Academic literature on the topic 'Integer programming'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Integer programming.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Integer programming"

1

Wampler, Joe F., and Stephen E. Newman. "Integer Programming." College Mathematics Journal 27, no. 2 (1996): 95. http://dx.doi.org/10.2307/2687396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wampler, Joe F., and Stephen E. Newman. "Integer Programming." College Mathematics Journal 27, no. 2 (1996): 95–100. http://dx.doi.org/10.1080/07468342.1996.11973758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cornu�jols, G�rard, and William R. Pulleyblank. "Integer programming." Mathematical Programming 98, no. 1-3 (2003): 1–2. http://dx.doi.org/10.1007/s10107-003-0417-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kara, Imdat, and Halil Ibrahim Karakas. "Integer Programming Formulations For The Frobenius Problem." International Journal of Pure Mathematics 8 (December 28, 2021): 60–65. http://dx.doi.org/10.46300/91019.2021.8.8.

Full text
Abstract:
The Frobenius number of a set of relatively prime positive integers α1,α2,…,αn such that α1< α2< …< αn, is the largest integer that can not be written as a nonnegative integer linear combination of the given set. Finding the Frobenius number is known as the Frobenius problem, which is also named as the coin exchange problem or the postage stamp problem. This problem is closely related with the equality constrained integer knapsack problem. It is known that this problem is NP-hard. Extensive research has been conducted for finding the Frobenius number of a given set of positive integer
APA, Harvard, Vancouver, ISO, and other styles
5

Freire, Alexandre S., Eduardo Moreno, and Juan Pablo Vielma. "An integer linear programming approach for bilinear integer programming." Operations Research Letters 40, no. 2 (2012): 74–77. http://dx.doi.org/10.1016/j.orl.2011.12.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

He, Deng Xu, and Liang Dong Qu. "Population Migration Algorithm for Integer Programming and its Application in Cutting Stock Problem." Advanced Materials Research 143-144 (October 2010): 899–904. http://dx.doi.org/10.4028/www.scientific.net/amr.143-144.899.

Full text
Abstract:
For integer programming, there exist some difficulties and problems for the direct applications of population migration algorithm (PMA) due to the variables belonging to the set of integers. In this paper, a novel PMA is proposed for integer programming which evolves on the set of integer space. Several functions and cutting stock problem simulation results show that the proposed algorithm is significantly superior to other algorithms.
APA, Harvard, Vancouver, ISO, and other styles
7

Gomory, Ralph E. "Early Integer Programming." Operations Research 50, no. 1 (2002): 78–81. http://dx.doi.org/10.1287/opre.50.1.78.17793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Feautrier, Paul. "Parametric integer programming." RAIRO - Operations Research 22, no. 3 (1988): 243–68. http://dx.doi.org/10.1051/ro/1988220302431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Jon, and Adam N. Letchford. "Mixed integer programming." Discrete Optimization 4, no. 1 (2007): 1–2. http://dx.doi.org/10.1016/j.disopt.2006.10.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Onn, Shmuel. "Robust integer programming." Operations Research Letters 42, no. 8 (2014): 558–60. http://dx.doi.org/10.1016/j.orl.2014.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Integer programming"

1

Achterberg, Tobias. "Constraint integer programming /." München : Verl. Dr. Hut, 2008. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=017108806&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Achterberg, Tobias. "Constraint integer programming." München Verl. Dr. Hut, 2007. http://d-nb.info/992163366/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hewitt, Michael R. "Integer programming based search." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31641.

Full text
Abstract:
Thesis (Ph.D)--Industrial and Systems Engineering, Georgia Institute of Technology, 2010.<br>Committee Chair: Erera, Martin; Committee Chair: Nemhauser, George; Committee Chair: Savelsbergh, Martin; Committee Member: Ergun, Ozlem; Committee Member: Ferguson, Mark. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
4

Vigerske, Stefan. "Decomposition in multistage stochastic programming and a constraint integer programming approach to mixed-integer nonlinear programming." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16704.

Full text
Abstract:
Diese Arbeit leistet Beiträge zu zwei Gebieten der mathematischen Programmierung: stochastische Optimierung und gemischt-ganzzahlige nichtlineare Optimierung (MINLP). Im ersten Teil erweitern wir quantitative Stetigkeitsresultate für zweistufige stochastische gemischt-ganzzahlige lineare Programme auf Situationen in denen Unsicherheit gleichzeitig in den Kosten und der rechten Seite auftritt, geben eine ausführliche Übersicht zu Dekompositionsverfahren für zwei- und mehrstufige stochastische lineare und gemischt-ganzzahlig lineare Programme, und diskutieren Erweiterungen und Kombinationen d
APA, Harvard, Vancouver, ISO, and other styles
5

Shmonin, Gennady. "Parameterised integer programming, integer cones, and related problems." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=985786132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Espinoza, Daniel G. "On Linear Programming, Integer Programming and Cutting Planes." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10482.

Full text
Abstract:
In this thesis we address three related topic in the field of Operations Research. Firstly we discuss the problems and limitation of most common solvers for linear programming, precision. We then present a solver that generate rational optimal solutions to linear programming problems by solving a succession of (increasingly more precise) floating point approximations of the original rational problem until the rational optimality conditions are achieved. This method is shown to be (on average) only 20% slower than the common pure floating point approach, while returning true optimal solutions
APA, Harvard, Vancouver, ISO, and other styles
7

Hooker, Kevin J. "Hypergraphs and integer programming polytopes /." Search for this dissertation online, 2005. http://wwwlib.umi.com/cr/ksu/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chandrasekaran, Karthekeyan. "New approaches to integer programming." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44814.

Full text
Abstract:
Integer Programming (IP) is a powerful and widely-used formulation for combinatorial problems. The study of IP over the past several decades has led to fascinating theoretical developments, and has improved our ability to solve discrete optimization problems arising in practice. This thesis makes progress on algorithmic solutions for IP by building on combinatorial, geometric and Linear Programming (LP) approaches. We use a combinatorial approach to give an approximation algorithm for the feedback vertex set problem (FVS) in a recently developed Implicit Hitting Set framework. Our algorithm
APA, Harvard, Vancouver, ISO, and other styles
9

Mefo, Kue Floriane. "Mixed integer bilevel programming problems." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2017. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-230335.

Full text
Abstract:
This thesis presents the mixed integer bilevel programming problems where some optimality conditions and solution algorithms are derived. Bilevel programming problems are optimization problems which are partly constrained by another optimization problem. The theoretical part of this dissertation is mainly based on the investigation of optimality conditions of mixed integer bilevel program. Taking into account both approaches (optimistic and pessimistic) which have been developed in the literature to deal with this type of problem, we derive some conditions for the existence of solutions. Afte
APA, Harvard, Vancouver, ISO, and other styles
10

Evans, G. M. "Parallel and distributed integer programming." Thesis, University of East Anglia, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Integer programming"

1

Walukiewicz, Stanisław. Integer Programming. Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-015-7945-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Conforti, Michele, Gérard Cornuéjols, and Giacomo Zambelli. Integer Programming. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11008-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Garfinkel, Robert S. Integer programming. Dover Publications, Inc., 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Walukiewicz, Stanisław. Integer programming. Kluwer Academic Publishers, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Walukiewicz, Stanisław. Integer Programming. Springer Netherlands, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Der-San, Robert G. Batson, and Yu Dang. Applied Integer Programming. John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9781118166000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Achterberg, Tobias. Constraint integer programming. Verl. Dr. Hut, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Milano, Michela, ed. Constraint and Integer Programming. Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-8917-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Jon, and Sven Leyffer, eds. Mixed Integer Nonlinear Programming. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1927-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Jon, and Sven Leyffer. Mixed integer nonlinear programming. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Integer programming"

1

Walukiewicz, Stanisław. "Linear Programming." In Integer Programming. Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-015-7945-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Poler, Raúl, Josefa Mula, and Manuel Díaz-Madroñero. "Integer Programming." In Operations Research Problems. Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5577-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bosch, Robert, and Michael Trick. "Integer Programming." In Search Methodologies. Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-6940-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vanderbei, Robert J. "Integer Programming." In International Series in Operations Research & Management Science. Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-74388-2_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bard, Jonathan F. "Integer Programming." In Nonconvex Optimization and Its Applications. Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-2836-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Korte, Bernhard, and Jens Vygen. "Integer Programming." In Algorithms and Combinatorics. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24488-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Awange, Joseph L., Béla Paláncz, Robert H. Lewis, and Lajos Völgyesi. "Integer Programming." In Mathematical Geosciences. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67371-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vanderbei, Robert J. "Integer Programming." In International Series in Operations Research & Management Science. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39415-8_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Korte, Bernhard, and Jens Vygen. "Integer Programming." In Algorithms and Combinatorics. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-21708-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Korte, Bernhard, and Jens Vygen. "Integer Programming." In Algorithms and Combinatorics. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-21711-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Integer programming"

1

Arnow, David, Ken McAloon, and Carol Tretkoff. "Parallel integer goal programming." In the 1995 ACM 23rd annual conference. ACM Press, 1995. http://dx.doi.org/10.1145/259526.259536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Deng, Changshou, Bingyan Zhao, Yanlin Yang, and Anyuan Deng. "Integer Encoding Differential Evolution Algorithm for Integer Programming." In 2010 2nd International Conference on Information Engineering and Computer Science (ICIECS). IEEE, 2010. http://dx.doi.org/10.1109/iciecs.2010.5677899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Steffy, Daniel E. "Exact linear and integer programming." In the 38th international symposium. ACM Press, 2013. http://dx.doi.org/10.1145/2465506.2465931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nguyen, Bao, and Ramzi Mirshak. "Optimal fleet scheduling integer programming." In OCEANS 2016 MTS/IEEE Monterey. IEEE, 2016. http://dx.doi.org/10.1109/oceans.2016.7761037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wonka, Peter. "Integer programming for layout problems." In SA '18: SIGGRAPH Asia 2018. ACM, 2018. http://dx.doi.org/10.1145/3277644.3277794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Megerian, S., M. Drinic, and M. Potkonjak. "Watermarking integer linear programming solutions." In Proceedings of 39th Design Automation Conference. IEEE, 2002. http://dx.doi.org/10.1109/dac.2002.1012585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Megerian, Seapahn, Milenko Drinic, and Miodrag Potkonjak. "Watermarking integer linear programming solutions." In the 39th conference. ACM Press, 2002. http://dx.doi.org/10.1145/513918.513923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khoat, Than Quang. "On the bounded integer programming." In 2008 IEEE International Conference on Research, Innovation and Vision for the Future in Computing and Communication Technologies. IEEE, 2008. http://dx.doi.org/10.1109/rivf.2008.4586328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zarate, David Cheng, Pierre Le Bodic, Tim Dwyer, Graeme Gange, and Peter Stuckey. "Optimal Sankey Diagrams Via Integer Programming." In 2018 IEEE Pacific Visualization Symposium (PacificVis). IEEE, 2018. http://dx.doi.org/10.1109/pacificvis.2018.00025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Yuying, Lixiang Li, Qiaoyan Wen, and Yixian Yang. "Integer Programming via Chaotic Ant Swarm." In Third International Conference on Natural Computation (ICNC 2007). IEEE, 2007. http://dx.doi.org/10.1109/icnc.2007.444.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Integer programming"

1

Bixby, Robert E. Linear Programming Tools for Integer Programming. Defense Technical Information Center, 1989. http://dx.doi.org/10.21236/ada219013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bixby, Robert. Linear-Programming Tools in Integer Programming: The Traveling Salesman. Defense Technical Information Center, 1992. http://dx.doi.org/10.21236/ada261398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Terlaky, Tamas. Mixed-Integer Conic Linear Programming: Challenges and Perspectives. Defense Technical Information Center, 2013. http://dx.doi.org/10.21236/ada590477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Takkala, Rohit Reddy. CHIP: Clustering hotspots in layout using integer programming. Iowa State University, 2018. http://dx.doi.org/10.31274/cc-20240624-357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prokopyev, Oleg A. New Theory and Methods in Stochastic Mixed Integer Programming. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ada610045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nemhauser, George L. Application of Mixed-Integer Programming to Selected Military Problems. Defense Technical Information Center, 1993. http://dx.doi.org/10.21236/ada276197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barati, Masoud, and Santiago Grijalva. Tightest Mixed-Integer Programming Formulations for Quadratic SCUC Optimization. Office of Scientific and Technical Information (OSTI), 2025. https://doi.org/10.2172/2565427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Saltzman, Robert M. A Heuristic Ceiling Point Algorithm for General Integer Linear Programming. Defense Technical Information Center, 1988. http://dx.doi.org/10.21236/ada202285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Saltzman, Robert M., and Frederick S. Hillier. An Exact Ceiling Point Algorithm for General Integer Linear Programming. Defense Technical Information Center, 1988. http://dx.doi.org/10.21236/ada202286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bixby, Robert E., E. A. Boyd, and Ronni R. Indovina. A Test Set of Real-World Mixed Integer Programming Problems. Defense Technical Information Center, 1992. http://dx.doi.org/10.21236/ada455431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!