Academic literature on the topic 'Integrate-and-fire neuron model'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Integrate-and-fire neuron model.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Integrate-and-fire neuron model"

1

Plesser, Hans E., and Markus Diesmann. "Simplicity and Efficiency of Integrate-and-Fire Neuron Models." Neural Computation 21, no. 2 (2009): 353–59. http://dx.doi.org/10.1162/neco.2008.03-08-731.

Full text
Abstract:
Lovelace and Cios ( 2008 ) recently proposed a very simple spiking neuron (VSSN) model for simulations of large neuronal networks as an efficient replacement for the integrate-and-fire neuron model. We argue that the VSSN model falls behind key advances in neuronal network modeling over the past 20 years, in particular, techniques that permit simulators to compute the state of the neuron without repeated summation over the history of input spikes and to integrate the subthreshold dynamics exactly. State-of-the-art solvers for networks of integrate-and-fire model neurons are substantially more efficient than the VSSN simulator and allow routine simulations of networks of some 105 neurons and 109 connections on moderate computer clusters.
APA, Harvard, Vancouver, ISO, and other styles
2

SHIAU, LIEJUNE, and CARLO R. LAING. "PERIODICALLY FORCED PIECEWISE-LINEAR ADAPTIVE EXPONENTIAL INTEGRATE-AND-FIRE NEURON." International Journal of Bifurcation and Chaos 23, no. 10 (2013): 1350171. http://dx.doi.org/10.1142/s021812741350171x.

Full text
Abstract:
Although variability is a ubiquitous characteristic of the nervous system, under appropriate conditions neurons can generate precisely timed action potentials. Thus considerable attention has been given to the study of a neuron's output in relation to its stimulus. In this study, we consider an increasingly popular spiking neuron model, the adaptive exponential integrate-and-fire neuron. For analytical tractability, we consider its piecewise-linear variant in order to understand the responses of such neurons to periodic stimuli. There exist regions in parameter space in which the neuron is mode locked to the periodic stimulus, and instabilities of the mode locked states lead to an Arnol'd tongue structure in parameter space. We analyze mode locked solutions and examine the bifurcations that define the boundaries of the tongue structures. The theoretical analysis is in excellent agreement with numerical simulations, and this study can be used to further understand the functional features related to responses of such a model neuron to biologically realistic inputs.
APA, Harvard, Vancouver, ISO, and other styles
3

Zador, Anthony M., and Barak A. Pearlmutter. "VC Dimension of an Integrate-and-Fire Neuron Model." Neural Computation 8, no. 3 (1996): 611–24. http://dx.doi.org/10.1162/neco.1996.8.3.611.

Full text
Abstract:
We compute the VC dimension of a leaky integrate-and-fire neuron model. The VC dimension quantifies the ability of a function class to partition an input pattern space, and can be considered a measure of computational capacity. In this case, the function class is the class of integrate-and-fire models generated by varying the integration time constant T and the threshold θ, the input space they partition is the space of continuous-time signals, and the binary partition is specified by whether or not the model reaches threshold at some specified time. We show that the VC dimension diverges only logarithmically with the input signal bandwidth N. We also extend this approach to arbitrary passive dendritic trees. The main contributions of this work are (1) it offers a novel treatment of computational capacity of this class of dynamic system; and (2) it provides a framework for analyzing the computational capabilities of the dynamic systems defined by networks of spiking neurons.
APA, Harvard, Vancouver, ISO, and other styles
4

Kandpal, Pankaj Kumar, and Ashish Mehta. "Critical Analysis of Two Dimensional and Four-Dimensional Spiking Neuron Models." Journal of Computational and Theoretical Nanoscience 16, no. 9 (2019): 3897–905. http://dx.doi.org/10.1166/jctn.2019.8268.

Full text
Abstract:
In the present article, two-dimensional “Spiking Neuron Model” is being compared with the fourdimensional “Integrate-and-fire Neuron Model” (IFN) using error correction back propagation learning algorithm (error correction learning). A comparative study has been done on the basis of several parameters like iteration, execution time, miss-classification rate, number of iterations etc. The authors choose the five-bit parity problem and Iris classification problem for the present study. Results of simulation express that both the models are capable to perform classification task. But single spiking neuron model having two-dimensional phenomena is less complex than Integrate-fire-neuron, produces better results. On the contrary, the classification performance of single ingrate-and-fire neuron model is not very poor but due to complex four-dimensional architecture, miss-classification rate is higher than single spiking neuron model, it means Integrate-and-fire neuron model is less capable than spiking neuron model to solve classification problems.
APA, Harvard, Vancouver, ISO, and other styles
5

Rudd, Michael E., and Lawrence G. Brown. "Noise Adaptation in Integrate-and-Fire Neurons." Neural Computation 9, no. 5 (1997): 1047–69. http://dx.doi.org/10.1162/neco.1997.9.5.1047.

Full text
Abstract:
The statistical spiking response of an ensemble of identically prepared stochastic integrate-and-fire neurons to a rectangular input current plus gaussian white noise is analyzed. It is shown that, on average, integrate-and-fire neurons adapt to the root-mean-square noise level of their input. This phenomenon is referred to as noise adaptation. Noise adaptation is characterized by a decrease in the average neural firing rate and an accompanying decrease in the average value of the generator potential, both of which can be attributed to noise-induced resets of the generator potential mediated by the integrate-and-fire mechanism. A quantitative theory of noise adaptation in stochastic integrate-and-fire neurons is developed. It is shown that integrate-and-fire neurons, on average, produce transient spiking activity whenever there is an increase in the level of their input noise. This transient noise response is either reduced or eliminated over time, depending on the parameters of the model neuron. Analytical methods are used to prove that nonleaky integrate-and-fire neurons totally adapt to any constant input noise level, in the sense that their asymptotic spiking rates are independent of the magnitude of their input noise. For leaky integrate-and-fire neurons, the long-run noise adaptation is not total, but the response to noise is partially eliminated. Expressions for the probability density function of the generator potential and the first two moments of the potential distribution are derived for the particular case of a nonleaky neuron driven by gaussian white noise of mean zero and constant variance. The functional significance of noise adaptation for the performance of networks comprising integrate-and-fire neurons is discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

Breen, Barbara J., William C. Gerken, and Robert J. Butera. "Hybrid Integrate-and-Fire Model of a Bursting Neuron." Neural Computation 15, no. 12 (2003): 2843–62. http://dx.doi.org/10.1162/089976603322518768.

Full text
Abstract:
We present a reduction of a Hodgkin-Huxley (HH)—style bursting model to a hybridized integrate-and-fire (IF) formalism based on a thorough bifurcation analysis of the neuron's dynamics. The model incorporates HH-style equations to evolve the subthreshold currents and includes IF mechanisms to characterize spike events and mediate interactions between the subthreshold and spiking currents. The hybrid IF model successfully reproduces the dynamic behavior and temporal characteristics of the full model over a wide range of activity, including bursting and tonic firing. Comparisons of timed computer simulations of the reduced model and the original model for both single neurons and moderate lysized networks (n ≤ 500) show that this model offers improvement in computational speed over the HH-style bursting model.
APA, Harvard, Vancouver, ISO, and other styles
7

Ascione, Giacomo, and Bruno Toaldo. "A Semi-Markov Leaky Integrate-and-Fire Model." Mathematics 7, no. 11 (2019): 1022. http://dx.doi.org/10.3390/math7111022.

Full text
Abstract:
In this paper, a Leaky Integrate-and-Fire (LIF) model for the membrane potential of a neuron is considered, in case the potential process is a semi-Markov process. Semi-Markov property is obtained here by means of the time-change of a Gauss-Markov process. This model has some merits, including heavy-tailed distribution of the waiting times between spikes. This and other properties of the process, such as the mean, variance and autocovariance, are discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Tal, Doron, and Eric L. Schwartz. "Computing with the Leaky Integrate-and-Fire Neuron: Logarithmic Computation and Multiplication." Neural Computation 9, no. 2 (1997): 305–18. http://dx.doi.org/10.1162/neco.1997.9.2.305.

Full text
Abstract:
The leaky integrate-and-fire (LIF) model of neuronal spiking (Stein 1967) provides an analytically tractable formalism of neuronal firing rate in terms of a neuron's membrane time constant, threshold, and refractory period. LIF neurons have mainly been used to model physiologically realistic spike trains, but little application of the LIF model appears to have been made in explicitly computational contexts. In this article, we show that the transfer function of a LIF neuron provides, over a wide parameter range, a compressive nonlinearity sufficiently close to that of the logarithm so that LIF neurons can be used to multiply neural signals by mere addition of their outputs yielding the logarithm of the product. A simulation of the LIF multiplier shows that under a wide choice of parameters, a LIF neuron can log-multiply its inputs to within a 5% relative error.
APA, Harvard, Vancouver, ISO, and other styles
9

Abbott, L. F. "Lapicque’s introduction of the integrate-and-fire model neuron (1907)." Brain Research Bulletin 50, no. 5-6 (1999): 303–4. http://dx.doi.org/10.1016/s0361-9230(99)00161-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Arunachalam, Viswanathan, Raha Akhavan-Tabatabaei, and Cristina Lopez. "Results on a Binding Neuron Model and Their Implications for Modified Hourglass Model for Neuronal Network." Computational and Mathematical Methods in Medicine 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/374878.

Full text
Abstract:
The classical models of single neuron like Hodgkin-Huxley point neuron or leaky integrate and fire neuron assume the influence of postsynaptic potentials to last till the neuron fires. Vidybida (2008) in a refreshing departure has proposed models for binding neurons in which the trace of an input is remembered only for a finite fixed period of time after which it is forgotten. The binding neurons conform to the behaviour of real neurons and are applicable in constructing fast recurrent networks for computer modeling. This paper develops explicitly several useful results for a binding neuron like the firing time distribution and other statistical characteristics. We also discuss the applicability of the developed results in constructing a modified hourglass network model in which there are interconnected neurons with excitatory as well as inhibitory inputs. Limited simulation results of the hourglass network are presented.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Integrate-and-fire neuron model"

1

Cieniak, Jakub. "Stimulus Coding and Synchrony in Stochastic Neuron Models." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20004.

Full text
Abstract:
A stochastic leaky integrate-and-fire neuron model was implemented in this study to simulate the spiking activity of the electrosensory "P-unit" receptor neurons of the weakly electric fish Apteronotus leptorhynchus. In the context of sensory coding, these cells have been previously shown to respond in experiment to natural random narrowband signals with either a linear or nonlinear coding scheme, depending on the intrinsic firing rate of the cell in the absence of external stimulation. It was hypothesised in this study that this duality is due to the relation of the stimulus to the neuron's excitation threshold. This hypothesis was validated with the model by lowering the threshold of the neuron or increasing its intrinsic noise, or randomness, either of which made the relation between firing rate and input strength more linear. Furthermore, synchronous P-unit firing to a common input also plays a role in decoding the stimulus at deeper levels of the neural pathways. Synchronisation and desynchronisation between multiple model responses for different types of natural communication signals were shown to agree with experimental observations. A novel result of resonance-induced synchrony enhancement of P-units to certain communication frequencies was also found.
APA, Harvard, Vancouver, ISO, and other styles
2

Bernardi, Davide. "Detecting Single-Cell Stimulation in Recurrent Networks of Integrate-and-Fire Neurons." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20560.

Full text
Abstract:
Diese Arbeit ist ein erster Versuch, mit Modellbildung und mathematischer Analyse die Experimente zu verstehen, die zeigten, dass die Stimulation eines einzelnen Neurons im Cortex eine Verhaltensreaktion auslösen kann. Dieser Befund stellt die verbreitete Ansicht infrage, dass viele Neurone nötig sind, um Information zuverlässig kodieren zu können. Der Ausgangspunkt der vorliegenden Untersuchung ist die Stimulation einer zufällig ausgewählten Zelle in einem Zufallsnetzwerk exzitatorischer und inhibitorischer Neuronmodelle. Es wird dann nach einem plausiblen Ausleseverfahren gesucht, das die Einzelzellstimulation mit einer mit den Experimenten vergleichbaren Zuverlässigkeit detektieren kann. Das erste Ausleseschema reagiert auf Abweichungen vom spontanen Zustand in der Aktivität einer Auslesepopulation. Die Stimulation wird detektiert, wenn bei der Auswahl der Auslesepopulation denjenigen Neuronen ein Vorzug gegeben wird, die eine direkte Verbindung von der stimulierten Zelle bekommen. Im zweiten Teil der Arbeit wird das Ausleseschema erweitert, indem ein zweites Netzwerk als Ausleseschaltkreis dient. Interessanterweise erweist sich dieses Ausleseschema nicht nur als plausibler, sondern auch als effektiver. Diese Resultate basieren sowohl auf Simulationen als auch auf analytischen Rechnungen. Weitere Experimente zeigten, dass eine konstante Strominjektion einen Effekt auslöst, der kaum von Dauer und Intensität der Stimulation abhängt, der aber bei unregelmäßiger Stimulation zunimmt. Der letzte Teil der Arbeit befasst sich mit einer theoretischen Erklärung für diese Ergebnisse. Hierzu werden die biologischen Eigenschaften des Systems im Modell detaillierter beschrieben. Weiterhin wird die Funktionsweise des Ausleseschemas so modifiziert, dass es auf Veränderungen reagiert, anstatt den Input zu integrieren. Dieser Differenzierdetektor liefert Ergebnisse, die mit den Experimenten übereinstimmen, und könnte bei nichtstationärem Input vorteilhaft sein.<br>This thesis is a first attempt at developing a theoretical model of the experiments which show that the stimulation of a single cell in the cortex can trigger a behavioral reaction and that challenge the common belief that many neurons are needed to reliably encode information. As a starting point of the present work, one neuron selected at random within a random network of excitatory and inhibitory integrate-and-fire neurons is stimulated. One important goal of this thesis is to seek a readout scheme that can detect the single-cell stimulation in a plausible way with a reliability compatible with the experiments. The first readout scheme reacts to deviations from the spontaneous state in the activity of a readout population. When the choice of readout neurons is sufficiently biased towards those receiving direct links from the stimulated cell, the stimulation can be detected. In the second part of the thesis, the readout scheme is extended by employing a second network as a readout circuit. Interestingly, this new readout scheme is not only more plausible, but also more effective. These results are based both on numerical simulations of the network and on analytical approximations. Further experiments showed that the probability of the behavioral reaction is substantially independent of the length and intensity of the stimulation, but it increases when an irregular current is used. The last part of this thesis seeks a theoretical explanation for these findings. To this end, a recurrent network including more biological details of the system is considered. Furthermore, the functioning principle of the readout is modified to react to changes in the activity of the local network (a differentiator readout), instead of integrating the input. This differentiator readout yields results in accordance with the experiments and could be advantageous in the presence of nonstationarities.
APA, Harvard, Vancouver, ISO, and other styles
3

Schwalger, Tilo. "The interspike-interval statistics of non-renewal neuron models." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16824.

Full text
Abstract:
Um die komplexe Dynamik von Neuronen und deren Informationsverarbeitung mittels Pulssequenzen zu verstehen, ist es wichtig, die stationäre Puls-Aktivität zu charakterisieren. Die statistischen Eigenschaften von Pulssequenzen können durch vereinfachte stochastische Neuronenmodelle verstanden werden. Eine gut ausgearbeitete Theorie existiert für die Klasse der Erneuerungsmodelle, welche die statistische Unabhängigkeit der Interspike-Intervalle (ISI) annimmt. Experimente haben jedoch gezeigt, dass viele Neuronen Korrelationen zwischen ISIs aufweisen und daher nicht gut durch einen Erneuerungsprozess beschrieben werden. Solche Korrelationen können durch Nichterneuerungs-Modelle erfasst werden, welche jedoch theoretisch schlecht verstanden sind. Diese Arbeit ist eine analytische Studie von Nichterneuerungs-Modellen, die zwei bedeutende Korrelationsmechanismen untersucht: farbiges Rauschen, welches zeitlich-korrelierten Input darstellt, und negative Puls-Rückkopplung, welche Feuerraten-Adaption realisiert. Für das "Perfect-Integrate-and-Fire" (PIF) Modell, welchen durch ein allgemeines Gauss''sches farbiges Rauschen getrieben ist, werden die Statistiken höherer Ordnung der Output-Pulssequenz hergeleitet, insbesondere der Koeffizient der Variation, der serielle Korrelationskoeffizient (SCC), die ISI-Dichte und der Fano-Faktor. Weiterhin wird die Dynamik des PIF Modells mit Puls-getriggertem Adaptionsstrom und weissem Stromrauschen im Detail analysiert. Die Theorie liefert einen Ausdruck für den SCC, der für schwaches Rauschen aber beliebige Adaptions-Stärke und Zeitskale gültig ist, sowie die lineare Antwortfunktion und das Leistungsspektrum der Pulssequenz. Ausserdem wird gezeigt, dass ein stochastischer Adaptionsstrom wie ein langsames farbiges Rauschen wirkt, was ermöglicht, die dominierende Quellen des Rauschen in einer auditorischen Rezeptorzelle zu bestimmen. Schliesslich wird der SCC für das fluktuations-getriebene Feuerregime berechnet.<br>To understand the complex dynamics of neurons and its ability to process information using a sequence of spikes, it is vital to characterize its stationary spontaneous spiking activity. The statistical properties of spike trains can be explained by reduced stochastic neuron models that account for various sources of noise. A well-developed theory exists for the class of renewal models, in which the interspike intervals (ISIs) are statistically independent. However, experimental studies show that many neurons are not well described by a renewal process because of correlations between ISIs. Such correlations can be captured by generalized, non-renewal models, which are, however, poorly understood theoretically. This thesis represents an analytical study of non-renewal models, focusing on two prominent correlation mechanisms: colored-noise driving representing temporally correlated inputs, and negative feedback currents realizing spike-frequency adaptation. For the perfect integrate-and-fire (PIF) model driven by a general Gaussian colored noise input, the higher-order statistics of the output spike train is derived using a weak-noise analysis of the Fokker-Planck equation. This includes formulas for the coefficient of variation, the serial correlation coefficient (SCC), the ISI density and the Fano factor. Then, the dynamics of a PIF model with a spike-triggered adaptation and a white-noise current is analyzed in detail. The theory yields an expression for the SCC valid for weak noise but arbitrary adaptation strengths and time scale, and also provides the linear response to time-dependent stimuli and the spike train power spectrum. Furthermore, it is shown that a stochastic adaptation current acts like a slow colored noise, which permits to determine the source of spiking variability observed in an auditory receptor neuron. Finally, the SCC is calculated for the fluctuation-driven spiking regime by assuming discrete states of colored noise or adaptation current.
APA, Harvard, Vancouver, ISO, and other styles
4

Pressley, Joanna. "Response dynamics of integrate-and-fire neuron models." College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8521.

Full text
Abstract:
Thesis (Ph. D.) -- University of Maryland, College Park, 2008.<br>Thesis research directed by: Applied Mathematics and Scientific Computation Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
5

Laudanski, Jonathan. "Integrate-and-fire models in the auditory system : Dynamics of single neurons and neural populations." Thesis, University of Nottingham, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.523713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mahat, Aarati. "Dynamic features of neural activity in primary auditory cortex captured by an integrate-and-fire network model for auditory streaming." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6609.

Full text
Abstract:
Past decades of auditory research have identified several acoustic features that influence perceptual organization of sound, in particular, the frequency of tones and the rate of presentation. One class of stimuli that have been intensively studied are sequences of tones that alternate in frequency. They are typically presented in patterns of repeating doublets ABAB… or repeating triplets ABA-ABA-... where the symbol “-” stands for a gap of silence between triplets repeats. The duration of each tone or silence is typically tens to hundreds of milliseconds, and listeners hearing the sequence perceive either one auditory object ("stream integration") or two separate auditory objects (“stream segregation”). Animal studies have characterized single- and multi- unit neural activity and event-related local field potentials while systematically varying frequency separation between tones (ΔF) or the presentation rate (PR). They found that the B tone responses in doublets were differentially suppressed with increasing PR and that the B tones responses in triplets decreased with larger ΔF. However, the neural mechanisms underlying these animal data have yet to be explained. In this study, we built an integrate-and-fire network model of the primary auditory cortex (AC) that accurately reproduced the experimental results. Then, we extended the model to account for basic spectro-temporal features of electrocorticography (ECoG) recordings from the posteriomedial part of the Heschl's gyrus (HGPM; cortical area equivalent to the AC of monkeys), obtained from humans listening to sequences of triplets ABA-. Finally, we constructed a firing rate reduced model of the proposed integrate-and-fire network and analyzed its dynamics as function of parameters. A large network of voltage-dependent leaky integrate-and-fire neurons (3600 excitatory, 900 inhibitory) was constructed to simulate neural activity from layers 3/4 of AC during streaming of tone triplets. Parameters describing synaptic and membrane properties were based on experimental data from early studies of AC. Network structure assumed spatially-dependent probability of connections and tonotopic organization. Subpopulations of neurons were tuned to different frequencies along the tonotopic map. In-silico recordings were performed during the presentation of long sequences of triplets and/or doublets. The network’s output was derived with two types of measurements in mind: spiking activity of individual neurons and/or local populations of neurons, and local field potentials. The network spiking neural activity reproduced reliably data reports, including dependence of responses to the B tone in triplets ABA- on stimulus parameter ΔF. Approximations of average evoked potentials (AEPs) from ECoG signals recorded at four depth contacts placed over human HGPM during auditory streaming of triplets were also obtained.
APA, Harvard, Vancouver, ISO, and other styles
7

Russo, Elena Tea. "Fluctuation properties in random walks on networks and simple integrate and fire models." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9565/.

Full text
Abstract:
In questa tesi si è studiato l’insorgere di eventi critici in un semplice modello neurale del tipo Integrate and Fire, basato su processi dinamici stocastici markoviani definiti su una rete. Il segnale neurale elettrico è stato modellato da un flusso di particelle. Si è concentrata l’attenzione sulla fase transiente del sistema, cercando di identificare fenomeni simili alla sincronizzazione neurale, la quale può essere considerata un evento critico. Sono state studiate reti particolarmente semplici, trovando che il modello proposto ha la capacità di produrre effetti "a cascata" nell’attività neurale, dovuti a Self Organized Criticality (auto organizzazione del sistema in stati instabili); questi effetti non vengono invece osservati in Random Walks sulle stesse reti. Si è visto che un piccolo stimolo random è capace di generare nell’attività della rete delle fluttuazioni notevoli, in particolar modo se il sistema si trova in una fase al limite dell’equilibrio. I picchi di attività così rilevati sono stati interpretati come valanghe di segnale neurale, fenomeno riconducibile alla sincronizzazione.
APA, Harvard, Vancouver, ISO, and other styles
8

Iolov, Alexandre V. "Parameter Estimation, Optimal Control and Optimal Design in Stochastic Neural Models." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34866.

Full text
Abstract:
This thesis solves estimation and control problems in computational neuroscience, mathematically dealing with the first-passage times of diffusion stochastic processes. We first derive estimation algorithms for model parameters from first-passage time observations, and then we derive algorithms for the control of first-passage times. Finally, we solve an optimal design problem which combines elements of the first two: we ask how to elicit first-passage times such as to facilitate model estimation based on said first-passage observations. The main mathematical tools used are the Fokker-Planck partial differential equation for evolution of probability densities, the Hamilton-Jacobi-Bellman equation of optimal control and the adjoint optimization principle from optimal control theory. The focus is on developing computational schemes for the solution of the problems. The schemes are implemented and are tested for a wide range of parameters.
APA, Harvard, Vancouver, ISO, and other styles
9

Esnaola, Acebes Jose M. "Patterns of spike synchrony in neural field models." Doctoral thesis, Universitat Pompeu Fabra, 2018. http://hdl.handle.net/10803/663871.

Full text
Abstract:
Els models neuronals de camp mig són descripcions fenomenològiques de l'activitat de xarxes de neurones espacialment organitzades. Gràcies a la seva simplicitat, aquests models són unes eines extremadament útils per a l'anàlisi dels patrons espai-temporals que apareixen a les xarxes neuronals, i s'utilitzen àmpliament en neurociència computacional. És ben sabut que els models de camp mig tradicionals no descriuen adequadament la dinàmica de les xarxes de neurones si aquestes actuen de manera síncrona. No obstant això, les simulacions computacionals de xarxes neuronals demostren que, fins i tot en estats d'alta asincronia, fluctuacions ràpides dels inputs comuns que arriben a les neurones poden provocar períodes transitoris en els quals les neurones de la xarxa es comporten de manera síncrona. A més a més, la sincronització també pot ser generada per la mateixa xarxa, donant lloc a oscil·lacions auto-sostingudes. En aquesta tesi investiguem la presència de patrons espai-temporals deguts a la sincronització en xarxes de neurones heterogènies i espacialment distribuïdes. Aquests patrons no s'observen en els models tradicionals de camp mig, i per aquest motiu han estat àmpliament ignorats en la literatura. Per poder investigar la dinàmica induïda per l'activitat sincronitzada de les neurones, fem servir un nou model de camp mig que es deriva exactament d'una població de neurones de tipus quadratic integrate-and-fire. La simplicitat del model ens permet analitzar l'estabilitat de la xarxa en termes del perfil espacial de la connectivitat sinàptica, i obtenir fórmules exactes per les fronteres d'estabilitat que caracteritzen la dinàmica de la xarxa neuronal original. Aquest mateix anàlisi també revela l'existència d'un conjunt de modes d'oscil·lació que es deuen exclusivament a l'activitat sincronitzada de les neurones. Creiem que els resultats presentats en aquesta tesi inspiraran nous avenços teòrics relacionats amb la dinàmica col·lectiva de les xarxes neuronals, contribuïnt així en el desenvolupament de la neurociència computacional.<br>Neural field models are phenomenological descriptions of the activity of spatially organized, recurrently coupled neuronal networks. Due to their mathematical simplicity, such models are extremely useful for the analysis of spatiotemporal phenomena in networks of spiking neurons, and are largely used in computational neuroscience. Nevertheless, it is well known that traditional neural field descriptions fail to describe the collective dynamics of networks of synchronously spiking neurons. Yet, numerical simulations of networks of spiking neurons show that, even in the case of highly asynchronous activity, fast fluctuations in the common external inputs drive transient episodes of spike synchrony. Moreover, synchronization may also be generated by the network itself, resulting in the appearance of robust large-scale, self-sustained oscillations. In this thesis, we investigate the emergence of synchrony-induced spatiotemporal patterns in spatially distributed networks of heterogeneous spiking neurons. These patterns are not observed in traditional neural field theories and have been largely overlooked in the literature. To investigate synchrony-induced phenomena in neuronal networks, we use a novel neural field model which is exactly derived from a large population of quadratic integrate-and-fire model neurons. The simplicity of the neural field model allows us to analyze the stability of the network in terms of the spatial profile of the synaptic connectivity, and to obtain exact formulas for the stability boundaries characterizing the dynamics of the original spiking neuronal network. Remarkably, the analysis also reveals the existence of a collection of oscillation modes, which are exclusively due to spike-synchronization. We believe that the results presented in this thesis will foster theoretical advances on the collective dynamics of neuronal networks, upgrading the mathematical basis of computational neuroscience.
APA, Harvard, Vancouver, ISO, and other styles
10

Devalle, Federico. "Collective phenomena in networks of spiking neurons with synaptic delays." Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/666912.

Full text
Abstract:
A prominent feature of the dynamics of large neuronal networks are the synchrony-driven collective oscillations generated by the interplay between synaptic coupling and synaptic delays. This thesis investigates the emergence of delay-induced oscillations in networks of heterogeneous spiking neurons. Building on recent theoretical advances in exact mean field reductions for neuronal networks, this work explores the dynamics and bifurcations of an exact firing rate model with various forms of synaptic delays. In parallel, the results obtained using the novel firing rate model are compared with extensive numerical simulations of large networks of spiking neurons, which confirm the existence of numerous synchrony-based oscillatory states. Some of these states are novel and display complex forms of partial synchronization and collective chaos. Given the well-known limitation of traditional firing rate models to describe synchrony-based oscillations, previous studies greatly overlooked many of the oscillatory states found here. Therefore, this thesis provides a unique exploration of the oscillatory scenarios found in neuronal networks due to the presence of delays, and may substantially extend the mathematical tools available for modeling the plethora of oscillations detected in electrical recordings of brain activity.<br>Una característica fonamental de la dinàmica d'una xarxa neuronal és l'emergència d'oscil·lacions degudes a sincronització. L'origen d'aquestes oscil·lacions és molt sovint degut les interaccions sinàptiques i als seus retards temporals inherents. Aquesta tesi analitza la emergència d'oscil·lacions produïdes per retards sinàptics en xarxes neuronals heterogènies. A partir de troballes recents en teories de camp mig per xarxes neuronals, aquest treball explora la dinàmica i les bifurcacions d'un model de {\it rate} amb diferents tipus de retards sinàptics. En paral·lel els resultats obtinguts mitjançant el nou model de rate són comparats amb simulacions numèriques de grans xarxes neuronals. Aquestes simulacions confirmen l'existència de nombrosos estats oscil·latoris produïts per sincronització. Alguns d'aquests estats són nous I mostren formes complexes de sincronització parcial i de caos col·lectiu. Gran part d'aquestes oscil·lacions han estat àmpliament ignorades a la literatura, degut a la limitació dels models tradicionals de rate per descriure estats amb un alt nivell de sincronització. Així doncs aquesta tesi ofereix una exploració única dels possibles escenaris oscil·latoris en xarxes neuronals amb retards sinàptics, i amplia significativament les eines matemàtiques disponibles per a la modelització de la gran diversitat d'oscil·lacions neuronals presents en les mesures elèctriques de l'activitat cerebral.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Integrate-and-fire neuron model"

1

Risinger, Lon, and Khosrow Kaikhah. "Modified Bifurcating Neuron with Leaky-Integrate-and-Fire Model." In Innovations in Applied Artificial Intelligence. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24677-0_106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhao, Liang, and Feng Qian. "CRPSO-Based Integrate-and-Fire Neuron Model for Time Series Prediction." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13498-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Buonocore, Aniello, Luigia Caputo, Enrica Pirozzi, and Luigi M. Ricciardi. "On a Generalized Leaky Integrate–and–Fire Model for Single Neuron Activity." In Computer Aided Systems Theory - EUROCAST 2009. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04772-5_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Naud, Richard, and Wulfram Gerstner. "The Performance (and Limits) of Simple Neuron Models: Generalizations of the Leaky Integrate-and-Fire Model." In Computational Systems Neurobiology. Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-3858-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Giugliano, Michele, Giancarlo La Camera, Alexander Rauch, Hans-Rudolf Lüscher, and Stefano Fusi. "Non-monotonic Current-to-Rate Response Function in a Novel Integrate-and-Fire Model Neuron." In Artificial Neural Networks — ICANN 2002. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46084-5_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lin, Min, and Gang Wang. "Complex Behavior in an Integrate-and-Fire Neuron Model Based on Assortative Scale-Free Networks." In Lecture Notes in Electrical Engineering. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-26001-8_60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lánsky, Petr, and Vera Lánská. "Noise in integrate-and-fire models of neuronal dynamics." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0020131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bove, Marco, Michele Giugliano, and Massimo Grattarola. "Regulatory effects of long term biochemical processes in integrate-and-fire model neurons." In Neural Circuits and Networks. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58955-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sánchez-Montañás, Manuel A. "Strategies for the Optimization of Large Scale Networks of Integrate and Fire Neurons." In Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence. Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45720-8_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Koch, Christof. "Synaptic Input to a Passive Tree." In Biophysics of Computation. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780195104912.003.0024.

Full text
Abstract:
Now that we have quantified the behavior of the cell in response to current pulses and current steps as delivered by the physiologist's microelectrode, let us study the behavior of the cell responding to a more physiological input. For instance, a visual stimulus in the environment will activate cells in the retina and its target, neurons in the lateral geniculate nucleus. These, in turn, make on the order of 50 excitatory synapses onto the apical tree of a layer 5 pyramidal cell in primary visual cortex such as the one we use throughout the book, and about 100-150 synapses onto a layer 4 spiny stellate cell (Peters and Payne, 1993; Ahmed et al., 1994, 1996; Peters, Payne, and Rudd, 1994). All of these synapses will be triggered within a fraction of a millisecond (Alonso, Usrey, and Reid, 1996). Thus, any sensory input to a neuron is likely to activate on the order of 102 synapses, rather than one or two very specific synapses as envisioned in Chap. 5 in the discussion of synaptic AND-NOT logic. This chapter will reexamine the effect of synaptic input to a realistic dendritic tree. We will commence by considering a single synaptic input as a sort of baseline condition. This represents a rather artificial condition; but because the excitatory postsynaptic potential and current at the soma are frequently experimentally recorded and provide important insights into the situation prevailing in the presence of massive synaptic input, we will discuss them in detail. Next we will treat the case of many temporally dispersed synaptic inputs to a leaky integrate-and-fire model and to the passive dendritic tree of the pyramidal cell. In particular, we are interested in uncovering the exact relationship between the temporal input jitter and the output jitter. The bulk of this chapter deals with the effect of massive synaptic input onto the firing behavior of the cell, by making use of the convenient fiction that the detailed temporal arrangement of action potentials is irrelevant for neuronal information processing. This allows us to derive an analytical expression relating the synaptic input to the somatic current and ultimately to the output frequency of the cell.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Integrate-and-fire neuron model"

1

Zador, Anthony M., and Barak A. Pearlmutter. "VC dimension of an integrate-and-fire neuron model." In the ninth annual conference. ACM Press, 1996. http://dx.doi.org/10.1145/238061.238064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hamilton, Tara Julia, and Andre van Schaik. "Silicon implementation of the generalized integrate-and-fire neuron model." In 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE, 2011. http://dx.doi.org/10.1109/issnip.2011.6146585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhenzhong Wang, Lilin Guo, and Malek Adjouadi. "A biological plausible Generalized Leaky Integrate-and-Fire neuron model." In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2014. http://dx.doi.org/10.1109/embc.2014.6945192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zohora, Fatima Tuz, Sutapa Debnath, and A. B. M. Harun-ur Rashid. "Memristor-CMOS Hybrid Implementation of Leaky Integrate and Fire Neuron Model." In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE, 2019. http://dx.doi.org/10.1109/ecace.2019.8679259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Maranhao, Gabriel, and Janaina G. Guimaraes. "Integrate and Fire Neuron Implementation using CMOS Predictive Technology Model for 32nm." In 2019 34th Symposium on Microelectronics Technology and Devices (SBMicro). IEEE, 2019. http://dx.doi.org/10.1109/sbmicro.2019.8919380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Wen-Chieh, Chen-Fu Yeh, Alexander James White, et al. "Integer Quadratic Integrate-and-Fire (IQIF): A Neuron Model for Digital Neuromorphic Systems." In 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS). IEEE, 2021. http://dx.doi.org/10.1109/aicas51828.2021.9458572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Roy, Soumik, Taslima Ahmed, and Jiten Ch Dutta. "A simple variant of Integrate-and-Fire model of neuron for application in neuronal area." In 2012 2nd National Conference on Computational Intelligence and Signal Processing (CISP). IEEE, 2012. http://dx.doi.org/10.1109/nccisp.2012.6189679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gomar, Shaghayegh, Arash Ahmadi, and Elahe Eskandari. "A modified adaptive exponential integrate and fire neuron model for circuit implementation of spiking neural networks." In 2013 21st Iranian Conference on Electrical Engineering (ICEE). IEEE, 2013. http://dx.doi.org/10.1109/iraniancee.2013.6599657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yedjour, Hayat, Boudjelal Meftah, Dounia Yedjour, and Abdelkader Benyettou. "The leaky integrate-and-fire neuron model for a rigid and a non-rigid object tracking." In ICSENT 2018: 7th International Conference on Software Engineering and New Technologies. ACM, 2018. http://dx.doi.org/10.1145/3330089.3330096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rast, A. D., F. Galluppi, X. Jin, and S. B. Furber. "The Leaky Integrate-and-Fire neuron: A platform for synaptic model exploration on the SpiNNaker chip." In 2010 International Joint Conference on Neural Networks (IJCNN). IEEE, 2010. http://dx.doi.org/10.1109/ijcnn.2010.5596364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography