. Minnifield. SPIE, 1994. http://dx.doi.org/10.1117/12.188817.
Full textRoth, Martin M., Karl Zenichowski, Nicolae Tarcea, et al. "The ERA2 facility: towards application of a fibre-based astronomical spectrograph for imaging spectroscopy in life sciences." In SPIE Astronomical Telescopes + Instrumentation, edited by Ramón Navarro, Colin R. Cunningham, and Eric Prieto. SPIE, 2012. http://dx.doi.org/10.1117/12.925340.
Full textZhilyakova, Elena, Nabel Mohamad, Abdulhadi Bakri, Denis Naplekov, and Diana Martseva. "Validation of Quantitative Determination Methods for Fexofenadine Hydrochloride and Cyanocobalamine in Separate Ophthalmological Dosage Forms Using UV-Spectrophotometry Instrumentation." In Proceedings of the 1st International Symposium Innovations in Life Sciences (ISILS 2019). Atlantis Press, 2019. http://dx.doi.org/10.2991/isils-19.2019.90.
Full text