Academic literature on the topic 'Integer partitions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Integer partitions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Integer partitions"
Engel, Konrad, Tadeusz Radzik, and Jan-Christoph Schlage-Puchta. "Optimal integer partitions." European Journal of Combinatorics 36 (February 2014): 425–36. http://dx.doi.org/10.1016/j.ejc.2013.09.004.
Full textBisi, C., G. Chiaselotti, and P. A. Oliverio. "Sand Piles Models of Signed Partitions with Piles." ISRN Combinatorics 2013 (January 13, 2013): 1–7. http://dx.doi.org/10.1155/2013/615703.
Full textDas, Sabuj. "PARTITION CONGRUENCES AND DYSON’S RANK." International Journal of Research -GRANTHAALAYAH 2, no. 2 (November 30, 2014): 49–60. http://dx.doi.org/10.29121/granthaalayah.v2.i2.2014.3066.
Full textBRENNAN, CHARLOTTE, ARNOLD KNOPFMACHER, and STEPHAN WAGNER. "The Distribution of Ascents of Size d or More in Partitions of n." Combinatorics, Probability and Computing 17, no. 4 (July 2008): 495–509. http://dx.doi.org/10.1017/s0963548308009073.
Full textYan, Xiao-Hui. "Partitions of the set of nonnegative integers with identical representation functions." International Journal of Number Theory 15, no. 10 (November 2019): 1969–75. http://dx.doi.org/10.1142/s1793042119501070.
Full textKnopfmacher, Arnold, and Augustine O. Munagi. "Successions in integer partitions." Ramanujan Journal 18, no. 3 (December 30, 2008): 239–55. http://dx.doi.org/10.1007/s11139-008-9140-2.
Full textBorg, Peter. "Strongly intersecting integer partitions." Discrete Mathematics 336 (December 2014): 80–84. http://dx.doi.org/10.1016/j.disc.2014.07.018.
Full textKIM, BYUNGCHAN, and EUNMI KIM. "BIASES IN INTEGER PARTITIONS." Bulletin of the Australian Mathematical Society 104, no. 2 (January 14, 2021): 177–86. http://dx.doi.org/10.1017/s0004972720001495.
Full textRØDSETH, ØYSTEIN J., and JAMES A. SELLERS. "PARTITIONS WITH PARTS IN A FINITE SET." International Journal of Number Theory 02, no. 03 (September 2006): 455–68. http://dx.doi.org/10.1142/s1793042106000644.
Full textBallantine, Cristina, and Mircea Merca. "Combinatorial proof of the minimal excludant theorem." International Journal of Number Theory 17, no. 08 (February 26, 2021): 1765–79. http://dx.doi.org/10.1142/s1793042121500615.
Full textDissertations / Theses on the topic "Integer partitions"
Chen, Xujin, and 陳旭瑾. "Graph partitions and integer flows." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B30286256.
Full textZoghbi, Antoine C. "Algorithms for generating integer partitions." Thesis, University of Ottawa (Canada), 1993. http://hdl.handle.net/10393/6506.
Full textFrench, Jennifer. "Vector Partitions." Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etd/3392.
Full textRalaivaosaona, Dimbinaina. "Limit theorems for integer partitions and their generalisations." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20019.
Full textENGLISH ABSTRACT: Various properties of integer partitions are studied in this work, in particular the number of summands, the number of ascents and the multiplicities of parts. We work on random partitions, where all partitions from a certain family are equally likely, and determine moments and limiting distributions of the different parameters. The thesis focuses on three main problems: the first of these problems is concerned with the length of prime partitions (i.e., partitions whose parts are all prime numbers), in particular restricted partitions (i.e., partitions where all parts are distinct). We prove a central limit theorem for this parameter and obtain very precise asymptotic formulas for the mean and variance. The second main focus is on the distribution of the number of parts of a given multiplicity, where we obtain a very interesting phase transition from a Gaussian distribution to a Poisson distribution and further to a degenerate distribution, not only in the classical case, but in the more general context of ⋋-partitions: partitions where all the summands have to be elements of a given sequence ⋋ of integers. Finally, we look into another phase transition from restricted to unrestricted partitions (and from Gaussian to Gumbel-distribution) as we study the number of summands in partitions with bounded multiplicities.
AFRIKAANSE OPSOMMING: Verskillende eienskappe van heelgetal-partisies word in hierdie tesis bestudeer, in die besonder die aantal terme, die aantal stygings en die veelvoudighede van terme. Ons werk met stogastiese partisies, waar al die partisies in ’n sekere familie ewekansig is, en ons bepaal momente en limietverdelings van die verskillende parameters. Die teses fokusseer op drie hoofprobleme: die eerste van hierdie probleme gaan oor die lengte van priemgetal-partisies (d.w.s., partisies waar al die terme priemgetalle is), in die besonder beperkte partisies (d.w.s., partisies waar al die terme verskillend is). Ons bewys ’n sentrale limietstelling vir hierdie parameter en verkry baie presiese asimptotiese formules vir die gemiddelde en die variansie. Die tweede hooffokus is op die verdeling van die aantal terme van ’n gegewe veelvoudigheid, waar ons ’n baie interessante fase-oorgang van ’n normaalverdeling na ’n Poisson-verdeling en verder na ’n ontaarde verdeling verkry, nie net in die klassieke geval nie, maar ook in die meer algemene konteks van sogenaamde ⋋-partities: partisies waar al die terme elemente van ’n gegewe ry ⋋ van heelgetalle moet wees.
Jonsson, Markus. "Processes on Integer Partitions and Their Limit Shapes." Doctoral thesis, Mälardalens högskola, Utbildningsvetenskap och Matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-35023.
Full textMatte, Marília Luiza. "Matrix representations for integer partitions : some consequences and a new approach." Universidade Federal do Rio Grande do Sul, 2018. http://hdl.handle.net/10183/178603.
Full textDavis, Simon. "On the existence of a non-zero lower bound for the number of Goldbach partitions of an even integer." Universität Potsdam, 2002. http://opus.kobv.de/ubp/volltexte/2008/2647/.
Full textPétréolle, Mathias. "Quelques développements combinatoires autour des groupes de Coxeter et des partitions d'entiers." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10237/document.
Full textThis thesis focuses on enumerative combinatorics, particularly on integer partitions and Coxeter groups. In the first part, like Han and Nekrasov-Okounkov, we study the combinatorial expansion of power of the Dedekind's eta function, in terms of hook lengths of integer partitions. Our approach, bijective, use the Macdonald identities in affine types, generalizing the study of Han in the case of type A. We extend with new parameters the expansions that we obtained through new properties of the Littlewood decomposition. This enables us to deduce symplectic hook length formulas and a connexion with representation theory. In the second part, we study the cyclically fully commutative elements in Coxeter groups, introduced by Boothby et al., which are a sub family of the fully commutative elements. We start by introducing a new construction, the cylindrical closure, which give a theoretical framework for the CPC elements analogous to the Viennot's heaps for fully commutative elements. We give a characterization of CPC elements in terms of cylindrical closures in any Coxeter groups. This allows to deduce a characterization of these elements in terms of reduced decompositions in all finite and affine Coxeter and their enumerations in those groups. By using the theory of finite state automata, we show that the generating function of these elements is always rational, in all Coxeter groups
Silva, Eduardo Alves da. "Formas ponderadas do Teorema de Euler e partições com raiz : estabelecendo um tratamento combinatório para certas identidades de Ramanujan." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2018. http://hdl.handle.net/10183/183163.
Full textThe article Weighted forms of Euler's theorem by William Y.C. Chen and Kathy Q. Ji in response to the questioning of George E. Andrews, American mathematician, about nding combinatorial proofs for two identities in Ramanujan's Lost Notebook shows us some weighted forms of Euler's Theorem on partitions with odd parts and distinct parts through the introduction of the concept of rooted partition. The purpose of this work involves the presentation of results on rooted partitions in order to make combinatorial formulations of Ramanujan's identities, seeking to establish connections with weighted forms of Euler's Theorem. In particular, the Sylvester's bijection and the Pak's iteration of the Dyson's map are primordial elements to obtain them.
Konan, Isaac. "Rogers-Ramanujan type identities : bijective proofs and Lie-theoretic approach." Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7087.
Full textThe topic of this thesis belongs to the theory of integer partitions, at the intersection of combinatorics and number theory. In particular, we study Rogers-Ramanujan type identities in the framework of the method of weighted words. This method revisited allows us to introduce new combinatorial objects beyond the classical notion of integer partitions: the generalized colored partitions. Using these combinatorial objects, we establish new Rogers-Ramanujan identities via two different approaches.The first approach consists of a combinatorial proof, essentially bijective, of the studied identities. This approach allowed us to establish some identities generalizing many important identities of the theory of integer partitions : Schur’s identity and Göllnitz’ identity, Glaisher’s identity generalizing Euler’s identity, the identities of Siladić, of Primc and of Capparelli coming from the representation theory of affine Lie algebras. The second approach uses the theory of perfect crystals, coming from the representation theory of affine Lie algebras. We view the characters of standard representations as some identities on the generalized colored partitions. In particular, this approach allows us to establish simple formulas for the characters of all the level one standard representations of type A(1) n-1, A(2) 2n , D(2) n+1, A(2) 2n-1, B(1) n , D(1) n
Books on the topic "Integer partitions"
Alladi, Krishnaswami, Frank Garvan, and Ae Ja Yee. Ramanujan 125: International conference to commemorate the 125th anniversary of Ramanujan's birth, Ramanujan 125, November 5--7, 2012, University of Florida, Gainesville, Florida. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textAndrews, George E., and Kimmo Eriksson. Integer Partitions. 2nd ed. Cambridge University Press, 2004.
Find full textFaiz, Asma. In Search of Lost Glory. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780197567135.001.0001.
Full textEckert, Astrid M. West Germany and the Iron Curtain. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190690052.001.0001.
Full textBook chapters on the topic "Integer partitions"
Arndt, Jörg. "Integer partitions." In Matters Computational, 339–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14764-7_16.
Full textBorgs, Christian, Jennifer T. Chayes, Stephan Mertens, and Boris Pittel. "Constrained Integer Partitions." In LATIN 2004: Theoretical Informatics, 59–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24698-5_10.
Full textCanfield, E. Rodney, and Herbert S. Wilf. "On the Growth of Restricted Integer Partition Functions." In Partitions, q-Series, and Modular Forms, 39–46. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0028-8_4.
Full textSebő, András. "Path Partitions, Cycle Covers and Integer Decomposition." In Graph Theory, Computational Intelligence and Thought, 183–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02029-2_18.
Full textKolokolov, A. A. "Regular Partitions and Cuts in Integer Programming." In Discrete Analysis and Operations Research, 59–79. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1606-7_6.
Full textLatapy, Matthieu. "Generalized Integer Partitions, Tilings of Zonotopes and Lattices." In Formal Power Series and Algebraic Combinatorics, 256–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04166-6_23.
Full textConstantin, Hannah, Ben Houston-Edwards, and Nathan Kaplan. "Numerical Sets, Core Partitions, and Integer Points in Polytopes." In Springer Proceedings in Mathematics & Statistics, 99–127. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68032-3_7.
Full textFerrari, Luca, Renzo Pinzani, and Simone Rinaldi. "Enumerative Results on Integer Partitions Using the ECO Method." In Mathematics and Computer Science III, 25–36. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7915-6_3.
Full textSpircu, Tiberiu, and Stefan V. Pantazi. "Catalan Numbers Associated to Integer Partitions and the Super-Exponential." In Soft Computing Applications, 412–25. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51992-6_33.
Full textGoles, Eric, Michel Morvan, and Ha Duong Phan. "About the Dynamics of Some Systems Based on Integer Partitions and Compositions." In Formal Power Series and Algebraic Combinatorics, 214–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04166-6_19.
Full textConference papers on the topic "Integer partitions"
Krishnamachari, Ramprasad S., and Panos Y. Papalambros. "Optimal Hierarchical Decomposition Synthesis Using Integer Programming." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/dac-1088.
Full textSambinelli, M., C. N. Lintzmayer, C. N. Da Silva, and O. Lee. "Vertex partition problems in digraphs ⇤." In III Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/etc.2018.3174.
Full textChen, Ning-yu. "Some Properties of Partitions of Positive Integer as the Sum of Distinct Numbers." In 2012 Fourth International Conference on Computational and Information Sciences (ICCIS). IEEE, 2012. http://dx.doi.org/10.1109/iccis.2012.287.
Full textCruz, Jadder Bismarck de Sousa, Cândida Nunes da Silva, and Orlando Lee. "Some Partial Results on Linial's Conjecture for Matching-Spine Digraphs." In Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/etc.2021.16386.
Full textHanebutte, Ulf, and Jacob Hemstad. "ISx: A Scalable Integer Sort for Co-design in the Exascale Era." In 2015 9th International Conference on Partitioned Global Address Space Programming Models (PGAS). IEEE, 2015. http://dx.doi.org/10.1109/pgas.2015.21.
Full textBoonjing, Veera, and Santit Narabin. "An Integer Partition Based Algorithm for Coalition Structure Generation." In 7th IEEE International Conference on Computer and Information Technology (CIT 2007). IEEE, 2007. http://dx.doi.org/10.1109/cit.2007.157.
Full textSong, Zhihang, Bruce T. Murray, and Bahgat Sammakia. "Prediction of Hot Aisle Partition Airflow Boundary Conditions." In ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ipack2013-73049.
Full textYan, Ning, Bin Li, Jizheng Xu, Houqiang Li, and Feng Wu. "Diagonal motion partitions for inter prediction in HEVC." In 2016 Visual Communications and Image Processing (VCIP). IEEE, 2016. http://dx.doi.org/10.1109/vcip.2016.7805575.
Full textLi Xia, Yanjia Zhao, Ming Xie, Jinyan Shao, and Jin Dong. "Mixed integer programming based nested partition algorithm for facility location optimization problems." In 2008 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI). IEEE, 2008. http://dx.doi.org/10.1109/soli.2008.4682933.
Full textMalyuta, Danylo, Behcet Acikmese, Martin Cacan, and David S. Bayard. "Partition-based Feasible Integer Solution Pre-computation for Hybrid Model Predictive Control." In 2019 18th European Control Conference (ECC). IEEE, 2019. http://dx.doi.org/10.23919/ecc.2019.8795790.
Full text