Academic literature on the topic 'Integral delay equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Integral delay equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Integral delay equations"
Burton, T. A. "Integral equations with a delay." Acta Mathematica Hungarica 72, no. 3 (1996): 233–42. http://dx.doi.org/10.1007/bf00050686.
Full textGilsinn, David E., and Florian A. Potra. "Integral Operators and Delay Differential Equations." Journal of Integral Equations and Applications 18, no. 3 (September 2006): 297–336. http://dx.doi.org/10.1216/jiea/1181075393.
Full textLi, Xiaoxuan. "Volterra Integral Equations with Vanishing Delay." Applied and Computational Mathematics 4, no. 3 (2015): 152. http://dx.doi.org/10.11648/j.acm.20150403.18.
Full textKarakostas, George, I. P. Stavroulakis, and Yumei Wu. "Oscillations of Volterra integral equations with delay." Tohoku Mathematical Journal 45, no. 4 (1993): 583–605. http://dx.doi.org/10.2748/tmj/1178225851.
Full textXu, Dao Yi. "Integro-differential equations and delay integral inequalities." Tohoku Mathematical Journal 44, no. 3 (1992): 365–78. http://dx.doi.org/10.2748/tmj/1178227303.
Full textMelchor-Aguilar, Daniel, Vladimir Kharitonov, and Rogelio Lozano. "Lyapunov-Krasovskii functionals for integral delay equations." IFAC Proceedings Volumes 36, no. 19 (September 2003): 23–28. http://dx.doi.org/10.1016/s1474-6670(17)33296-2.
Full textYatsenko, Yuri. "Volterra integral equations with unknown delay time." Methods and Applications of Analysis 2, no. 4 (1995): 408–19. http://dx.doi.org/10.4310/maa.1995.v2.n4.a3.
Full textBRUNNER, H. "Fully Discrete Galerkin Method For Fredholm Integro-Differential Equations With Weakly Singular Kernels." Computational Methods in Applied Mathematics 8, no. 3 (2008): 207–22. http://dx.doi.org/10.2478/cmam-2008-0015.
Full textLiang, Jin, and Ti-Jun Xiao. "Solutions to abstract integral equations and infinite delay evolution equations." Bulletin of the Belgian Mathematical Society - Simon Stevin 18, no. 5 (November 2011): 793–804. http://dx.doi.org/10.36045/bbms/1323787167.
Full textEl-Sayed, Ahmed M. A., and Yasmin M. Y. Omar. "Chandrasekhar quadratic and cubic integral equations via Volterra-Stieltjes quadratic integral equation." Demonstratio Mathematica 54, no. 1 (January 1, 2021): 25–36. http://dx.doi.org/10.1515/dema-2021-0003.
Full textDissertations / Theses on the topic "Integral delay equations"
Berntson, B. K. "Integrable delay-differential equations." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/1566618/.
Full textRocha, Eugénio Alexandre Miguel. "Uma Abordagem Algébrica à Teoria de Controlo Não Linear." Doctoral thesis, Universidade de Aveiro, 2003. http://hdl.handle.net/10773/21444.
Full textNesta tese de Doutoramento desenvolve-se principalmente uma abordagem algébrica à teoria de sistemas de controlo não lineares. No entanto, outros tópicos são também estudados. Os tópicos tratados são os seguidamente enunciados: fórmulas para sistemas de controlo sobre álgebras de Lie livres, estabilidade de um sistema de corpos rolantes, algoritmos para aritmética digital, e equações integrais de Fredholm não lineares. No primeiro e principal tópico estudam-se representações para as soluções de sistemas de controlo lineares no controlo. As suas trajetórias são representadas pelas chamadas séries de Chen. Estuda-se a representação formal destas séries através da introdução de várias álgebras não associativas e técnicas específicas de álgebras de Lie livres. Sistemas de coordenadas para estes sistemas são estudados, nomeadamente, coordenadas de primeiro tipo e de segundo tipo. Apresenta-se uma demonstração alternativa para as coordenadas de segundo tipo e obtêm-se expressões explícitas para as coordenadas de primeiro tipo. Estas últimas estão intimamente ligadas ao logaritmo da série de Chen que, por sua vez, tem fortes relações com uma fórmula designada na literatura por “continuous Baker-Campbell- Hausdorff formula”. São ainda apresentadas aplicações à teoria de funções simétricas não comutativas. É, por fim, caracterizado o mapa de monodromia de um campo de vectores não linear e periódico no tempo em relação a uma truncatura do logaritmo de Chen. No segundo tópico é estudada a estabilizabilidade de um sistema de quaisquer dois corpos que rolem um sobre o outro sem deslizar ou torcer. Constroem-se controlos fechados e dependentes do tempo que tornam a origem do sistema de dois corpos num sistema localmente assimptoticamente estável. Vários exemplos e algumas implementações em Maple°c são discutidos. No terceiro tópico, em apêndice, constroem-se algoritmos para calcular o valor de várias funções fundamentais na aritmética digital, sendo possível a sua implementação em microprocessadores. São também obtidos os seus domínios de convergência. No último tópico, também em apêndice, demonstra-se a existência e unicidade de solução para uma classe de equações integrais não lineares com atraso. O atraso tem um carácter funcional, mostrando-se ainda a diferenciabilidade no sentido de Fréchet da solução em relação à função de atraso.
