Academic literature on the topic 'Insulin-like growth factor I Physiology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Insulin-like growth factor I Physiology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Insulin-like growth factor I Physiology"

1

Holly, Jeff M. P., and Claire M. Perks. "Insulin-Like Growth Factor Physiology." Endocrinology and Metabolism Clinics of North America 41, no. 2 (June 2012): 249–63. http://dx.doi.org/10.1016/j.ecl.2012.04.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yakar, Shoshana, and Martin L. Adamo. "Insulin-Like Growth Factor 1 Physiology." Endocrinology and Metabolism Clinics of North America 41, no. 2 (June 2012): 231–47. http://dx.doi.org/10.1016/j.ecl.2012.04.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rosen, Clifford J. "Serum Insulin-like Growth Factors and Insulin-like Growth Factor-binding Proteins: Clinical Implications." Clinical Chemistry 45, no. 8 (August 1, 1999): 1384–90. http://dx.doi.org/10.1093/clinchem/45.8.1384.

Full text
Abstract:
Abstract The last decade has been characterized by a major investigative thrust into the physiology of two unique but ubiquitous peptides, insulin-like growth factor (IGF)-I and IGF-II. The regulatory systems that control the tissue bioactivity of the IGFs have been delineated, and subcellular signaling mechanisms have been clarified. Clearly, both tissue and circulating growth factor concentrations are important in defining the relationship between IGF-I and cell activity. Bone, liver, and circulatory IGF-I have received the most attention by investigators, in part because of the ease of meas
APA, Harvard, Vancouver, ISO, and other styles
4

Pollak, Michael. "Insulin-like growth factor physiology and neoplasia." Growth Hormone & IGF Research 10 (January 2000): S6—S7. http://dx.doi.org/10.1016/s1096-6374(00)90002-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Holly, Jeff M. P., Claire M. Perks, and Claire E. H. Stewart. "Overview of insulin-like growth factor physiology." Growth Hormone & IGF Research 10 (January 2000): S8—S9. http://dx.doi.org/10.1016/s1096-6374(00)90003-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Roith, Derek Le. "The Insulin-Like Growth Factor System." Experimental Diabesity Research 4, no. 4 (2003): 205–12. http://dx.doi.org/10.1155/edr.2003.205.

Full text
Abstract:
The insulin-like growth factor (IGF) system in ubiquitous and plays a role in every tissue of the body. It is comprised of ligands, receptors and binding proteins, each with specific functions. While it plays an essential role in embryonic and post-natal development, the IGF system is also important in normal adult physiology. There are now numerous examples of diseases such as diabetes, cancer, and malnutrition in which the IGF system is a major player and, not surprisingly, there are attempts to affect these disorders by manipulating the system.
APA, Harvard, Vancouver, ISO, and other styles
7

Pollak, M. "Insulin-like growth factor physiology and cancer risk." European Journal of Cancer 36, no. 10 (June 2000): 1224–28. http://dx.doi.org/10.1016/s0959-8049(00)00102-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gabbitas, Bari, and Ernesto Canalis. "Insulin-like growth factors sustain insulin-like growth factor-binding protein-5 expression in osteoblasts." American Journal of Physiology-Endocrinology and Metabolism 275, no. 2 (August 1, 1998): E222—E228. http://dx.doi.org/10.1152/ajpendo.1998.275.2.e222.

Full text
Abstract:
Insulin-like growth factors (IGFs) I and II are considered to be autocrine regulators of bone cell function. Recently, we demonstrated that IGF-I induces IGF-binding protein-5 (IGFBP-5) expression in cultures of osteoblast-enriched cells from 22-day fetal rat calvariae (Ob cells). In the present study, we postulated that IGFs play an autocrine role in the maintenance of IGFBP-5 basal expression in Ob cells. IGFBP-2 and -3, at concentrations that bind endogenous IGFs, decreased IGFBP-5 mRNA levels, as determined by Northern blot analysis, and protein levels, as determined by Western immunoblots
APA, Harvard, Vancouver, ISO, and other styles
9

Sheppard, M. S., and R. M. Bala. "Insulin-like growth factor inhibition of growth hormone secretion." Canadian Journal of Physiology and Pharmacology 64, no. 5 (May 1, 1986): 525–30. http://dx.doi.org/10.1139/y86-087.

Full text
Abstract:
Somatomedins – insulin-like growth factors (SM/IGF) are growth hormone (GH) dependent serum growth factors. There is some evidence that IGF inhibit GH release (negative feedback) in 3- to 24-h incubations of cultured rat adenohypophysial cells. We have used acutely dispersed noncultured rat adenohypophysial cells to study the dynamics of IGF on GH secretion. In this system both IGF-I and IGF-II (100 ng/mL) slightly, but significantly, decrease the cumulative GH released by human pancreas growth hormone releasing factor 1–40 (GRF) and the phosphodiesterase inhibitor 3-isobutyl-1-methyl xanthine
APA, Harvard, Vancouver, ISO, and other styles
10

Sowers, James R. "Insulin and Insulin-Like Growth Factor in Normal and Pathological Cardiovascular Physiology." Hypertension 29, no. 3 (March 1997): 691–99. http://dx.doi.org/10.1161/01.hyp.29.3.691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Insulin-like growth factor I Physiology"

1

Burns, Jason Lee. "Growth control by insulin-like growth factor II." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Robertson, James Gray. "Insulin-like growth factors and insulin-like growth factor binding proteins in wounds /." Title page, contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09phr6509.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Levitt, Randy J. "Aspects of insulin-like growth factor physiology in cancer." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111826.

Full text
Abstract:
The insulin-like growth factor (IGF) pathway consists of two ligands (IGF-I and IGF-II), two receptors (IGF-IR and IGF-IIR) and six IGF binding proteins (IGFBP-I through -6). There is considerable evidence from both laboratory and population studies that IGF physiology is relevant to neoplastic growth. For example, it has been shown that IGF-I and/or IGF-II act as mitogens and anti-apoptotic agents for both normal and malignant cells by binding to the IGF-IR and activating downstream signalling pathways. Consistent with this data, IGF-IR inhibition by a variety of strategies inhibits cancer ce
APA, Harvard, Vancouver, ISO, and other styles
4

Bibollet-Bahena, Olivia. "The insulin-like growth factor-1 stimulates protein synthesis in oligodendrocyte progenitors /." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112382.

Full text
Abstract:
Insulin-like growth factor-1 (IGF-1) is essential for oligodendrocyte (OL) development, promoting their survival, proliferation and differentiation. Furthermore, IGF-1 null mutant mice have a decrease in CNS myelination and in the number of OL progenitors (OLPs). IGF-1 interacts with the Type I IGF receptor to activate two main downstream signalling pathways, the PI3K/Akt and the Ras-Raf-MEK/ERK cascades, which mediate survival or proliferation of OLPs. The objective of this study is to elucidate the transduction pathways involved in IGF-I-stimulated protein synthesis, important for growth and
APA, Harvard, Vancouver, ISO, and other styles
5

Robertson, Katherine. "The role of the growth hormone/IGF-I system on islet cell growth and insulin action /." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103288.

Full text
Abstract:
The study of diabetes mellitus is vital in this day and age because its incidence is increasing at an alarming rate. Diabetes results in the loss of function of beta-cells within the pancreas. Insulin resistance contributes to diabetes but the human body can compensate in various ways such as increasing the islet cell mass, glucose disposal and insulin secretion, in order to prevent the onset of diabetes. Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are two integral hormones important in both glucose homeostasis and islet cell growth. Early studies using cultured islet cells ha
APA, Harvard, Vancouver, ISO, and other styles
6

Kallincos, Nicholas Campbell. "Growth hormone (GH) and insulin-like growth factor-I (IGF-I) in vivo: investigation via transgenesis in rats." Thesis, Adelaide, 1993. http://hdl.handle.net/2440/21602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kallincos, Nicholas Campbell. "Growth hormone (GH) and insulin-like growth factor-I (IGF-I) in vivo: investigation via transgenesis in rats /." Adelaide : Thesis (Ph.D.) -- University of Adelaide, Department of Biochemistry, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phk143.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lu, Yarong 1971. "Pancreatic-specific insulin-like growth factor I gene deficiency on islet cell growth and protection." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111827.

Full text
Abstract:
The role of insulin-like growth factor I (IGF-I) in pancreatic islet cell growth and development has been debated in recent years. The dogma that IGF-I stimulates pancreatic islet growth has been challenged by combinational targeting of IGF or IGF-IR genes, as well as beta-cell-specific IGF-IR gene deficiency. In order to assess the physiological role of locally produced IGF-I, we have developed pancreatic-specific IGF-I gene deficiency (PID) by crossing Pdx1-Cre and IGF-I/loxP mice. PID mice were normal except for decreased blood glucose level and a 2.3-fold enlarged islet cell mass. When cha
APA, Harvard, Vancouver, ISO, and other styles
9

Lok, Fong. "Role of IGF-I in ovine fetal and placental growth and development /." Title page, contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phl836.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kind, Karen Lee. "Insulin-like growth factors and growth of the fetal sheep /." Title page, contents and abstract only, 1995. http://web4.library.adelaide.edu.au/theses/09PH/09phk525.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Insulin-like growth factor I Physiology"

1

1945-, LeRoith Derek, ed. Insulin-like growth factors: Molecular and cellular aspects. Boca Raton: CRC Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jr, Roberts Charles T., and Rosenfeld Ron G, eds. The IGF system: Molecular biology, physiology, and clinical applications. Totowa, N.J: Humana Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

International Symposium on Molecular and Cellular Biology of Insulin and IGFs (3rd 1990 Gainesville, Fla.). Molecular biology and physiology of insulin and insulin-like growth factors. New York: Plenum Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1945-, LeRoith Derek, Raizada Mohan K, and International Symposium on Insulin, IGFs, and their Receptors (4th : 1993 : Woods Hole, Mass.), eds. Current directions in insulin-like growth factor research. New York: Plenum, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Raizada, Mohan K., and Derek LeRoith, eds. Molecular Biology and Physiology of Insulin and Insulin-Like Growth Factors. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5949-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Raizada, Mohan K. Molecular Biology and Physiology of Insulin and Insulin-Like Growth Factors. Boston, MA: Springer US, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Robert, Hooghe, ed. Growth hormone, prolactin, and IGF-1 as lymphohemopoietic cytokines. New York: Springer-Verlag, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hooghe-Peters, Elisabeth L. Growth hormone, prolactin, and IGF-1 as lymphohemopoietic cytokines. Austin: R.G. Landes, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

International Symposium on Insulin-Like Growth Factors/Somatomedins (2nd 1991 San Francisco, Calif.). Modern concepts of insulin-like growth factors: Proceedings of the Second International Symposium on Insulin-Like Growth Factors/Somatomedins held January 12-16, 1991 in San Francisco, California. New York: Elsevier, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

C, Baxter R., Gluckman Peter D, and Rosenfeld Ron G, eds. The insulin-like growth factors and their regulatory proteins: Proceedings of the Third International Symposium on Insulin-Like Growth Factors, Sydney, 6-10 February 1994. Amsterdam: Excerpta Medica, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Insulin-like growth factor I Physiology"

1

Aguirre, Gabriel A., José Luis González-Guerra, Luis Espinosa, and Inma Castilla-Cortazar. "Insulin-Like Growth Factor 1 in the Cardiovascular System." In Reviews of Physiology, Biochemistry and Pharmacology, Vol. 175, 1–45. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/112_2017_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Adashi, Eli Y., Carol Resnick, Eleuterio R. Hernandez, Marjorie E. Svoboda, E. Hoyt, David R. Clemmons, Pauline K. Lund, and Judson J. Van Wyk. "Rodent Studies on the Potential Relevance of Insulin-Like Growth Factor (IGF-I) to Ovarian Physiology." In Growth Factors and the Ovary, 95–105. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5688-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Frohman, Lawrence A. "Physiology of the Growth Hormone Releasing Hormone-Somatostatin-Growth Hormone-Insulin-Like Growth Factor I Axis." In GHRH, GH, and IGF-I, 3–10. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-0807-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Martín-Estal, I., R. G. de la Garza, and I. Castilla-Cortázar. "Intrauterine Growth Retardation (IUGR) as a Novel Condition of Insulin-Like Growth Factor-1 (IGF-1) Deficiency." In Reviews of Physiology, Biochemistry and Pharmacology, 1–35. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/112_2015_5001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Froesch, E. R. "Insulin-like Growth Factor: Endocrine and Autocrine/Paracrine Implications and Relations to Diabetes Mellitus." In Contributions of Physiology to the Understanding of Diabetes, 127–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60475-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Martín-Estal, I., R. G. de la Garza, and I. Castilla-Cortázar. "Erratum to: Intrauterine Growth Retardation (IUGR) as a Novel Condition of Insulin-Like Growth Factor-1 (IGF-1) Deficiency." In Reviews of Physiology, Biochemistry and Pharmacology, 129. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/112_2016_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moolenaar, W. H., K. Jalink, and E. J. van Corven. "Lysophosphatidic acid: A bioactive phospholipid with growth factor-like properties." In Reviews of Physiology, Biochemistry and Pharmacology, 47–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3540551921_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jacobs, S. "Insulin-like Growth Factor I Receptors." In Insulin, 267–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74098-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Seth, John. "Insulin-Like Growth Factor-I." In The Immunoassay Kit Directory, 197–203. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1414-1_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Seth, John. "Insulin-Like Growth Factor-II." In The Immunoassay Kit Directory, 204–5. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1414-1_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Insulin-like growth factor I Physiology"

1

Wijayanti, Dian, Sunarjati Sudigdo Adi, Achadiyani, Gaga Irawan Nugraha, Reni Farenia, and Adi Santosa Maliki. "The Effect of Intermitten Fasting Vs Low Calorie Diet to Insuline Like Growth Factor-1 (IGF-1) Concentration, Fat Mass and Lean Mass of Rattus Norvegicus Obesity Model." In Surabaya International Physiology Seminar. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0007332600530055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yerushalmi, R., B. Gilks, T. Nielsen, S. Leang, M. Cheang, R. Woods, K. Gelmon, and H. Kennecke. "Insulin like growth factor in breast cancer subtypes." In CTRC-AACR San Antonio Breast Cancer Symposium: 2008 Abstracts. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.sabcs-3048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Doyle, Suzanne L., Claire Donohoe, Joanne Lysaght, Fiona Lithander, Graham Pidgeon, and John V. Reynolds. "Abstract 2283: The role of insulin-like growth factor-1 and insulin like growth factor-1 receptor in obesity and oesophageal cancer." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-2283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rice, Megan S., Rulla M. Tamimi, James L. Connolly, Laura C. Collins, Dejun Shen, Michael N. Pollak, Bernard Rosner, Susan E. Hankinson, and Shelley S. Tworoger. "Abstract A68: Insulin-like growth factor-1, insulin-like growth factor binding protein-3, and lobule type in the Nurses' Health Study II." In Abstracts: AACR International Conference on Frontiers in Cancer Prevention Research‐‐ Oct 22-25, 2011; Boston, MA. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1940-6207.prev-11-a68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nedelkov, Dobrin, Eric Niederkofler, David Phillips, Bryan Krastins, Urban Kiernan, Kemmons Tubbs, and Mary Lopez. "Abstract 2508: Mass spectrometric immunoassay for insulin-like growth factor 1." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-2508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Warnken, M., U. Reitzenstein, M. Fuhrmann, P. Mayer, H. Enzmann, and K. Racke. "Characterization of Proliferative Effects of Insulin and Insulin-Like Growth Factor in Human Airway Epithelial Cells." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a4982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yee, Douglas, Dedra H. Fagan, Xihong Zhang, Annabell S. Oh, Kelly LaPara, Marc Becker, Deepali Sachdev, and Hua Zhang. "Abstract CN07-02: Disrupting insulin‐like growth factor signaling with monoclonal antibodies." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 15-19, 2009; Boston, MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/1535-7163.targ-09-cn07-02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fritton, J. Christopher, Yuki Kawashima, Hui Sun, Yingjie Wu, Wilson Mejia, Hayden W. Courtland, Clifford J. Rosen, and Shoshana Yakar. "Bone Marrow Adipogenesis Is Affected by Insulin-Like Growth Factor-1 Complexes." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206158.

Full text
Abstract:
Fat tissue, which is composed of lipid-filled adipocytes that accumulate during aging, displaces mineralized tissue and reduces the mechanical integrity bone. Bone marrow adipocytes provide stroma for maintenance of mesencymal stem cells (MSC) and reside at sites of bone turnover (i.e., endosteal surfaces where osteoblasts form new bone), potentially influencing cell activity via a paracrine route.
APA, Harvard, Vancouver, ISO, and other styles
9

Bruns, Alexander-Francisco, Jessica Smith, Pooja Shah, Nadira Yuldasheva, Mark T. Kearney, and Stephen Wheatcroft. "145 Insulin-like growth factor binding protein 2 (igfbp2) positively regulates angiogenesis." In British Cardiovascular Society Annual Conference ‘High Performing Teams’, 4–6 June 2018, Manchester, UK. BMJ Publishing Group Ltd and British Cardiovascular Society, 2018. http://dx.doi.org/10.1136/heartjnl-2018-bcs.141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ibrahim, YH, J. Hartel, K. La Parra, and D. Yee. "Insulin-like growth factor binding protein-1 (IGFBP-1) targets both the insulin-like growth factor (IGF) and integrin pathways for the inhibition of breast cancer cell motility." In CTRC-AACR San Antonio Breast Cancer Symposium: 2008 Abstracts. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.sabcs-402.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Insulin-like growth factor I Physiology"

1

Gross, Jennifer M. Insulin-Like Growth Factor Binding Protein-1 Interacts with Integrins to Inhibit Insulin-Like Growth Factor-Induced Breast Cancer Growth and Migration. Fort Belvoir, VA: Defense Technical Information Center, July 2003. http://dx.doi.org/10.21236/ada420347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cleveland, Rebecca J., Marilie D. Gammon, and Ralph S. Baric. Insulin-Like Growth Factor I Polymorphisms in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada412654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Morrison, Tiffany. The Regulation of Insulin-like Growth Factor 1 by Growth Hormone via Stat5b. Portland State University Library, January 2012. http://dx.doi.org/10.15760/honors.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Harbeson, Caroline E., and Steven A. Rosenzweig. The Role of Insulin-Like Growth Factor (IGF) in IGF-Mediated Tumorigenesis. Fort Belvoir, VA: Defense Technical Information Center, July 2004. http://dx.doi.org/10.21236/ada432027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jarrard, David F. Relaxation of Insulin-Like Growth Factor II Imprinting in Prostate Cancer Development. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada433881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jarrard, David F. Relaxation of Insulin-Like Growth Factor II Imprinting in Prostate Cancer Development. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada414797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jarrard, David F. Relaxation of Insulin-Like Growth Factor II Imprinting in Prostate Cancer Development. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada423078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Doughterty, Michele K. Insulin Like Growth Factor I Receptor Function in Estrogen Receptor Negative Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada396720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bartucci, Monica, and Ewa Surmacz. Cell-Cell Adhesion and Insulin-Like Growth Factor I Receptor in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada398204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dougherty, Michele K. Insulin Like Growth Factor 1 Receptor Function in Estrogen Receptor Negative Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, July 2002. http://dx.doi.org/10.21236/ada408990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!