Academic literature on the topic 'Integral equations Nonlinear integral equations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Integral equations Nonlinear integral equations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Integral equations Nonlinear integral equations"

1

van der Linden, J., F. W. Nijhoff, H. W. Capel, and G. R. W. Quispel. "Linear integral equations and multicomponent nonlinear integrable systems I." Physica A: Statistical Mechanics and its Applications 137, no. 1-2 (1986): 44–80. http://dx.doi.org/10.1016/0378-4371(86)90063-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

van der Linden, J., H. W. Capel, and F. W. Nijhoff. "Linear integral equations and multicomponent nonlinear integrable systems II." Physica A: Statistical Mechanics and its Applications 160, no. 2 (1989): 235–73. http://dx.doi.org/10.1016/0378-4371(89)90420-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ahmad, Jamshad, Madiha Tahir, Liaqat Tahir, and Muhammad Naeem. "A Comparative Study on Modifications of Decomposition Method." International Journal of Advances in Scientific Research 2, no. 8 (2016): 157. http://dx.doi.org/10.7439/ijasr.v2i8.3484.

Full text
Abstract:
Many mathematical physics models are contributed to give rise to of nonlinear integral equations. In this paper, we study the performance of two recently developed modifications of well known so called Adomians decomposition method applied using Laplace transform to nonlinear Volterra integral equations. Three nonlinear Volterra integral equations are solved analytically by implementing these modifications. From the obtained results, it may be concluded that that the modified techniques are reliable, efficient and easy to use through recursive relations that involve simple integrals. Moreover,
APA, Harvard, Vancouver, ISO, and other styles
4

Ashirbayev, Nurgali K., Józef Banaś, and Raina Bekmoldayeva. "A Unified Approach to Some Classes of Nonlinear Integral Equations." Journal of Function Spaces 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/306231.

Full text
Abstract:
We are going to discuss some important classes of nonlinear integral equations such as integral equations of Volterra-Chandrasekhar type, quadratic integral equations of fractional orders, nonlinear integral equations of Volterra-Wiener-Hopf type, and nonlinear integral equations of Erdélyi-Kober type. Those integral equations play very significant role in applications to the description of numerous real world events. Our aim is to show that the mentioned integral equations can be treated from the view point of nonlinear Volterra-Stieltjes integral equations. The Riemann-Stieltjes integral app
APA, Harvard, Vancouver, ISO, and other styles
5

Liang, Jin, Sheng-Hua Yan, Ravi P. Agarwal, and Ting-Wen Huang. "Integral solution of a class of nonlinear integral equations." Applied Mathematics and Computation 219, no. 10 (2013): 4950–57. http://dx.doi.org/10.1016/j.amc.2012.10.099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dominici, Diego. "Polynomial solutions of nonlinear integral equations." Journal of Physics A: Mathematical and Theoretical 42, no. 20 (2009): 205201. http://dx.doi.org/10.1088/1751-8113/42/20/205201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bugajewska, Daria, Dariusz Bugajewski та Henryk Hudzik. "BVφ-solutions of nonlinear integral equations". Journal of Mathematical Analysis and Applications 287, № 1 (2003): 265–78. http://dx.doi.org/10.1016/s0022-247x(03)00550-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Islam, M. N. "Periodic solutions of nonlinear integral equations." Annali di Matematica Pura ed Applicata 150, no. 1 (1988): 129–39. http://dx.doi.org/10.1007/bf01761466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dou, Jingbo, and Meijun Zhu. "Nonlinear integral equations on bounded domains." Journal of Functional Analysis 277, no. 1 (2019): 111–34. http://dx.doi.org/10.1016/j.jfa.2018.05.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kagiwada, H. H., R. Kalaba, and K. Spingarn. "Automatic solution of nonlinear integral equations." Computers & Mathematics with Applications 12, no. 5-6 (1986): 1169–84. http://dx.doi.org/10.1016/0898-1221(86)90240-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Integral equations Nonlinear integral equations"

1

Ivanyshyn, Olha. "Nonlinear boundary integral equations in inverse scattering." Lichtenberg (Odw.) Harland Media, 2007. http://d-nb.info/988643316/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ivanyshyn, Olha. "Nonlinear boundary integral equations in inverse scattering /." Fischbachtal, Odenw : HARLAND media, 2008. http://deposit.d-nb.de/cgi-bin/dokserv?id=3104928&prov=M&dok_var=1&dok_ext=htm.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Michelis, Katina. "A sequential eigenfunction expansion approach for certain nonlinear integral equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0006/MQ44221.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Simmons, Bethany Marie. "Nonlinear contact and indenter problems by one-dimensional integral equations." Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1433467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Michelis, Katina. "A sequential eigenfunction expansion approach for certain nonlinear integral equations /." Thesis, McGill University, 1997. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=20588.

Full text
Abstract:
In the numerical solution of nonlinear integral equations, classic finite difference and series methods lead to systems of nonlinear algebraic or transcendental equations which are solved by iterative schemes such as the Newton method. The present work develops a sequential eigenfunction expansion for the numerical solution of certain nonlinear integral equations. The nonlinear term provides constraints for the amplitudes of the eigenfunctions and a subsequent iteration is used to refine these coefficients. A comparative study of the present method with the Broyden method is conducted. It is s
APA, Harvard, Vancouver, ISO, and other styles
6

Dunning, Tania Clare. "Perturbed conformal field theory, nonlinear integral equations and spectral problems." Thesis, Durham University, 2000. http://etheses.dur.ac.uk/4329/.

Full text
Abstract:
This thesis is concerned with various aspects of perturbed conformal field theory and the methods used to calculate finite-size effects of integrable quantum field theories. Nonlinear integral equations are the main tools to find the exact ground-state energy of a quantum field theory. The thermodyamic Bethe ansatz (TBA) equations are a set of examples and are known for a large number of models. However, it is also an interesting question to find exact equations describing the excited states of integrable models. The first part of this thesis uses analytical continuation in a continuous parame
APA, Harvard, Vancouver, ISO, and other styles
7

Jin, Chao. "Parallel domain decomposition methods for stochastic partial differential equations and analysis of nonlinear integral equations." Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3256468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Jin. "Identification of nonlinear structural dynamical system." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/12270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sockell, Michael Elliot. "Similarity solutions of stochastic nonlinear parabolic equations." Diss., Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/49898.

Full text
Abstract:
A novel statistical technique introduced by Besieris is used to study solutions of the nonlinear stochastic complex parabolic equation in the presence of two profiles. Specifically, the randomly modulated linear potential and the randomly perturbed quadratic focusing medium. In the former, a class of solutions is shown to admit an exact statistical description in terms of the moments of the wave function. In the latter, all even-order moments are computed exactly, whereas the odd-order moments are solved asymptotically. Lastly, it is shown that this statistical technique is isomorphic to mappi
APA, Harvard, Vancouver, ISO, and other styles
10

Geigant, Edith. "Nichtlineare Integro-Differential-Gleichungen zur Modellierung interaktiver Musterbildungsprozesse auf S¹." Bonn : Rheinische Friedrich-Wilhelms-Universität, 1999. http://catalog.hathitrust.org/api/volumes/oclc/45517690.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Integral equations Nonlinear integral equations"

1

Precup, Radu. Methods in nonlinear integral equations. Springer, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Methods in nonlinear integral equations. Kluwer Academic Publishers, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Precup, Radu. Methods in nonlinear integral equations. Kluwer Academic Publishers, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Precup, Radu. Methods in nonlinear integral equations. Kluwer Academic Publishers, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Precup, Radu. Methods in Nonlinear Integral Equations. Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9986-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wazwaz, Abdul-Majid. Linear and Nonlinear Integral Equations. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21449-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

O'Regan, Donal. Existence theory for nonlinear integral and integrodifferential equations. Kluwer Academic Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1926-, Lakshmikantham V., and Liu Xinzhi 1956-, eds. Nonlinear integral equations in abstract spaces. Kluwer Academic, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Guo, Dajun, V. Lakshmikantham, and Xinzhi Liu. Nonlinear Integral Equations in Abstract Spaces. Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1281-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hallett, Andrew Hughes. Hybrid algorithms with automatic switching for solving nonlinear equation systems. Dept. of Economics, Fraser of Allander Institute, University of Strathclyde, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Integral equations Nonlinear integral equations"

1

Wazwaz, Abdul-Majid. "Abel’s Integral Equation and Singular Integral Equations." In Linear and Nonlinear Integral Equations. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21449-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kagiwada, Harriet, Robert Kalaba, Nima Rasakhoo, and Karl Spingarn. "Nonlinear Integral Equations." In Numerical Derivatives and Nonlinear Analysis. Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5056-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zemyan, Stephen M. "Nonlinear Integral Equations." In The Classical Theory of Integral Equations. Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8349-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Santini, P. M. "Integrable Singular Integral Evolution Equations." In Springer Series in Nonlinear Dynamics. Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-58045-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wazwaz, Abdul-Majid. "Volterra Integral Equations." In Linear and Nonlinear Integral Equations. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21449-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wazwaz, Abdul-Majid. "Fredholm Integral Equations." In Linear and Nonlinear Integral Equations. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21449-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gorenflo, Rudolf, and Sergio Vessella. "Nonlinear abel integral equations of second kind." In Abel Integral Equations. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0084673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

O’Regan, Donal, and Maria Meehan. "Stochastic Integral Equations." In Existence Theory for Nonlinear Integral and Integrodifferential Equations. Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4992-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ladopoulos, E. G. "Numerical Evaluation Methods for Nonlinear Singular Integral Equations." In Singular Integral Equations. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04291-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wazwaz, Abdul-Majid. "Nonlinear Volterra Integral Equations." In Linear and Nonlinear Integral Equations. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21449-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Integral equations Nonlinear integral equations"

1

IVANYSHYN, O., and R. KRESS. "NONLINEAR INTEGRAL EQUATIONS IN INVERSE OBSTACLE SCATTERING." In Proceedings of the Seventh International Workshop. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773197_0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kerimbekov, Akylbek, Elmira Abdyldaeva, Zhyldyz Asanova, and Alymbek Uraliev. "On the solvability of nonlinear integral equations." In INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0040547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gretskih, Dmitriy, Anatoly Luchaninov, Vasyl Alieksieiev, Viktor Katrich, and Mikhail Nesterenko. "Nonlinear Integral Equations for Multi-Input Radiating Structures." In 2020 IEEE XXVth International Seminar/Workshop Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). IEEE, 2020. http://dx.doi.org/10.1109/diped49797.2020.9273406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Diogo, Teresa, and Magda Rebelo. "Numerical methods for nonlinear singular Volterra integral equations." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Enkov, Svetoslav, Atanaska Georgieva, and Renato Nikolla. "Numerical solution of nonlinear Hammerstein fuzzy functional integral equations." In APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE’16): Proceedings of the 42nd International Conference on Applications of Mathematics in Engineering and Economics. Author(s), 2016. http://dx.doi.org/10.1063/1.4968452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pedas, Arvet, and Gennadi Vainikko. "On the regularity of solutions of nonlinear integral equations." In 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4825512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Meng, Ling Ling, Tian Xia, Xiaoyan Y. Z. Xiong, Li Jun Jiang, and Weng Cho Chew. "Analysis of nonlinear graphene plasmonics using surface integral equations." In 2018 International Applied Computational Electromagnetics Society Symposium (ACES). IEEE, 2018. http://dx.doi.org/10.23919/ropaces.2018.8364105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Georgieva, Atanaska, and Iva Naydenova. "Approximate solution of nonlinear Volterra-Fredholm fuzzy integral equations." In “TOPICAL ISSUES OF THERMOPHYSICS, ENERGETICS AND HYDROGASDYNAMICS IN THE ARCTIC CONDITIONS”: Dedicated to the 85th Birthday Anniversary of Professor E. A. Bondarev. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0100646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Azevedo, Juarez, Adson Rocha, and Saulo Oliveira. "Iterative solution of a class of nonlinear Fredholm integral equations." In CNMAC 2016 - XXXVI Congresso Nacional de Matemática Aplicada e Computacional. SBMAC, 2017. http://dx.doi.org/10.5540/03.2017.005.01.0307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hameed, Hameed Husam, Z. K. Eshkuvatov, Z. Muminov, and Adem Kilicman. "Solving system of nonlinear integral equations by Newton-Kantorovich method." In PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): Germination of Mathematical Sciences Education and Research towards Global Sustainability. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4887642.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Integral equations Nonlinear integral equations"

1

Gear, C. W. Differential algebraic equations, indices, and integral algebraic equations. Office of Scientific and Technical Information (OSTI), 1989. http://dx.doi.org/10.2172/6307619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stenger, Frank. Numerical Inversion of Integral Equations. Defense Technical Information Center, 1986. http://dx.doi.org/10.21236/ada176513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nashed, M. Z., and Paul P. Eggermont. Ill-Posed Problems and Integral Equations. Defense Technical Information Center, 1988. http://dx.doi.org/10.21236/ada193709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Taus, Matthias, Gregory J. Rodin, and Thomas J. Hughes. Isogeometric Analysis of Boundary Integral Equations. Defense Technical Information Center, 2015. http://dx.doi.org/10.21236/ada620024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ottusch, John J., George C. Valley, and Stephen Wandzura. Integral Equations and Discretizations for Waveguide Apertures. Defense Technical Information Center, 1998. http://dx.doi.org/10.21236/ada381021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rall, L. B. Computable Bounds for Solutions of Integral Equations. Defense Technical Information Center, 1985. http://dx.doi.org/10.21236/ada158189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Klein, Clara. Orthogonal, Left-Null, Integral Lines in generalized Budabara equations. Web of Open Science, 2020. http://dx.doi.org/10.37686/emj.v1i1.21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Rose W. Volume Integral Equations Applied to Circular and Square Cylinders. Defense Technical Information Center, 1992. http://dx.doi.org/10.21236/ada266635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pfund, D., and H. Cochran. Chemical potential from integral equations using scaled particle theory. Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/7055212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jiang, S., and V. Rokhlin. Second Kind Integral Equations for Scattering by Open Surfaces II. Defense Technical Information Center, 2003. http://dx.doi.org/10.21236/ada639967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!