In this PhD thesis several subjects are studied regarding the following topics: formulas for nonlinear control systems on free Lie algebras, stabilizability of nonlinear control systems, digital arithmetic algorithms, and nonlinear Fredholm integral equations with delay. The first and principal topic is mainly related with a problem known as the continuous Baker-Campbell-Hausdorff exponents. We propose a calculus to deal with formal nonautonomous ordinary differential equations evolving on the algebra of formal series defined on an alphabet. We introduce and connect several (non)associative algebras as Lie, shuffle, zinbiel, pre-zinbiel, chronological (pre-Lie), pre-chronological, dendriform, D-I, and I-D. Most of those notions were also introduced into the universal enveloping algebra of a free Lie algebra. We study Chen series and iterated integrals by relating them with nonlinear control systems linear in control. At the heart of all the theory of Chen series resides a zinbiel and shuffle homomorphism that allows us to construct a purely formal representation of Chen series on algebras of words. It is also given a pre-zinbiel representation of the chronological exponential, introduced by A.Agrachev and R.Gamkrelidze on the context of a tool to deal with nonlinear nonautonomous ordinary differential equations over a manifold, the so-called chronological calculus. An extensive description of that calculus is made, collecting some fragmented results on several publications. It is a fundamental tool of study along the thesis. We also present an alternative demonstration of the result of H.Sussmann about coordinates of second kind using the mentioned tools. This simple and comprehensive proof shows that coordinates of second kind are exactly the image of elements of the dual basis of a Hall basis, under the above discussed homomorphism. We obtain explicit expressions for the logarithm of Chen series and the respective coordinates of first kind, by defining several operations on a forest of leaf-labelled trees. It is the same as saying that we have an explicit formula for the functional coefficients of the Lie brackets on a continuous Baker-Campbell-Hausdorff-Dynkin formula when a Hall basis is used. We apply those formulas to relate some noncommutative symmetric functions, and we also connect the monodromy map of a time-periodic nonlinear vector field with a truncation of the Chen logarithm. On the second topic, we study any system of two bodies rolling one over the other without twisting or slipping. By using the Chen logarithm expressions, the monodromy map of a flow and Lyapunov functions, we construct time-variant controls that turn the origin of a control system linear in control into a locally asymptotically stable equilibrium point. Stabilizers for control systems whose vector fields generate a nilpotent Lie algebra with degree of nilpotency · 3 are also given. Some examples are presented and Maple°c were implemented. The third topic, on appendix, concerns the construction of efficient algorithms for Digital Arithmetic, potentially for the implementation in microprocessors. The algorithms are intended for the computation of several functions as the division, square root, sines, cosines, exponential, logarithm, etc. By using redundant number representations and methods of Lyapunov stability for discrete dynamical systems, we obtain several algorithms (that can be glued together into an algorithm for parallel execution) having the same core and selection scheme in each iteration. We also prove their domains of convergence and discuss possible extensions. The last topic, also on appendix, studies the set of solutions of a class of nonlinear Fredholm integral equations with general delay. The delay is of functional character modelled by a continuous lag function. We ensure existence and uniqueness of a continuous (positive) solution of such equation. Moreover, under additional conditions, it is obtained the Fr´echet differentiability of the solution with respect to the lag function.
Adamík, Pavel. "Řízení dynamických systémů v reálném čase." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2009. http://www.nusl.cz/ntk/nusl-236759.
Full textLI, ZHONG-FEN, and 李中芬. "Oscillations of delay Volterra- Stieltjes integral equations." Thesis, 1992. http://ndltd.ncl.edu.tw/handle/26684478027150829980.
Full textLamzouri, Youness. "Sur la distribution des valeurs de la fonction zêta de Riemann et des fonctions L au bord de la bande critque." Thèse, 2009. http://hdl.handle.net/1866/6626.
Full textBooks on the topic "Integral delay equations"
Morawetz, Klaus. Classical Kinetic Theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0003.
Full textMorawetz, Klaus. Properties of Non-Instant and Nonlocal Corrections. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0014.
Full textKoch, Christof. Biophysics of Computation. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780195104912.001.0001.
Full textBook chapters on the topic "Integral delay equations"
Karafyllis, Iasson, and Miroslav Krstic. "Systems Described by Integral Delay Equations." In Predictor Feedback for Delay Systems: Implementations and Approximations, 229–50. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42378-4_7.
Full textLunel, Sjoerd M. Verduyn. "Spectral theory for delay equations." In Systems, Approximation, Singular Integral Operators, and Related Topics, 465–507. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8362-7_19.
Full textAgarwal, Ravi P., Donal O’Regan, and Patricia J. Y. Wong. "Delay Boundary Value Problems." In Positive Solutions of Differential, Difference and Integral Equations, 110–18. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9171-3_10.
Full textIgnatyev, Alexander O. "Asymptotic Stability in Functional Differential Equations with Delay." In Integral Methods in Science and Engineering, 97–102. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8184-5_17.
Full textBresch-Pietri, Delphine, and Nicolas Petit. "Implicit Integral Equations for Modeling Systems with a Transport Delay." In Recent Results on Time-Delay Systems, 3–21. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26369-4_1.
Full textDuman, Oktay. "Error Estimation for Approximate Solutions of Delay Volterra Integral Equations." In Frontiers in Functional Equations and Analytic Inequalities, 585–97. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28950-8_29.
Full textCastro, L. P., and A. Ramos. "Hyers–Ulam and Hyers–Ulam–Rassias Stability of Volterra Integral Equations with Delay." In Integral Methods in Science and Engineering, Volume 1, 85–94. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4899-2_9.
Full textGrigoriev, Yurii N., Nail H. Ibragimov, Vladimir F. Kovalev, and Sergey V. Meleshko. "Delay Differential Equations." In Symmetries of Integro-Differential Equations, 251–92. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3797-8_6.
Full textRajiv Ganthi, C., and P. Muthukumar. "Approximate Controllability of Fractional Stochastic Integral Equation with Finite Delays in Hilbert Spaces." In Mathematical Modelling and Scientific Computation, 302–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28926-2_32.
Full text"Volterra Integral Processes with Delay: Necessary Optimality Conditions." In Volterra Equations and Applications, 459–66. CRC Press, 2000. http://dx.doi.org/10.1201/9781482287424-55.
Full textConference papers on the topic "Integral delay equations"
Li, Hongfei, and Lijun Zhang. "Stability of Difference-Integral Delay Equations." In 2020 39th Chinese Control Conference (CCC). IEEE, 2020. http://dx.doi.org/10.23919/ccc50068.2020.9188694.
Full textYuanqu Lin and Daniel S. Weile. "Finite difference delay modeling for two-dimenisional time domain integral equations." In 2009 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE, 2009. http://dx.doi.org/10.1109/aps.2009.5171923.
Full textRezounenko, Alexander. "Stability of positive solutions of local partial differential equations with a nonlinear integral delay term." In The 8'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2007. http://dx.doi.org/10.14232/ejqtde.2007.7.17.
Full textFofana, M. S. "A Unified Framework for the Study of Periodic Solutions of Nonlinear Delay Differential Equations." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21617.
Full textRen, Chuanbo, and Xiangtao Tian. "Solution for Dynamics Equations of Control Systems with Time-delay by Precise Integral Algorithm." In Sixth International Conference on Intelligent Systems Design and Applications. IEEE, 2006. http://dx.doi.org/10.1109/isda.2006.253823.
Full textManjuram, R., and V. Muthulakshmi. "Oscillatory behavior of damped second-order nonlinear delay differential equations with riemann-stieltjes integral." In PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS RESEARCH (ICAMR - 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0017693.
Full textButcher, Eric A., Haitao Ma, Ed Bueler, Victoria Averina, and Zsolt Szabo. "Stability Analysis of Parametrically Excited Systems With Time-Delay." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48574.
Full textXiaobo Wang and D. S. Weile. "Finite difference delay modeling with runge-kutta methods for the discretization of time domain integral equations." In 2010 IEEE International Symposium Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting. IEEE, 2010. http://dx.doi.org/10.1109/aps.2010.5561956.
Full textWeile, D. S. "A hybrid galerkin/finite difference delay modeling method for the time domain integral equations of electromagnetics." In 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2013. http://dx.doi.org/10.1109/iceaa.2013.6632224.
Full textXiaobo Wang, Daniel S. Weile, and Peter Monk. "A finite difference delay estimation approach to the discretization of the time domain integral equations of electromagnetics." In 2007 IEEE Antennas and Propagation Society International Symposium. IEEE, 2007. http://dx.doi.org/10.1109/aps.2007.4396562.
Full text