Journal articles on the topic 'Integrable'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Integrable.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Álvarez Merino, Paula, Carmen Requena Hernández, and Francisco Salto Alemany. "LA INTEGRACIÓN MÁS QUE LA EDAD INFLUYE EN EL RENDIMIENTO DEL RAZONAMIENTO DEDUCTIVO." International Journal of Developmental and Educational Psychology. Revista INFAD de Psicología. 1, no. 2 (2016): 221. http://dx.doi.org/10.17060/ijodaep.2016.n2.v1.569.
Full textKai, Tatsuya. "Theoretical Analysis for a Class of Rheonomous Affine Constraints on Configuration Manifolds—Part II: Foliation Structures and Integrating Algorithms." Mathematical Problems in Engineering 2012 (2012): 1–34. http://dx.doi.org/10.1155/2012/345942.
Full textMañas, Manuel. "From integrable nets to integrable lattices." Journal of Mathematical Physics 43, no. 5 (2002): 2523. http://dx.doi.org/10.1063/1.1454185.
Full textMaciejewski, Andrzej J., and Maria Przybylska. "Integrable deformations of integrable Hamiltonian systems." Physics Letters A 376, no. 2 (2011): 80–93. http://dx.doi.org/10.1016/j.physleta.2011.10.031.
Full textXia, Baoqiang, and Ruguang Zhou. "Integrable deformations of integrable symplectic maps." Physics Letters A 373, no. 47 (2009): 4360–67. http://dx.doi.org/10.1016/j.physleta.2009.09.063.
Full textNing, Wang. "Integrable Bogoliubov Transform and Integrable Model." Chinese Physics Letters 20, no. 2 (2003): 177–79. http://dx.doi.org/10.1088/0256-307x/20/2/301.
Full textZHU, LI, HONGWEI YANG, and HUANHE DONG. "A LIOUVILLE INTEGRABLE MULTI-COMPONENT INTEGRABLE SYSTEM AND ITS INTEGRABLE COUPLINGS." International Journal of Modern Physics B 24, no. 08 (2010): 1021–46. http://dx.doi.org/10.1142/s0217979209053667.
Full textBountis, Tassos, Zhanat Zhunussova, Karlygash Dosmagulova, and George Kanellopoulos. "Integrable and non-integrable Lotka-Volterra systems." Physics Letters A 402 (June 2021): 127360. http://dx.doi.org/10.1016/j.physleta.2021.127360.
Full textOlshanetsky, M. A. "Integrable extensions of classical elliptic integrable systems." Theoretical and Mathematical Physics 208, no. 2 (2021): 1061–74. http://dx.doi.org/10.1134/s0040577921080067.
Full textVýborný. "KURZWEIL-HENSTOCK ABSOLUTE INTEGRABLE MEANS McSHANE INTEGRABLE." Real Analysis Exchange 20, no. 1 (1994): 363. http://dx.doi.org/10.2307/44152498.
Full textMaciejewski, Andrzej J., and Maria Przybylska. "Integrable variational equations of non-integrable systems." Regular and Chaotic Dynamics 17, no. 3-4 (2012): 337–58. http://dx.doi.org/10.1134/s1560354712030094.
Full textZhu, Li. "Discrete integrable system and its integrable coupling." Chinese Physics B 18, no. 3 (2009): 850–55. http://dx.doi.org/10.1088/1674-1056/18/3/002.
Full textZhu, Li. "Liouville Integrable System and Associated Integrable Coupling." Communications in Theoretical Physics 52, no. 6 (2009): 987–91. http://dx.doi.org/10.1088/0253-6102/52/6/03.
Full textPapageorgiou, V. G., F. W. Nijhoff, and H. W. Capel. "Integrable mappings and nonlinear integrable lattice equations." Physics Letters A 147, no. 2-3 (1990): 106–14. http://dx.doi.org/10.1016/0375-9601(90)90876-p.
Full textLăzureanu, Cristian, Ciprian Hedrea, and Camelia Petrişor. "On the integrable deformations of a system related to the motion of two vortices in an ideal incompressible fluid." ITM Web of Conferences 29 (2019): 01015. http://dx.doi.org/10.1051/itmconf/20192901015.
Full textZhang, Jian, Chiping Zhang, and Yunan Cui. "Bi-integrable and tri-integrable couplings of a soliton hierarchy associated with SO(4)." Open Mathematics 15, no. 1 (2017): 203–17. http://dx.doi.org/10.1515/math-2017-0017.
Full textMyrzakul, Akbota, and Ratbay Myrzakulov. "Integrable motion of two interacting curves, spin systems and the Manakov system." International Journal of Geometric Methods in Modern Physics 14, no. 07 (2017): 1750115. http://dx.doi.org/10.1142/s0219887817501158.
Full textGuo, Xiurong, Yufeng Zhang, and Xuping Zhang. "Two Expanding Integrable Models of the Geng-Cao Hierarchy." Abstract and Applied Analysis 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/860935.
Full textVeselov, A. P. "Integrable maps." Russian Mathematical Surveys 46, no. 5 (1991): 1–51. http://dx.doi.org/10.1070/rm1991v046n05abeh002856.
Full textBobenko, A. I. "Integrable surfaces." Functional Analysis and Its Applications 24, no. 3 (1991): 227–28. http://dx.doi.org/10.1007/bf01077966.
Full textBerenstein, Arkady, Jacob Greenstein, and David Kazhdan. "Integrable clusters." Comptes Rendus Mathematique 353, no. 5 (2015): 387–90. http://dx.doi.org/10.1016/j.crma.2015.02.006.
Full textMarikhin, V. G., and A. B. Shabat. "Integrable lattices." Theoretical and Mathematical Physics 118, no. 2 (1999): 173–82. http://dx.doi.org/10.1007/bf02557310.
Full textSorensen, E. S., S. Eggert, and I. Affleck. "Integrable versus non-integrable spin chain impurity models." Journal of Physics A: Mathematical and General 26, no. 23 (1993): 6757–76. http://dx.doi.org/10.1088/0305-4470/26/23/023.
Full textLI, ZHU, and HUANHE DONG. "NEW INTEGRABLE LATTICE HIERARCHY AND ITS INTEGRABLE COUPLING." International Journal of Modern Physics B 23, no. 23 (2009): 4791–800. http://dx.doi.org/10.1142/s0217979209053114.
Full textJosé Mendoza. "Which Integrable Functions Fail to be Absolutely Integrable?" Real Analysis Exchange 43, no. 1 (2018): 243. http://dx.doi.org/10.14321/realanalexch.43.1.0243.
Full textWang, Haifeng, and Yufeng Zhang. "Two Nonisospectral Integrable Hierarchies and its Integrable Coupling." International Journal of Theoretical Physics 59, no. 8 (2020): 2529–39. http://dx.doi.org/10.1007/s10773-020-04519-9.
Full textAgricola, Ilka, Simon G. Chiossi, and Anna Fino. "Solvmanifolds with integrable and non-integrable G2 structures." Differential Geometry and its Applications 25, no. 2 (2007): 125–35. http://dx.doi.org/10.1016/j.difgeo.2006.05.002.
Full textFeng, Binlu, Yufeng Zhang, and Huanhe Dong. "A Few Integrable Couplings of Some Integrable Systems and (2+1)-Dimensional Integrable Hierarchies." Abstract and Applied Analysis 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/932672.
Full textHu, Beibei, and Tiecheng Xia. "The Binary Nonlinearization of the Super Integrable System and Its Self-Consistent Sources." International Journal of Nonlinear Sciences and Numerical Simulation 18, no. 3-4 (2017): 285–92. http://dx.doi.org/10.1515/ijnsns-2016-0158.
Full textWang, Haifeng, and Yufeng Zhang. "Generating of Nonisospectral Integrable Hierarchies via the Lie-Algebraic Recursion Scheme." Mathematics 8, no. 4 (2020): 621. http://dx.doi.org/10.3390/math8040621.
Full textXU, XI-XIANG, and HONG-XIANG YANG. "A FAMILY OF DISCRETE INTEGRABLE COUPLING SYSTEMS AND ITS LIOUVILLE INTEGRABILITY." Modern Physics Letters B 23, no. 13 (2009): 1671–85. http://dx.doi.org/10.1142/s0217984909019843.
Full textMa, Wen-Xiu. "Integrable Nonlocal PT-Symmetric Modified Korteweg-de Vries Equations Associated with so(3, \({\mathbb{R}}\))." Symmetry 13, no. 11 (2021): 2205. http://dx.doi.org/10.3390/sym13112205.
Full textLi, Yuqing, Huanhe Dong, and Baoshu Yin. "A Hierarchy of Discrete Integrable Coupling System with Self-Consistent Sources." Journal of Applied Mathematics 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/416472.
Full textNewton, Paul K., and Bharat Khushalani. "Integrable decomposition methods and ensemble averaging for non-integrableN-vortex problems." Journal of Turbulence 3 (January 2002): N54. http://dx.doi.org/10.1088/1468-5248/3/1/054.
Full textZhao, Shiyin, Yufeng Zhang, and Jian Zhou. "Several Isospectral and Non-Isospectral Integrable Hierarchies of Evolution Equations." Symmetry 14, no. 2 (2022): 402. http://dx.doi.org/10.3390/sym14020402.
Full textPiazza, Luisa Di, and Kazimierz Musiał. "Decompositions of Weakly Compact Valued Integrable Multifunctions." Mathematics 8, no. 6 (2020): 863. http://dx.doi.org/10.3390/math8060863.
Full textCombot, Thierry, Andrzej J. Maciejewski, and Maria Przybylska. "Integrability of the generalised Hill problem." Nonlinear Dynamics 107, no. 3 (2021): 1989–2002. http://dx.doi.org/10.1007/s11071-021-07040-8.
Full textLi, Chuanzhong. "Constrained lattice-field hierarchies and Toda system with Block symmetry." International Journal of Geometric Methods in Modern Physics 13, no. 05 (2016): 1650061. http://dx.doi.org/10.1142/s0219887816500614.
Full textYu, Fajun, Shuo Feng, and Yanyu Zhao. "A Complex Integrable Hierarchy and Its Hamiltonian Structure for Integrable Couplings of WKI Soliton Hierarchy." Abstract and Applied Analysis 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/146537.
Full textMa, Wen-Xiu. "Integrable nonlocal nonlinear Schrödinger equations associated with 𝑠𝑜(3,ℝ)". Proceedings of the American Mathematical Society, Series B 9, № 1 (2022): 1–11. http://dx.doi.org/10.1090/bproc/116.
Full textZhang, Li-Qin, та Wen-Xiu Ma. "Nonlocal PT-Symmetric Integrable Equations of Fourth-Order Associated with so(3, ℝ)". Mathematics 9, № 17 (2021): 2130. http://dx.doi.org/10.3390/math9172130.
Full textHuseynli, A. F. "The A-integral and Calderon-Zygmund operators." Baku Mathematical Journal 3, no. 2 (2024): 163–73. http://dx.doi.org/10.32010/j.bmj.2024.16.
Full textZhang, Jian, Chiping Zhang, and Yunan Cui. "Bi-Integrable and Tri-Integrable Couplings of a Soliton Hierarchy Associated with SO(3)." Advances in Mathematical Physics 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/9743475.
Full textRacca, Abraham Perral, and Emmanuel A. Cabral. "The N-Integral." Journal of the Indonesian Mathematical Society 26, no. 2 (2020): 242–57. http://dx.doi.org/10.22342/jims.26.2.865.242-257.
Full textBalasubramanian, Vijay, Rathindra Nath Das, Johanna Erdmenger, and Zhuo-Yu Xian. "Chaos and integrability in triangular billiards." Journal of Statistical Mechanics: Theory and Experiment 2025, no. 3 (2025): 033202. https://doi.org/10.1088/1742-5468/adba41.
Full textDOIKOU, ANASTASIA. "SELECTED TOPICS IN CLASSICAL INTEGRABILITY." International Journal of Modern Physics A 27, no. 05 (2012): 1230003. http://dx.doi.org/10.1142/s0217751x12300037.
Full textNonnenmacher, D. J. F. "Every ${\rm M}\sb1$-integrable function is Pfeffer integrable." Czechoslovak Mathematical Journal 43, no. 2 (1993): 327–30. http://dx.doi.org/10.21136/cmj.1993.128400.
Full textTao, Sixing. "Nonlinear Super Integrable Couplings of a Super Integrable Hierarchy." Journal of Applied Mathematics and Physics 04, no. 04 (2016): 648–54. http://dx.doi.org/10.4236/jamp.2016.44074.
Full textChang, Hui, and Yuxia Li. "Two New Integrable Hierarchies and Their Nonlinear Integrable Couplings." Journal of Applied Mathematics and Physics 06, no. 06 (2018): 1346–62. http://dx.doi.org/10.4236/jamp.2018.66113.
Full textXiao-Hong, Chen, Xia Tie-Cheng, and Zhu Lian-Cheng. "An integrable Hamiltonian hierarchy and associated integrable couplings system." Chinese Physics 16, no. 9 (2007): 2493–97. http://dx.doi.org/10.1088/1009-1963/16/9/001.
Full text