To see the other types of publications on this topic, follow the link: Integrated solar panel antenna.

Dissertations / Theses on the topic 'Integrated solar panel antenna'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 dissertations / theses for your research on the topic 'Integrated solar panel antenna.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Davids, Vernon Pete. "Design and Implementation of an Integrated Solar Panel Antenna for Small Satellites." Thesis, Cape Peninsula University of Technology, 2019. http://hdl.handle.net/20.500.11838/3044.

Full text
Abstract:
Thesis (PhD (Electrical Engineering))--Cape Peninsula University of Technology, 2019
This dissertation presents a concept for a compact, low-profile, integrated solar panel antenna for use on small satellites in low Earth orbit. To date, the integrated solar panel antenna design approach has primarily been, patch (transparent or non-transparent) and slot radiators. The design approach presented here is proposed as an alternative to existing designs. A prototype, comprising of an optically transparent rectangular dielectric resonator was constructed and can be mounted on top of a solar panel of a Cube Satellite. The ceramic glass, LASF35 is characterised by its excellent transmittance and was used to realise an antenna which does not compete with solar panels for surface area. Currently, no closed-form solution for the resonant frequency and Q-factor of a rectangular dielectric resonator antenna exists and as a first-order solution the dielectric waveguide model was used to derive the geometrical dimensions of the dielectric resonator antenna. The result obtained with the dielectric waveguide model is compared with several numerical methods such as the method of moments, finite integration technique, radar cross-section technique, characteristic mode analysis and finally with measurements. This verification approach was taken to give insight into the resonant modes and modal behaviour of the antenna. The interaction between antenna and a triple-junction gallium arsenide solar cell is presented demonstrating a loss in solar efficiency of 15.3%. A single rectangular dielectric resonator antenna mounted on a ground plane demonstrated a gain of 4.2 dBi and 5.7 dBi with and without the solar cell respectively. A dielectric resonator antenna array with a back-to-back Yagi-Uda topology is proposed, designed and evaluated. The main beam of this array can be steered can steer its beam ensuring a constant flux density at a satellite ground station. This isoflux gain profile is formed by the envelope of the steered beams which are controlled using a single digital phase shifter. The array achieved a beam-steering limit of ±66° with a measured maximum gain of 11.4 dBi. The outcome of this research is to realise a single component with dual functionality satisfying the cost, size and weight requirements of small satellites by optimally utilising the surface area of the solar panels.
APA, Harvard, Vancouver, ISO, and other styles
2

Mahmoud, Mahmoud N. "Integrated Solar Panel Antennas for Cube Satellites." DigitalCommons@USU, 2010. https://digitalcommons.usu.edu/etd/742.

Full text
Abstract:
This thesis work presents an innovative solution for small satellite antennas by integrating slot antennas and solar cells on the same panel to save small satellite surface real estate and to replace deployed wire antennas for certain operational frequencies. The two main advantages of the proposed antenna are: 1) the antenna does not require an expensive deployment mechanism that is required by dipole antennas; 2) the antenna does not occupy as much valuable surface real estate as patch antennas. The antenna design is based on using the spacing between the solar cells to etch slots in these spaces to create radiating elements. The initial feasibility study shows it is realistic to design cavit-backed slot antennas directly on a solar panel of a cube satellite. Due to the volume of the satellite, it is convenient to design antennas at S band or higher frequencies. Although it is possible to design integrated solar panel antennas in lower frequencies, such research is not the scope of this thesis work. In order to demonstrate and validate the design method, three fully integrated solar panel antennas were prototyped using Printed Circuit Board (PCB) technology (PCB is a common solar panel material for small satellites). The first prototype is a circularly polarized antenna. The second is a linearly polarized two-element antenna array. The third prototype is a dual band linearly polarized antenna array. Measured results agree well with simulations performed using Ansoft's High Frequency Structure Simulater (HFSS). The thesis also presents a feasibility study of optimization methods and reconfigurable solar panel antenna arrays. The optimization study explores methods to use genetic algorithms to find optimal antenna geometry and location. The reconfigurable study focuses on achieving different antenna patterns by switching on and off the slot elements placed around the solar cells on solar panels of a cube satellite. It is shown that the proposed integrated solar panel antenna is a robust and cost-effective antenna solution for small satellites. It is also shown that given a solar panel with reasonable size, one can easily achieve multiple antenna patterns and polarization by simple switching.
APA, Harvard, Vancouver, ISO, and other styles
3

Peter, Thomas. "Optically transparent UWB antenna for wireless application & energy harvesting." Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/7024.

Full text
Abstract:
Transparent UWB antennas have been the focus of this PhD research. The use of transparent UWB antennas for stealth and energy harvesting has been the underlying applications that have given impetus to this research. Such transparent antennas being built on materials that are discreet, flexible, conformal, conductive and having the ability to provide good antenna performance on glass to serve as the ‘last mile’ link in subsequent generation communications after 4G have been the basis for this contention. UWB in this regard is able to provide the transmission and reception of high data rates and fast video transmission that is an elementary demand of even a 4G wireless communications system. The integration of UWB antennas with photovoltaic to provide integral energy harvesting solutions that will further enhance the value of the UWB system in terms of cost effectiveness and performance are thus the basis of this work. This work hence starts with the study of a transparent conductive oxide polymer, AgHT and its properties, and culminates in the development of a transparent UWB antenna, which can be integrated with photovoltaic for window glass applications on homes and buildings. Other applications such transparent antennas can find use for like on-body wireless communications in healthcare monitoring was also analysed and presented. The radar absorbing material (RAM) property of the AgHT was investigated and highlighted using CST simulation software, as no measurement facilities were available. The transparent UWB antenna in lieu of the inherent absorbent property of the AgHT material is thus able to exhibit stealth characteristics, a feature that would be much desired in military communications. Introduction of a novel method of connecting the co-axial connector to the feed of the antenna to improve gain and efficiency of transparent polymer based antennas and the development of a UWB antenna that maintains its Omni-directional characteristic instead of becoming directional on an amorphous silicon solar cell are presented as some of the contributions for this research work. Some preliminary analysis on the impact of glass on UWB antennas for video transmission and how to improve transmission is presented. The ability of the conductive part of the antenna radiator to be used as a RF and microwave harvester and how it can further add value to a transparent UWB antenna is presented by way of experimental data. Finally yet importantly, this thesis presents some insight into how transparent antennas may be used in Green Technology Buildings to provide an integrated solution for both wireless communications and energy harvesting as part of the future work. Improvement to the aesthetics of the external appearance of residential buildings through the integration of transparent satellite dish onto solar panels on rooftops is also discussed and illustrated as part of this future work.
APA, Harvard, Vancouver, ISO, and other styles
4

Yekan, Taha Shahvirdi Dizaj. "Transparent Solar Panel Antenna Array." DigitalCommons@USU, 2016. https://digitalcommons.usu.edu/etd/5035.

Full text
Abstract:
This dissertation research presents a comprehensive study to answer the question of “Can it be possible to integrate a high gain optically transparent antenna array directly on top of solar cells?”. The answer to such question is extremely important in space exploration where very small satellites have been extensively employed. Due to their small mass and size, those small satellites create challenges for one to mount the antennas, and the challenge is further increased when a high gain antenna is need for more communication capacity. Based on feasibility studies, the dissertation concludes that it is possible to do such an integration, and then proceeds to present the approaches for design and integration. On the element level, the thesis presents research in assessing the effects between a planar antenna integrated on the solar cell and the photovoltaic cell. A series of experiments were designed to perform assessments for antennas operating from C to X bands. It is concluded that a commercial triple junction space–certified solar cell normally would decrease the gain of the antenna to 2–3 dB and is not affected by the working states of solar cells. The shadow of the antenna casts on solar cells, however, is not significant (less than 2%). The thesis also provides a model of a common space solar cell that helps to explain the gain loss. The model was validated by experimental data, and it was utilized to predict iv a possible custom design of solar cell where with a minimal design modification, it would facilitate less gain loss of the antenna integrated on top. On the array level, the research surveys different high gain antenna array design and then focus on an optimal sub–wavelength reflectarray design. The final antenna array design is a 30 cm by 20 cm, X band (8.475 GHz) reflectarray that shows 94% transparency, 24 dB gain, and higher than 40% aperture efficiency. The design is then prototyped and tested on actual solar panel. The measurement of the reflectarray placed on the solar panel showed a gain of 22.46 dB and an aperture efficiency of 29.3%. While those results are considered excellent, the thesis continues to address the reasons for reduction of the antenna’s performance due to the solar panel, through both theoretical analysis and experiments.
APA, Harvard, Vancouver, ISO, and other styles
5

Fawole, Olutosin C. "A Multifunctional Solar Panel Antenna for Cube Satellites." DigitalCommons@USU, 2012. https://digitalcommons.usu.edu/etd/1365.

Full text
Abstract:
The basic cube satellite (CubeSat) is a modern small satellite that has a standard size of about one liter (the 1U CubeSat). Three 1U CubeSats could be stacked to form a 3U CubeSat. Their low-cost, short development time, and ease of deployment make CubeSats popular for space research, geographical information gathering, and communication applications. An antenna is a key part of the CubeSat communication subsystem. Traditionally, antennas used on CubeSats are wrapped-up wire dipole antennas, which are deployed after satellite launch. Another antenna type used on CubeSats is the patch antenna. In addition to their low gain and efficiency, deployable dipole antennas may also fail to deploy on satellite launch. On the other hand, a solid patch antenna will compete for space with solar cells when placed on a CubeSat face, interfering with satellite power generation. Slot antennas are promising alternatives to dipole and patch antennas on CubeSats. When excited, a thin slot aperture etched on a conductive sheet (ground plane) is an efficient bidirectional radiator. This open slot antenna can be backed by a reflector or cavity for unidirectional radiation, and solar cells can be placed in spaces on the ground plane not occupied by the slot. The large surface areas of 3U CubeSats can be exploited for a multifunctional antenna by integrating multiple thin slot radiators, which are backed by a thin cavity on the CubeSat surfaces. Solar cells can then be integrated on the antenna surface. Polarization diversity and frequency diversity improve the overall performance of a communication system. Having a single radiating structure that could provide these diversities is desired. It has been demonstrated that when a probe excites a square cavity with two unequal length crossed-slots, the differential radiation from the two slots combines in the far-field to yield circular polarization. In addition, it has been shown that two equal-length proximal slots, when both fed with a stripline, resonate at a frequency due to their original lengths, and also resonate at a lower frequency due to mutual coupling between the slots, leading to a dual-band operation. The multifunctional antenna designs presented are harmonizations and extensions of these two independent works. In the multifunctional antenna designs presented, multiple slots were etched on a 83 mm x 340 mm two-layer shallow cavity. The slots were laid out on the cavity such when the cavity was excited by a probe at a particular point, the differential radiation from the slots would combine in the far-field to yield Left-Handed Circular Polarization (LHCP). Furthermore, when the cavity was excited by another probe at an opposite point, the slots would produce Right-Handed Circular Polarization (RHCP). In addition, as forethought, these slots were laid out on the cavity such that some slots were close together enough to give Linearly Polarized (LP) dual-band operation when fed with a stripline. This antenna was designed and optimized via computer simulations, fabricated using Printed Circuit Board (PCB) technology, and characterized using a Vector Network Analyzer (VNA) and NSI Far Field Systems.
APA, Harvard, Vancouver, ISO, and other styles
6

Ishikawa, Takaki. "Study on Beam Forming for Phased Array Antenna of Panel-structured Solar Power Satellite." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mårtensson, Benny, and Tobias Karlsson. "Cooling integrated solar panels using Phase Changing Materials." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-16780.

Full text
Abstract:
In this master thesis, several cooling systems for PV-systems have been looked into by doing a smaller literature review and then a cooling module for a BIPV-panel was built out from the knowledge gathered. The cooling module used a PCM material separated into 12 bags and then placed in a 3x4 shaped pattern fastened to an aluminium plate that in turn was placed on the back of a PV-panel. This was tested in first a pilot test and then tested outdoors on panels with insulation on its back to simulate BIPV-panels. Temperature data from behind the panel was gathered with and without the cooling module and then compared with each other with added ambient temperature. It was found that the PCM cooled down the panels during similar weather conditions where the outside temperature and the amount of clouds where approximately the same, and it was also found that PCM technologies needs to be more optimised in terms of its material use, the amount of material, and its arrangement for it to be used in PV-panels. An economical calculation was made and it was found that it wasn't economically viable as it takes 14 years for the PV-panel with cooling to pay for itself while it takes 13 years for the PV-panel with cooling to pay for itself. These results are then discussed in comparison to other systems and earlier work done.
I denna exjobbsrapport så har ett antal olika kylningssystem till PV-paneler setts igenom genom en mindre litteraturstudie. Därefter byggdes en kylningsmodul för en BIPV utifrån den kunskapen som samlats in. Kylningsmodulen använde sig utav ett PCM material som var uppdelat mellan 12 påsar som placerades i ett 3x4 mönster som fästs på baksidan av en aluminiumplåt som i sin tur placerades på baksidan utav PV-panelen. Denna testades först i ett pilottest och sedan utomhus på paneler som isoleras baktill för att simulera BIPV-paneler. Temperaturdata samlades in från panelens baksida, med och utan kylnings modul, som sedan jämfördes med varandra samt omgivningens temperatur. Slutsatsen är att PCM kyler panelen under liknande väderförhållanden där ute temperaturen och molnigheten var ungefär densamma, men att PCM behöver optimeras mer i form av användningen av materialet, mängden av material, och hur det sätts upp som kylning på PV-paneler. En ekonomisk kalkyl genomfördes som visar att det inte är ekonomiskt gångbart eftersom det tar 14 för PV-panelen med kylning att betala av sig själv medan det tar 13 år för PV-panelen utan kylning att göra det. Dessa resultat diskuteras sedan i jämförelse med andra system och tidigare arbeten som gjorts inom området.
APA, Harvard, Vancouver, ISO, and other styles
8

Turpin, Timothy W. "Meshed Patch Antennas Integrated on Solar Cell - A Feasibility Study and Optimization." DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/251.

Full text
Abstract:
This thesis work presents the feasibility of integrating meshed patch antennas directly onto the solar cell assembly to save valuable surface real estate of a small satellite. The solar cell cover glass is used as the substrate for the patch antenna. The antenna topology is chosen to be a meshed patch so that it is transparent to light to ensure the proper operation of solar cells. We found that although there is a compromise between the antenna efficiency and see-through percentage, one is able to optimize the antenna by carefully designing the mesh. To verify the design and integration, a meshed antenna operating at around 2.3 GHz is printed with conductive ink on a plastic substrate and placed on-top of solar cells attached to an aluminum ground plane. The printed solar cell antenna is measured with Nearfield Systems Inc. spherical near-field range and the measurements agree well with the design.
APA, Harvard, Vancouver, ISO, and other styles
9

Saadon, Syamimi. "Modeling and simulation of a ventilated building integrated photovoltaic/thermal (BIPV/T) envelope." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0049.

Full text
Abstract:
La demande d'énergie consommée par les habitants a connu une croissance significative au cours des 30 dernières années. Par conséquent, des actions sont menées en vue de développement des énergies renouvelables et en particulier de l'énergie solaire. De nombreuses solutions technologiques ont ensuite été proposées, telles que les capteurs solaires PV/T dont l'objectif est d'améliorer la performance des panneaux PV en récupérant l’énergie thermique qu’ils dissipent à l’aide d’un fluide caloporteur. Les recherches en vue de l'amélioration des productivités thermiques et électriques de ces composants ont conduit à l'intégration progressive à l’enveloppe des bâtiments afin d'améliorer leur surface de captation d’énergie solaire. Face à la problématique énergétique, les solutions envisagées dans le domaine du bâtiment s’orientent sur un mix énergétique favorisant la production locale ainsi que l’autoconsommation. Concernant l’électricité, les systèmes photovoltaïques intégrés au bâtiment (BIPV) représentent l’une des rares technologies capables de produire de l’électricité localement et sans émettre de gaz à effet de serre. Cependant, le niveau de température auquel fonctionnent ces composants et en particulier les composants cristallins, influence sensiblement leur efficacité ainsi que leur durée de vie. Ceci est donc d’autant plus vrai en configuration d’intégration. Ces deux constats mettent en lumière l’importance du refroidissement passif par convection naturelle de ces modules. Ce travail porte sur la simulation numérique d'une façade PV partiellement transparente et ventilée, conçu pour le rafraichissement en été (par convection naturelle) et pour la récupération de chaleur en hiver (par ventilation mécanique). Pour les deux configurations, l'air dans la cavité est chauffé par la transmission du rayonnement solaire à travers des surfaces vitrées, et par les échanges convectif et radiatif. Le système est simulé à l'aide d'un modèle multi-physique réduit adapté à une grande échelle dans des conditions réelles d'exploitation et développé pour l'environnement logiciel TRNSYS. La validation du modèle est ensuite présentée en utilisant des données expérimentales du projet RESSOURCES (ANR-PREBAT 2007). Cette étape a conduit, dans le troisième chapitre du calcul des besoins de chauffage et de refroidissement d'un bâtiment et l'évaluation de l'impact des variations climatiques sur les performances du système. Les résultats ont permis enfin d'effectuer une analyse énergétique et exergo-économique
The demand of energy consumed by human kind has been growing significantly over the past 30 years. Therefore, various actions are taken for the development of renewable energy and in particular solar energy. Many technological solutions have then been proposed, such as solar PV/T collectors whose objective is to improve the PV panels performance by recovering the heat lost with a heat removal fluid. The research for the improvement of the thermal and electrical productivities of these components has led to the gradual integration of the solar components into building in order to improve their absorbing area. Among technologies capable to produce electricity locally without con-tributing to greenhouse gas (GHG) releases is building integrated PV systems (BIPV). However, when exposed to intense solar radiation, the temperature of PV modules increases significantly, leading to a reduction in efficiency so that only about 14% of the incident radiation is converted into electrical energy. The high temperature also decreases the life of the modules, thereby making passive cooling of the PV components through natural convection a desirable and cost-effective means of overcoming both difficulties. A numerical model of heat transfer and fluid flow characteristics of natural convection of air is therefore undertaken so as to provide reliable information for the design of BIPV. A simplified numerical model is used to model the PVT collector so as to gain an understanding of the complex processes involved in cooling of integrated photovoltaic arrays in double-skin building surfaces. This work addresses the numerical simulation of a semi-transparent, ventilated PV façade designed for cooling in summer (by natural convection) and for heat recovery in winter (by mechanical ventilation). For both configurations, air in the cavity between the two building skins (photovoltaic façade and the primary building wall) is heated by transmission through transparent glazed sections, and by convective and radiative exchange. The system is simulated with the aid of a reduced-order multi-physics model adapted to a full scale arrangement operating under real conditions and developed for the TRNSYS software environment. Validation of the model and the subsequent simulation of a building-coupled system are then presented, which were undertaken using experimental data from the RESSOURCES project (ANR-PREBAT 2007). This step led, in the third chapter to the calculation of the heating and cooling needs of a simulated building and the investigation of impact of climatic variations on the system performance. The results have permitted finally to perform the exergy and exergoeconomic analysis
APA, Harvard, Vancouver, ISO, and other styles
10

Sundqvist, Tobias, and Elias Rahimi. "Utvärdering av solcellsanläggningar i Västerås : Jämförelse av verkligt systemutbyte mot teoretisk simulerad." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-39886.

Full text
Abstract:
Solar cells is one of the cleanest and most environmentally friendly ways to produce electricity. Västerås city has invested in a number of solar systems in public buildings as a step to solve the energy issues of the future and contribute to a sustainable environment. The purpose of this project is to compare the real system yield from Västerås city´s solar plants with simulations. Produces the solar plants as expected or not, and if not, what might be the cause. Data were collected about the solar cell installations, by Mälarenergi Elnät and Västerås city. The real system yield was calculated and then the solar plants were simulated in PVGIS (Photovoltaic Geographical Information System) to obtain the theoretical yield. This project shows that most of Västerås city´s solar plants have a yield that is as expected according to the simulations or higher. However, there are some solar plants with a low or very low yield compared to the simulations. The yield varies considerably during the year. For those plants where the yield has been studied monthly, the real yield is higher in the second half of the year compared with the first half. The self-consumption varies greatly between the different solar plants, but generally it is high. Some solar plants have a very high self-consumption of 100 % and some have a very low of 30-40 %. Some solar plants have a higher yield than expected and it may depends to the fact that the installed power is a few percent higher than what the manufacturer states. The simulations might be unsure, because losses, solar radiation and weather may vary. The solar plants that have a low yield compared to the simulations may have a broken or disconnected component, shading and dirt may also affect. To have as high self-consumption as possible is an economically advantage, as long as the plant is not under-dimensioned because the goal is to produce electricity. There is no clear pattern showing which of the four PVGIS simulations is best matched to reality.
APA, Harvard, Vancouver, ISO, and other styles
11

Donado, Morcillo Carlos Alberto. "Development of lightweight and low-cost microwave components for remote-sensing applications." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/51733.

Full text
Abstract:
The objective of the proposed research is to design, implement, and characterize low-cost, lightweight front-end components and subsystems in the microwave domain through innovative packaging architectures for remote sensing applications. Particular emphasis is placed on system-on-package (SoP) solutions implemented in organic substrates as a low-cost alternative to conventional, expensive, rigid, and fragile radio- frequency substrates. To this end, the dielectric properties of organic substrates RT/duroid 5880, 6002 and 6202 are presented from 30 GHz to 70 GHz, covering most of the Ka and V radar bands, giving also a thorough insight on the uncertainty of the microstrip ring resonator method by means of the Monte Carlo uncertainty analysis. Additionally, an ultra-thin, high-power antenna-array technology, with transmit/ receive (T/R) functionality is introduced for mobile applications in the X band. Two lightweight SoP T/R array panels are presented in this work using novel technologies such as Silicon Germanium integrated circuits and microelectromechanical system switches on a hybrid organic package of liquid crystal polymer and RT/duroid 5880LZ. A maximum power of 47 dBm is achieved in a package with a thickness of 1.8 mm without the need of bulky thermal management devices. Finally, to address the thermal limitations of thin-film substrates of interest (liquid crystal polymer, RT/duroid 6002, alumina and Aluminum Nitride), a thermal assessment of microstrip structures is presented in the X band, along with the thermal characterization of the dielectric properties of RT/duroid 6002 from 20 ºC to 200 ºC and from 30 GHz to 70 GHz. Additional high-power, X-band technologies presented in this work include: a novel and compact topology for evanescent mode filters, and low-profile Wilkinson power dividers implemented on Aluminum Nitride using Tantalum Nitride thin-film resistors.
APA, Harvard, Vancouver, ISO, and other styles
12

Donado, Morcillo Carlos Alberto. "Development of lightweight and low-cost microwave components for remote-sensing applications." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47532.

Full text
Abstract:
The objective of the proposed research is to design, implement, and characterize low-cost, lightweight front-end components and subsystems in the microwave domain through innovative packaging architectures for remote sensing applications. Particular emphasis is placed on system-on-package (SoP) solutions implemented in organic substrates as a low-cost alternative to conventional, expensive, rigid, and fragile radio- frequency substrates. To this end, the dielectric properties of organic substrates RT/duroid 5880, 6002 and 6202 are presented from 30 GHz to 70 GHz, covering most of the Ka and V radar bands, giving also a thorough insight on the uncertainty of the microstrip ring resonator method by means of the Monte Carlo uncertainty analysis. Additionally, an ultra-thin, high-power antenna-array technology, with transmit/ receive (T/R) functionality is introduced for mobile applications in the X band. Two lightweight SoP T/R array panels are presented in this work using novel technologies such as Silicon Germanium integrated circuits and microelectromechanical system switches on a hybrid organic package of liquid crystal polymer and RT/duroid 5880LZ. A maximum power of 47 dBm is achieved in a package with a thickness of 1.8 mm without the need of bulky thermal management devices. Finally, to address the thermal limitations of thin-film substrates of interest (liquid crystal polymer, RT/duroid 6002, alumina and Aluminum Nitride), a thermal assessment of microstrip structures is presented in the X band, along with the thermal characterization of the dielectric properties of RT/duroid 6002 from 20 C to 200 C and from 30 GHz to 70 GHz. Additional high-power, X-band technologies presented in this work include: a novel and compact topology for evanescent mode filters, and low-profile Wilkinson power dividers implemented on Aluminum Nitride using Tantalum Nitride thin-film resistors.
APA, Harvard, Vancouver, ISO, and other styles
13

WU, YU-HONG, and 吳俞宏. "Solar-Powered Active Integrated Antenna Using a Transparent Reflectarray." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/cwq643.

Full text
Abstract:
碩士
國立臺北科技大學
電子工程系
107
In this thesis, an active transparent reflectarray antenna (RA) for satellite communication is proposed. The subsystem is composed of active integrated antennas (AIA), reflectarray and self-biasing system. By using ITO as a transparent conductor to increase optical transparency, which reduces optical blockage caused by substrate and conductor. However, their design has proved difficult due to their inherent conductor losses and process limitation. Finally, the transparent reflectarray is composed of 423 sub-elements, which physical size, aperture gain, aperture efficiency and are 110.0 × 80.0 mm2, 21.4 dBi, 23.5% and 61%, respectively. After the substitute feed as AIA the measured Gain is top to 41.3 dB at 25 GHz.
APA, Harvard, Vancouver, ISO, and other styles
14

Hung, Han-Tse, and 洪瀚澤. "MIMO Antenna Designs for WLAN/LTE with Solar Panel Used in Base Station." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/38297262528247029371.

Full text
Abstract:
碩士
樹德科技大學
電腦與通訊系碩士班
100
The MIMO antenna designs for WLAN/LTE with solar panel used in base station, which is divided into four parts. First, used the easy way design a low profile WLAN antenna. Second, the MIMO antenna design for LTE700 and discussion the antenna of position affect isolation. Third, used the same antenna different design ways to complete the bands of WLAN 2.4/5.2/5.8 and LTE 700/2300/2500 and discussion is the application of the antenna with solar panel, The above three design are also capacitive coupling feed and the application of MIMO technology to discuss the isolation and correlation. First antenna design, it used a little metal to coupling the other side ladder metal and connections of rectangular metal. This design is operating in the WLAN band and adjusting the three parameters to change the current path to achieve ideal frequency. The second antenna design, the design is operating in the LTE 700 band, it use the ways by coupling feed and bending. Proposed two antennas placed in the angle and placement will affect the isolation. Proposed antenna is hexagonal and proposed using of program two. The third antenna design, it design is an extension of the first antenna. The structure, including feed into the ladder of metals and its coupling other side ladder of metals. Will rectangular metal bending make the system smaller in size to achieve the operating frequency band for WLAN/LTE. In addition, it contrast with the first antenna design, achieve the reduced frequency is to increase the coupling area and the metal length.
APA, Harvard, Vancouver, ISO, and other styles
15

Gadalla, Mena N. "Nano Antenna Integrated Diode (Rectenna) For Infrared Energy Harvesting." Thesis, 2013. http://hdl.handle.net/10754/268872.

Full text
Abstract:
In this work full parametric analysis of nano antennas is presented. To begin with, optical or electronic properties of noble metals such as gold and copper were studied in details to get a clear understanding of their reaction to an incident electromagnetic wave. Complex frequency dependent dielectric functions indicated that in THz metals acts as a dielectric with significant absorption. Simultaneous optimization of the length and the bow angle of a bow-tie antenna resulted in relative electric field intensity enhancement of 8 orders of magnitude for 0.5nm gap and 4 orders of magnitude for 50nm around 28THz resonance frequency. These results are at least 2 orders of magnitude greater than the published optical antennas. Physical reasons behind field localization and intensity enhancement  are  discussed  in  details.  The  solution  of  Maxwell’s  equations  at   the  interface between metallic nano antenna and air is also present in this piece of research. The derived dispersion relation of surface plasmons shows momentum matching at 28.3 THz between free propagating electromagnetic fields’ modes in air and localized modes at the interface. Consequently, Propagating electromagnetic waves are ensured to couple to localized surface propagating modes producing filed enhancement. The integrated SiO2 matching section is theoretically proven to increase transmission to substrate to 75% (compared to 40% without it) which in turn improves the coupled power by 40 times. Nano antennas were fabricated in house using Electron beam lithography with a precise gap of 50nm. In addition, THz diode was designed, fabricated and integrated to the nano antennas to rectify the enhanced THz signal. The integration of the nano diode required a precise overlap of the two arms of the antenna in the rage of 100nm. In order to overcome two arms overlap fabrication challenges, three layer alignment technique was used to produce precise overlap.The THz rectifier was electrically tested and shown high sensitivity and rectification ability without any bias. Finally, nano antenna integrated diode is under optical testing using a 10.6μm Co2 laser at Electro-Optics Lab, Prince Sultan Advanced Technologies Research Institute (PSATRI), King Saud University due to the unavailability of the measurement setup in KAUST.
APA, Harvard, Vancouver, ISO, and other styles
16

Lozano, Adolfo. "Analysis of a novel thermoelectric generator in the built environment." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-08-4131.

Full text
Abstract:
This study centered on a novel thermoelectric generator (TEG) integrated into the built environment. Designed by Watts Thermoelectric LLC, the TEG is essentially a novel assembly of thermoelectric modules whose required temperature differential is supplied by hot and cold streams of water flowing through the TEG. Per its recommended operating conditions, the TEG nominally generates 83 Watts of electrical power. In its default configuration in the built environment, solar-thermal energy serves as the TEG’s hot stream source and geothermal energy serves as its cold stream source. Two systems-level, thermodynamic analyses were performed, which were based on the TEG’s upcoming characterization testing, scheduled to occur later in 2011 in Detroit, Michigan. The first analysis considered the TEG coupled with a solar collector system. A numerical model of the coupled system was constructed in order to estimate the system’s annual energetic performance. It was determined numerically that over the course of a sample year, the solar collector system could deliver 39.73 megawatt-hours (MWh) of thermal energy to the TEG. The TEG converted that thermal energy into a net of 266.5 kilowatt-hours of electricity in that year. The second analysis focused on the TEG itself during operation with the purpose of providing a preliminary thermodynamic characterization of the TEG. Using experimental data, this analysis found the TEG’s operating efficiency to be 1.72%. Next, the annual emissions that would be avoided by implementing the zero-emission TEG were considered. The emission factor of Michigan’s electric grid, RFCM, was calculated to be 0.830 tons of carbon dioxide-equivalent (CO2e) per MWh, and with the TEG’s annual energy output, it was concluded that 0.221 tons CO2e would be avoided each year with the TEG. It is important to note that the TEG can be linearly scaled up by including additional modules. Thus, these benefits can be multiplied through the incorporation of more TEG units. Finally, the levelized cost of electricity (LCOE) of the TEG integrated into the built environment with the solar-thermal hot source and passive ground-based cold source was considered. The LCOE of the system was estimated to be approximately $8,404/MWh, which is substantially greater than current generation technologies. Note that this calculation was based on one particular configuration with a particular and narrow set of assumptions, and is not intended to be a general conclusion about TEG systems overall. It was concluded that while solar-thermal energy systems can sustain the TEG, they are capital-intensive and therefore not economically suitable for the TEG given the assumptions of this analysis. In the end, because of the large costs associated with the solar-thermal system, waste heat recovery is proposed as a potentially more cost-effective provider of the TEG’s hot stream source.
text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography