Journal articles on the topic 'Integrated nanolasers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 19 journal articles for your research on the topic 'Integrated nanolasers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gu, Qing, Joseph S. T. Smalley, Janelle Shane, Olesya Bondarenko, and Yeshaiahu Fainman. "Temperature effects in metal-clad semiconductor nanolasers." Nanophotonics 4, no. 1 (April 13, 2015): 26–43. http://dx.doi.org/10.1515/nanoph-2013-0058.
Full textXu, Litu, Fang Li, Yahui Liu, Fuqiang Yao, and Shuai Liu. "Surface Plasmon Nanolaser: Principle, Structure, Characteristics and Applications." Applied Sciences 9, no. 5 (February 28, 2019): 861. http://dx.doi.org/10.3390/app9050861.
Full textTotero Gongora, Juan S., and Andrea Fratalocchi. "Integrated nanolasers via complex engineering of radiationless states." Journal of Physics: Photonics 3, no. 1 (December 15, 2020): 011001. http://dx.doi.org/10.1088/2515-7647/abc60e.
Full textLiu, Yahui, Fang Li, Cheng Xu, Zhichong He, Jie Gao, Yunpeng Zhou, and Litu Xu. "The Design and Research of a New Hybrid Surface Plasmonic Waveguide Nanolaser." Materials 14, no. 9 (April 26, 2021): 2230. http://dx.doi.org/10.3390/ma14092230.
Full textKang, Jang-Won, Bokyung Song, Wenjing Liu, Seong-Ju Park, Ritesh Agarwal, and Chang-Hee Cho. "Room temperature polariton lasing in quantum heterostructure nanocavities." Science Advances 5, no. 4 (April 2019): eaau9338. http://dx.doi.org/10.1126/sciadv.aau9338.
Full textChou, Bo-Tsun, Tien-Chang Lu, and Sheng-Di Lin. "Design of Bottom-Emitting Metallic Nanolasers Integrated With Silicon-On-Insulator Waveguides." Journal of Lightwave Technology 33, no. 10 (May 15, 2015): 2087–92. http://dx.doi.org/10.1109/jlt.2015.2397889.
Full textFainman, Yeshaiahu, D. Tan, S. Zamek, O. Bondarenko, A. Simic, A. Mizrahi, M. Nezhad, et al. "Passive and Active Nanophotonics." Advances in Science and Technology 82 (September 2012): 9–18. http://dx.doi.org/10.4028/www.scientific.net/ast.82.9.
Full textAgarwal, Aanchal, Wei-Yang Tien, Yu-Sheng Huang, Ragini Mishra, Chang-Wei Cheng, Shangjr Gwo, Ming-Yen Lu, and Lih-Juann Chen. "ZnO Nanowires on Single-Crystalline Aluminum Film Coupled with an Insulating WO3 Interlayer Manifesting Low Threshold SPP Laser Operation." Nanomaterials 10, no. 9 (August 27, 2020): 1680. http://dx.doi.org/10.3390/nano10091680.
Full textCrosnier, Guillaume, Alexandre Bazin, Vincenzo Ardizzone, Paul Monnier, Rama Raj, and Fabrice Raineri. "Subduing surface recombination for continuous-wave operation of photonic crystal nanolasers integrated on Silicon waveguides." Optics Express 23, no. 21 (October 15, 2015): 27953. http://dx.doi.org/10.1364/oe.23.027953.
Full textKim, Youngsoo, Young Lee, Seokhyeon Hong, Kihwan Moon, and Soon-Hong Kwon. "Photonic Crystal Cavity with a Thin Low-Index Layer for Silicon-Compatible Nanolight Source." Applied Sciences 8, no. 9 (September 4, 2018): 1552. http://dx.doi.org/10.3390/app8091552.
Full textLi, Chun, Zhen Liu, Jie Chen, Yan Gao, Meili Li, and Qing Zhang. "Semiconductor nanowire plasmonic lasers." Nanophotonics 8, no. 12 (October 30, 2019): 2091–110. http://dx.doi.org/10.1515/nanoph-2019-0206.
Full textWu, Chao, Wei Wei, Xueguang Yuan, Yangan Zhang, Xin Yan, and Xia Zhang. "Design and Simulation of Low-Threshold Miniaturized Single-Mode Nanowire Lasers Combined with a Photonic Crystal Microcavity and Asymmetric Distributed-Bragg-Reflector Mirrors." Nanomaterials 10, no. 12 (November 26, 2020): 2344. http://dx.doi.org/10.3390/nano10122344.
Full textCouteau, C., A. Larrue, C. Wilhelm, and C. Soci. "Nanowire Lasers." Nanophotonics 4, no. 1 (May 20, 2015): 90–107. http://dx.doi.org/10.1515/nanoph-2015-0005.
Full textFedyanin, Dmitry Yu, Alexey V. Krasavin, Aleksey V. Arsenin, and Anatoly V. Zayats. "Lasing at the nanoscale: coherent emission of surface plasmons by an electrically driven nanolaser." Nanophotonics 9, no. 12 (July 20, 2020): 3965–75. http://dx.doi.org/10.1515/nanoph-2020-0157.
Full textWang, Zhechao, Bin Tian, Mohanchand Paladugu, Marianna Pantouvaki, Nicolas Le Thomas, Clement Merckling, Weiming Guo, et al. "Polytypic InP Nanolaser Monolithically Integrated on (001) Silicon." Nano Letters 13, no. 11 (October 2, 2013): 5063–69. http://dx.doi.org/10.1021/nl402145r.
Full textKhurgin, Jacob B., and Greg Sun. "How small can “Nano” be in a “Nanolaser”?" Nanophotonics 1, no. 1 (July 1, 2012): 3–8. http://dx.doi.org/10.1515/nanoph-2012-0017.
Full textNozaki, Kengo, Hideki Watanabe, and Toshihiko Baba. "Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction." Applied Physics Letters 92, no. 2 (January 14, 2008): 021108. http://dx.doi.org/10.1063/1.2831916.
Full textHuang, Yu, and C. M. Lieber. "Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires." Pure and Applied Chemistry 76, no. 12 (January 1, 2004): 2051–68. http://dx.doi.org/10.1351/pac200476122051.
Full textChang, Hao, Yichi Zhong, Hongxing Dong, Zhenyu Wang, Wei Xie, Anlian Pan, and Long Zhang. "Ultrastable low-cost colloidal quantum dot microlasers of operative temperature up to 450 K." Light: Science & Applications 10, no. 1 (March 18, 2021). http://dx.doi.org/10.1038/s41377-021-00508-7.
Full text