To see the other types of publications on this topic, follow the link: Insulin receptor tyrosine.

Dissertations / Theses on the topic 'Insulin receptor tyrosine'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 25 dissertations / theses for your research on the topic 'Insulin receptor tyrosine.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Lew, Gregory John. "Studies on protein phosphorylation in response to insulin in isolated cellular fractions reconstituted with insulin receptors." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/27979.

Full text
Abstract:
The mechanism by which insulin and other polypeptide growth factors alter cellular metabolism is not fully understood. In the case of insulin, it is thought that phosphorylation/dephosphorylation mechanisms may play a central role in the signalling pathway. This is based on evidence which includes demonstration that the receptor for insulin is a tyrosine-specific protein kinase which is activated in response to insulin binding. Ultimately, insulin binding to its receptor on the surface of intact fat cells leads to altered levels of serine phosphorylation of several soluble proteins, including the phosphorylation of ATP-citrate lyase and acetyi-CoA carboxylase. Recently, studies involving site-specific mutagenesis have shown that the tyrosine kinase function of the insulin receptor is essential for insulin signalling. The studies described in this thesis have addressed the problem of how activation of the insulin receptor/tyrosine kinase results in the altered serine phosphorylation observed in intact cells in response to insulin. To gain further understanding of the cellular components required for insulin signalling, reconstitution experiments have been carried out mixing isolated cellular fractions with preparations of insulin receptors. The effects of insulin on altering protein-serine and protein-tyrosine phosphorylation have been determined in this reconstituted system. Results show that in a high-speed (100,000 x g) supernatant fraction prepared from rat adipose tissue endogenous protein-serine kinases are sensitive to conditions which are commonly employed for assaying insulin receptor/kinase activity. This includes inhibition by micromolar concentrations of MnCI₂, by 40 mM NaF, and by low reaction temperature (0°C). When the insulin receptor, present in a WGA-Sepharose-purified preparation of detergent-solublized rat liver membranes, was assayed in the complete absence of both MnCI₂ and NaF, receptor/tyrosine kinase activity was only slightly reduced with little or no decrease in the responsiveness to insulin. Furthermore, when the WGA-Sepharose-purified membrane fraction was incubated at 37°C in the presence of [ɣ -³²P]ATP several endogenous proteins were observed to be phosphorylated in addition to the β-subunit of the insulin receptor. These membrane proteins appear to be phosphorylated on tyrosine as indicated by their resistance to alkali hydrolysis. Upon reconstitution of the adipose tissue high-speed supernatant fraction with the WGA-Sepharose-purified preparation of insulin receptors the most striking effects observed were the phosphorylation of a 40 kd protein subunit (pp40) and the dephosphorylation of a 25 kd protein subunit (pp25) present in adipose tissue. The phosphorylation of pp40 occurs on tyrosine and is insulin-responsive, whereas the dephosphorylation of pp25 occurs following reconstitution with either untreated control, or insulin-activated insulin receptors. To assess the effect that reconstituted insulin receptors may have on the phosphorylation of endogenous ATP-citrate lyase in adipose tissue high-speed supernatant, it was found that a more pure preparation of insulin receptors was required. Further purification of the insulin receptor to homogeneity was therefore attempted using insulin-agarose affinity chromatography. However, difficulties including low yield and instability of the receptor through purification have prevented progress with these studies at present. In a separate study, highly purified acetyl-CoA carboxylase was reconstituted with a crude fraction consisting of total Triton-solublized membrane proteins. In this reconstituted system phosphorylation of acetyl-CoA carboxylase was enhanced to an extent greater than 6-fold after incubation with [ɣ -³²P]ATP. Following chromatography of the crude Triton-solublized extract over WGA-Sepharose this acetyl-CoA carboxylase kinase activity was found to be present in the flow-through void fraction and not in the N-acetylglucosamine eluted fraction. The acetyl-CoA carboxylase kinase, at present, does not appear to be insulin-responsive, but further studies are needed to confirm this observation.
Medicine, Faculty of
Biochemistry and Molecular Biology, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
2

O'Brien, Richard Mark. "Studies on the insulin receptor tyrosine-specific protein kinase." Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lynch, Deborah Frances. "The role of tyrosine, serine and threonine phosphorylation in the regulation of the insulin receptor tyrosine kinase activity." Thesis, University of Bristol, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jozic, Ivan. "Selective and Specific Activation of Rab5 during Endocytosis of Receptor Tyrosine Kinases." FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/813.

Full text
Abstract:
The Rab family of proteins are low molecular weight GTPases that have the ability to switch between GTP- (active) and GDP- (inactive) bound form, and in that sense act as molecular switches. Through distinct localization on various vesicles and organelles and by cycling through GTP/GDP bound forms, Rabs are able to recruit and activate numerous effector proteins, both spatially and temporally, and hence behave as key regulators of trafficking in both endocytic and biosynhtetic pathways. The Rab5 protein has been shown to regulate transport from plasma membrane to the early endosome as well as activate signaling pathways from the early endosome. This dissertation focused on understanding Rab5 activation via endocytosis of receptor tyrosine kinases (RTKs). First, tyrosine kinase activity of RTKs was linked to endosome fusion by demonstrating that tyrosine kinase inhibitors block endosome fusion and activation of Rab5, and a constitutively active form of Rab5 is able to rescue endosome fusion. However, depending on how much ligand is available at the cell surface, the receptor-ligand complexes can be internalized via a number of distinct pathways. Similarly, Rab5 was activated in a ligand-dependent concentration dependent manner via clathrin- and caveolin-mediated pathways, as well as a pathway independent of both. However, overexpression Rabex-5, a nucleotide exchange factor for Rab5, is able to rescue activation even when all of the pathways of EGF-receptor internalization were blocked. Next, the three naturally occurring splice variants of Rabex-5 selectively activated Rab5. Lastly, Rabex-5 inhibits differentiation of 3T3-L1 and PC12 cells through 1) degradation of signaling endosome via Rab5-dependent fusion with the early endosome, 2) and inhibition of signaling cascade via ubiquitination of Ras through the ZnF domain at the N-terminus of Rabex-5. In conclusion, these data shed light on complexity of the endosomal trafficking system where tyrosine kinase activity of the receptor is able to affect endosome fusion; how different endocytic pathways affect activation of one of the key regulators of early endocytic events; and how selective activation of Rab5 via Rabex-5 can control adipogenesis and neurogenesis.
APA, Harvard, Vancouver, ISO, and other styles
5

Hughes, Stephen Bernard. "Development of real-time reverse transcription polymerase chain reaction assays to quantify insulin-like growth factor-1 receptor and insulin receptor expression in equine tissue." Diss., University of Pretoria, 2011. http://hdl.handle.net/2263/31135.

Full text
Abstract:
has been significant progress in the development of new technologies and methodologies to characterize gene expression. The fluorescent-based real-time reverse transcription (RT) polymerase chain reaction (PCR) is an important tool used for clinical and molecular research, biotechnology and as a diagnostic test. Insulin-like growth factors (IGF-1 and IGF-2) and insulin are ubiquitously expressed and play important roles in the regulation of cell growth, differentiation and the maintenance of cell differentiation in mammals. The IGF system (IGF-1, IGF-2, IGF -1 receptor, IGF-2 receptor and six IGF-binding proteins) and insulin are consequently essential to most aspects of male and female reproduction. IGF-1 is produced in multiple tissues but predominately in the liver, from where it enters the circulation. Insulin is secreted by β-cells of the pancreas’ islets of Langerhans. Both IGF-1 and insulin polypeptides bind to specific cell surface receptors. These receptors are members of the superfamily known as tyrosine protein kinases, and are composed of two α and two β subunits linked by disulfide bonds to form an αβ–αβ heterotetramer. The α subunits include ligand binding sites, whereas the β subunits contain tyrosine kinase activity. The aim of this project was to develop real-time RT-PCR assays for quantification of equine insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (INS-R) mRNA. The assays were developed using stallion testicular tissue samples, obtained by excisional biopsy, from three horse breeds (Friesan, Thoroughbred and Warmblood). The assays developed were efficient, sensitive and had a broad linear range of detection (seven logs for IGF-1R and six logs for INS-R). The assays worked well in our hands and were both sensitive and specific for the detection of equine IGF-1R and INS-R mRNA in a variety of equine tissues.
Dissertation (MMedVet)--University of Pretoria, 2011.
Production Animal Studies
Unrestricted
APA, Harvard, Vancouver, ISO, and other styles
6

Kupzig, Sabine. "Identification and characterisation of two novel proteins of the secretory pathway." Thesis, University of Bristol, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sun, Clement. "Function of receptor tyrosine kinases in G¦i-deficient cells, preferential suppression of insulin signalling." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0023/MQ50413.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dool, Carly Jade 1985. "Pharmacologic inhibition of insulin receptor tyrosine kinase activity has antineoplastic effects similar to alloxan-induced insulin deficiency with less acute metabolic toxicity." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111555.

Full text
Abstract:
Recent population studies provide evidence that individuals with high circulating insulin levels have a poor prognosis and/or increased risk of cancer development; however, laboratory studies concerning the role of insulin in breast cancer biology are sparse. We compared the growth of 4T1 murine breast cancer allografts in control mice, alloxan-induced hypoinsulinemic mice, and mice treated with the insulin/insulin-like growth factor-1 receptor tyrosine kinase inhibitor BMS-536924. Both interventions significantly decreased tumor growth versus control and decreased pathway activation downstream of the insulin receptor as reflected by Aktser473 phosphorylation status in the neoplastic tissue. Alloxan-treated mice exhibited signs of insulin deficiency, while BMS-536924-treated animals showed only minor metabolic derangements. Skeletal muscle displayed reduced pAktser473 in alloxan-treated mice. In contrast, BMS-536924 treatment increased pAktser473 in muscle. This raises the possibility that the relative lack of metabolic toxicity of BMS-536924 involves varying tissue levels of the drug. These results support the view that host insulin physiology is a potentially modifiable determinant of breast cancer behaviour.
APA, Harvard, Vancouver, ISO, and other styles
9

Abhyankar, Lalita. "The effect of reducing insulin degrading enzyme in HEPG2 cells on activation of insulin receptor, IRS-1 and SHC by tyrosine phosphorylation." Thesis, The University of Arizona, 2009. http://hdl.handle.net/10150/192259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zapf-Colby, Antje. "Mechanisms of specificity in the tyrosine kinase receptor signal transduction pathways of nerve growth factor, insulin-like growth factor-I, and insulin /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1997. http://wwwlib.umi.com/cr/ucsd/fullcit?p9814555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Pillai, Lakshmi Rajan. "Investigations of the roles of G protein-coupled receptors and receptor tyrosine kinases in metabolic syndrome and cancer." Master's thesis, Mississippi State : Mississippi State University, 2008. http://library.msstate.edu/etd/show.asp?etd=etd-07102008-171046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Galvis, Adriana. "Novel Insights into the Mechanisms of Regulation of Tyrosine Kinase Receptors by Ras Interference 1." FIU Digital Commons, 2014. http://digitalcommons.fiu.edu/etd/1176.

Full text
Abstract:
Receptor-tyrosine kinases (RTKs) are membrane bound receptors characterized by their intrinsic kinase activity. RTK activities play an essential role in several human diseases, including cancer, diabetes and neurodegenerative diseases. RTK activities have been regulated by the expression or silencing of several genes as well as by the utilization of small molecules. Ras Interference 1 (Rin1) is a multifunctional protein that becomes associated with activated RTKs upon ligand stimulation. Rin1 plays a key role in receptor internalization and in signal transduction via activation of Rab5 and association with active form of Ras. This study has two main objectives: (1) It determines the role of Rin1 in the regulation of several RTKs focusing on insulin receptor. This was accomplished by studying the Rin1-insulin receptor interaction using a variety of biochemical and morphological assays. This study shows a novel interaction between the insulin receptor and Rin1 through the Vps9 domain. Two more RTKs (epidermal growth factor receptor and nerve growth factor receptor) also interacted with the SH2 domain of Rin1. The effect of the Rin1-RTK interaction on the activation of both Rab5 and Ras was also studied during receptor internalization and intracellular signaling. Finally, the role of Rin1 was examined in two differentiation processes (adipogenesis and neurogenesis). Rin1 showed a strong inhibitory effect on 3T3-L1 preadipocyte differentiation but it seems to show a modest effect in PC12 neurite outgrowth. These data indicate a selective function and specific interaction of Rin1 toward RTKs. (2) It examines the role of the small molecule Dehydroleucodine (DhL) on several key signaling molecules during adipogenesis. This was accomplished by studying the differentiation of 3T3-L1 preadipocytes exposed to different concentrations of DhL in different days of the adipocyte formation process. The results indicate that DhL selectively blocked adipocyte formation, as well as the expression of PPARγ, and C/EBPα. However, DhL treatment did not affect Rin1 or Rab5 expression and their activities. Taken together, the data indicate a potential molecular mechanism by which proteins or small molecules regulate selective and specific RTK intracellular membrane trafficking and signaling during cell growth and differentiation in normal and pathological conditions.
APA, Harvard, Vancouver, ISO, and other styles
13

Abbott, Mary-Alice. "Structural and Signaling Proteins at the Synapse: Dystroglycan & Insulin Receptor Tyrosine Kinase Substrate p58/53: a Dissertation." eScholarship@UMMS, 1999. https://escholarship.umassmed.edu/gsbs_diss/124.

Full text
Abstract:
The synapse is the primary locus of cell-cell communication in the nervous system. The elaboration of a functional synapse requires both a specialized structure and an efficient communication system. For my thesis work, I studied proteins implicated in each of these functions: the structural molecules dystroglycan and dystrophin, and the signaling elements Insulin Receptor Substrate p58/53 and insulin receptor. The α/β-dystroglycan complex, believed to be the heart of cellmatrix adhesion in muscle and other tissues, provides a link between dystrophin, a cytoskeletal protein at the base of the muscle cell's Dystrophin Associated Protein Complex, and the extracellular matrix. In addition, dystrophin is found at central synapses, tightly associated with the postsynaptic density. The absence of dystrophin and the secondary loss of its associated proteins causes the genetic disease Duchenne Muscular Dystrophy. DMD affects both muscle and brain, causing a severe muscular dystrophy and lower IQs than control groups. In the first portion of my thesis work, I sought to determine the role of dystroglycan, dystrophin's peripheral partner, at central synapses. I probed Northern blots of brain regions to delineate the distribution of brain β-dystroglycan mRNA and to uncover any β-dystroglycan-related transcripts in brain. Then, using subcellular brain fractions, and cultured hippocampal neurons, I determined that whereas α-dystroglycan is associated with central synapses, β-dystroglycan is not. This discovery is surprising, and differs from the finding that dystrophin and α- and β-dystroglycan colocalize at the presynaptic membrane of retinal photoreceptors. In the course of the above mentioned work, using the anti-β-dystroglycan antiserum Ab98, I discovered a pair of proteins that were tightly associated with the postsynaptic density. These polypeptides of 58 kDa and 53 kDa (p58/53) were highly enriched in postsynaptic density (PSD) fractions from rat cerebral cortex, hippocampus, and cerebellum. In pursuit of a potential synapse-specific dystroglycan relative, I purified p58 and p53 by a combination of hydrophobic interaction chromatography and two-dimensional gel electrophoresis. Mass spectroscopy and peptide microsequencing revealed that p58/53 is identical to the insulin receptor tyrosine kinase substrate p58/53 (IRSp53). Whereas IRSp58/53 has no significant homology to β-dystroglycan other than the one span of peptides that confers its antibody cross-reactivity, its localization to the PSD newly implicates insulin signaling at synapses. Analysis of IRSp58/53 mass profiles, peptides, and mRNA indicated that IRSp58 and IRSp53 are the product of the same coding sequence. Immunolocalization showed that IRSp58/53 is expressed in the synapserich molecular layer of the cerebellum. Immunostaining of cultured hippocampal neurons showed that both IRSp58/53 and insulin receptor are highly concentrated at synapses. Like IRSp58/53, insulin receptors are a component of the PSD fraction. Together, these data suggest that the synapse is a specialized site for insulin signaling in the brain.
APA, Harvard, Vancouver, ISO, and other styles
14

Wang, Amanda Cyphers. "Common Signaling Elements in Response Pathways Activated by the Endothelial Survival Factors VEGF and Insulin." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/36205.

Full text
Abstract:
Damage to the vasculature is a common occurrence in diabetes mellitus. At the cellular level, dysfunction of vascular endothelial cells is often associated with diabetic conditions. Multiple agents maintain the endothelium, including vascular endothelial growth factor (VEGF), an endothelial cell mitogen/survival factor, and insulin, which has anti-apoptotic effects on endothelial cells in addition to regulating glucose homeostasis. Insulin and VEGF, upon activating their respective tyrosine kinase receptors, can engage the PI3-kinase/Akt, MAPK, and PLC-γ/PKC pathways. Thus, crosstalk between VEGF and insulin signaling may occur at numerous points. Our objectives were twofold: 1) to characterize the combined effects of insulin and VEGF on downstream elements, and 2) to determine the ability of signaling intermediates principally associated with either insulin or VEGF signaling to interact directly. After treatment with VEGF, insulin, or both, cells expressing both VEGF receptor-2 (KDR) and the insulin receptor were immunoprecipitated for total Akt and PLC-γ. Isolates from cells stimulated with both ligands demonstrated activation of PLC-γ and Akt that was less than additive over fifteen minutes. Conversely, cells pretreated with advanced glycation end products showed increased Akt phosphorylation. The effect of insulin on VEGF bioactivity was also measured by PLC-γ-mediated hydrolysis of phosphatidylinositol. These studies suggested suppressed VEGF activity in the presence of insulin. To examine direct signaling interactions, recombinant reagents capable of selective binding (via SH2 domains) to phosphorylated receptors were generated. Overall results showed relatively unaffected VEGF activity in the presence of insulin; however, this relationship is likely altered within the diabetic state.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
15

Young, Stephen W. "The insulin receptor tyrosine kinase and the activation of the map kinase cascade : interactions with the protein kinase C and protein kinase A signalling pathways." Thesis, University of Bristol, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Paré, Martin. "L’implication de SHP-1 en condition élevée de glucose inhibe la signalisation de l’insuline et du PDGF-BB dans les cellules musculaires lisses vasculaires hypoxiques." Mémoire, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/9502.

Full text
Abstract:
Résumé : Bien que l’hypoxie soit un puissant inducteur de l’angiogenèse, l’activation des facteurs de croissance est perturbée en hyperglycémie au niveau du pied et du cœur. Cette perturbation entraîne la perte de prolifération et de migration chez les cellules endothéliales, musculaires lisses vasculaires et péricytes empêchant la formation de nouveaux vaisseaux qui mènera à l’amputation des membres inférieurs chez les patients diabétiques. Une étude a démontré qu’une augmentation de la protéine tyrosine phosphatase Src homology-2 domain-containing phosphatase-1 (SHP-1) en condition hyperglycémique chez les péricytes entraînait l’inhibition de la signalisation du PDGF-BB, ce qui résultait en le développement d’une rétinopathie diabétique. Nous avons alors soulevé l’hypothèse que l’expression de SHP-1 dans les cellules musculaires lisses vasculaires affecte la prolifération et la migration cellulaire par l’inhibition de la signalisation de l’insuline et du PDGF-BB en condition diabétique. Nos expérimentations ont été effectuées principalement à l’aide d’une culture primaire de cellules musculaires lisses primaires provenant d’aortes bovines. Comparativement aux concentrations normales de glucose (NG : 5,6 mM), l’exposition à des concentrations élevées de glucose (HG : 25 mM) pendant 48 h a résulté en l’inhibition de la prolifération cellulaire par l’insuline et le PDGF-BB autant en normoxie (20% O2) qu’en hypoxie (24 dernières heures à 1% O2). Lors des essais de migration cellulaire, aucun effet de l’insuline n’a été observé alors que la migration par le PDGF-BB fut inhibée en HG autant en normoxie qu’en hypoxie. L’exposition en HG à mener à l’inhibition de la signalisation de la voie PI3K/Akt de l’insuline et du PDGF-BB en hypoxie. Aucune variation de l’expression de SHP-1 n’a été observée mais son activité phosphatase en hypoxie était fortement inhibée en NG contrairement en HG où on observait une augmentation de cette activité. Finalement, une association a été constatée entre SHP-1 et la sous-unité bêta du récepteur au PDGF. En conclusion, nous avons démontré que l’augmentation de l’activité phosphatase de SHP-1 en hypoxie cause l’inhibition des voies de l’insuline et du PDGF-BB réduisant les processus angiogéniques des cellules musculaires lisses vasculaires dans la maladie des artères périphériques.
Abstract : Even though hypoxia is a strong angiogenic inducer, pro-angiogenic factor signaling pathways in peripheral limb and heart are altered by hyperglycemia. This disruption leads to loss of endothelial cells, vascular smooth muscle cells and pericytes proliferation and migration preventing new blood vessel formation which results in amputation of lower extremities in diabetic patients. A study has shown that increase expression of the protein tyrosine phosphatase Src homology-2 domain-containing phosphatase-1 (SHP-1) in hyperglycemic condition in pericytes caused PDGF-BB signaling inhibition resulting in the development of diabetic retinopathy. Our hypothesis is that SHP-1 expression in vascular smooth muscle cells inhibits cell proliferation and migration induced by insulin and PDGF-BB in diabetic condition. Our experiments were performed using primary culture of vascular smooth muscle cells (SMC) from bovine aortas. As compared to normal glucose concentrations (NG:5,6 mM), high glucose level (HG: 25 mM) exposure for 48h inhibited SMC proliferation induced by insulin and PDGF-BB in both normoxia (20% O2) or hypoxia (1% O2 for the last 24h). During cell migration assays, no effect of insulin was observed while PDGF-BB action of SMC migration was reduced in HG in both normal and low oxygen concentrations. HG exposure lead to inhibition of insulin- and PDGF-BB-stimulated PI3K/Akt signaling pathway in hypoxia. No variation of SHP-1 expression was observed in HG condition. However, SHP-1 phosphatase activity was elevated in HG condition during hypoxia as compared to NG concentrations. Finally, our data showed an association between SHP-1 and the PDGF receptor beta subunit. In conclusion, our results demonstrated that the increase of SHP-1 phosphatase activity in hyperglycemia and hypoxia environment caused inhibition of insulin and PDGF-BB signaling pathways reducing angiogenic processes in vascular smooth muscle cells contributing to peripheral arterial disease in diabetes.
APA, Harvard, Vancouver, ISO, and other styles
17

Drapeau, Nicolas. "L’expression de SHP-1 induite par l’hyperglycémie inhibe les actions de l’insuline dans les podocytes." Mémoire, Université de Sherbrooke, 2014. http://savoirs.usherbrooke.ca/handle/11143/129.

Full text
Abstract:
Résumé : Les podocytes, cellules épithéliales rénales, sont nécessaires au maintien de la structure et de la fonction de filtration des glomérules rénaux. La dédifférenciation et l’apoptose des podocytes sont des évènements précoces de la néphropathie diabétique. Des études ont rapporté que l’insuline est nécessaire à la survie des podocytes puisque la délétion du récepteur à l’insuline dans les podocytes de souris entraîne une pathologie glomérulaire semblable à la néphropathie. D’autres études ont montré que la protéine tyrosine phosphatase Src homology-2 domain-containing phosphatase-1 (SHP-1) inhibe les voies de signalisation de l’insuline au niveau du foie et du muscle en déphosphorylant la sous-unité bêta du récepteur à l’insuline (IRβ) et la kinase Phosphatidylinositide 3-kinase (PI3K). Il a récemment été démontré que l’expression de SHP-1 est élevée dans les cortex rénaux de souris diabétiques. Nous avons donc émis l’hypothèse que l’expression de SHP-1 induite par l’hyperglycémie altère les actions de l’insuline dans les podocytes. Nous avons premièrement utilisé un modèle in vivo de souris diabétiques de type 1 (Ins2+/C96Y; Akita). Comparées aux souris contrôles (Ins2+/+), les souris Akita présentaient une apoptose élevée des podocytes ainsi qu’une perte des pédicelles. La phosphorylation de la protéine kinase B (Akt) et de Extracellular signal-regulated kinase 1/2 (ERK1/2), suite à une injection systémique d’insuline, était également significativement diminuée dans les cortex rénaux des souris Akita. Cette diminution correspondant à une résistance à l’insuline corrélait avec une augmentation de deux fois de l’expression de SHP-1 dans les glomérules. Nous avons ensuite utilisé une lignée immortalisée de podocytes murins en culture et avons observé que l’exposition à des concentrations élevées de glucose (HG; 25 mM) pendant 96 h, entraînait l’augmentation de l’expression de marqueurs apoptotiques et de l’activité enzymatique de caspase-3/7 en comparaison aux concentrations normales de glucose (NG; 5,6 mM). L’exposition en HG a augmenté l’expression de l’ARNm et protéique de SHP-1, en plus de réduire la signalisation de l’insuline dans les podocytes. La surexpression de la forme dominante-négative de SHP-1 dans les podocytes a permis de renverser les effets de HG et de restaurer les actions de l’insuline. Finalement, l’augmentation de l’expression de SHP-1, tant in vivo qu’in vitro, a été directement corrélée à son association avec IRβ et à la diminution de la phosphorylation de IRβ, Akt et ERK1/2 suite à une stimulation à l’insuline. En conclusion, nous avons montré que l’expression élevée de SHP-1 dans les glomérules cause une résistance à l’insuline et la mort des podocytes contribuant ainsi à la néphropathie diabétique. // Abstract : Podocytes are epithelial renal cells required to preserve glomerular structure and filtration. Their dedifferentiation and apoptosis are early events of diabetic nephropathy progression. Previous studies have shown that insulin action is critical for podocyte survival since deletion of its receptor lead to a glomerular pathology similar to nephropathy. It has also been demonstrated that Src homology-2 domain-containing phosphatase-1 (SHP-1), a protein tyrosine phosphatase, inhibits insulin signaling pathway in liver and muscle by dephosphorylating tyrosine residues on insulin receptor beta-subunit (IRβ) and the Phosphatidylinositide 3-kinase (PI3K). A recent study concluded that SHP-1 is elevated in kidney cortex of type 1 diabetic mice. We hypothesized that hyperglycemia-induced SHP-1 expression may affect insulin actions in podocytes. To confirm this hypothesis, we used type 1 diabetic Akita mice (Ins2+/C96Y). Compared to control littermate mice (Ins2+/+), Akita mice developed elevated podocyte foot process effacement and podocyte apoptosis. In contrast to control mice, insulin-stimulated protein kinase B (Akt) and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation was remarkably reduced in renal podocytes of Akita mice. This phosphorylation diminution associated to a renal insulin resistance was correlated with a two-fold increase of SHP-1 expression in the glomeruli. We then used cultured murine podocytes cell line to confirm our in vivo results. Podocytes exposed to high glucose concentration (HG; 25 mM) for 96 h exhibited high levels of apoptotic markers and caspase-3/7 enzymatic activity as compared to normal glucose concentration (NG; 5,6 mM). HG exposure raised mRNA and protein levels of SHP-1 and reduced the insulin-signaling pathway in podocytes. Overexpression of dominant-negative SHP-1 in podocytes prevented HG effects and restored insulin actions. Finally, elevated SHP-1 expression induced by high glucose levels was directly correlated to an increased association with insulin receptor-β subunit (IRβ) in vitro and in vivo. This association is therefore leading to the reduction of both IRβ phosphorylation and insulin-stimulated Akt and ERK phosphorylation. In conclusion, our results showed that high levels of SHP-1 in glomeruli cause insulin resistance and podocyte loss, thereby contributing to diabetic nephropathy.
APA, Harvard, Vancouver, ISO, and other styles
18

Bauer, Roslyn A. "Characterization of sorting motifs in the dense core vesicle membrane protein phogrin /." Connect to full text via ProQuest. Limited to UCD Anschutz Medical Campus, 2008.

Find full text
Abstract:
Thesis (Ph.D. in Cell Biology, Stem Cells, & Development) -- University of Colorado Denver, 2008.
Typescript. Includes bibliographical references (leaves 138-155). Free to UCD Anschutz Medical Campus. Online version available via ProQuest Digital Dissertations;
APA, Harvard, Vancouver, ISO, and other styles
19

Peterson, Cornelia WM. "Insulin Stimulates Protein Synthesis via RTK-Induction of the Akt-s6k Pathway in Human and Canine Corneal Cells." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555070124329814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Chavanieu, Alain. "Mécanismes moléculaires de l'activation de la tyrosine kinase du récepteur de l'insuline : étude de la relation structure-fonction des domaines d'autophosphorylation/ par Alain Chavanieu." Montpellier 1, 1992. http://www.theses.fr/1992MON1T015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

REYNET, CHRISTINE. "Implication de l'activite tyrosine kinase du recepteur de l'insuline dans l'action de l'hormone et le metabolisme du recepteur." Paris 11, 1990. http://www.theses.fr/1990PA11T016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Aubertin, Johannes. "Characterization of receptor tyrosine kinase signaling pathways in bladder cancer." Paris 11, 2009. http://www.theses.fr/2009PA11T047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Melki, Vincent. "Inhibition de l'autophosphorylation du recepteur a l'insuline par l'annexine i in vitro." Toulouse 3, 1992. http://www.theses.fr/1992TOU31529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Lévy, Tolédano Rachel. "Signalisation par le recepteur de l'insuline : mecanismes moleculaires de l'effet des mutations, liaison de la pi 3-kinase et dialogue avec le recepteur pdgf." Paris 11, 1996. http://www.theses.fr/1996PA11T009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Heller, Daniela [Verfasser]. "Auffinden von Inhibitoren der tRNA-Guanin-Transglykosylase (TGT) und der insulin-like growth factor 1 receptor tyrosine kinase (IGF-1-RTK) aus Pflanzenextrakten durch Ligandenfischen sowie deren Isolierung und Identifizierung / vorgelegt von Daniela Heller." 2006. http://d-nb.info/982576625/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography