Academic literature on the topic 'Integrin alpha6beta4'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Integrin alpha6beta4.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Integrin alpha6beta4"

1

DiPersio, C. M., R. van der Neut, E. Georges-Labouesse, J. A. Kreidberg, A. Sonnenberg, and R. O. Hynes. "alpha3beta1 and alpha6beta4 integrin receptors for laminin-5 are not essential for epidermal morphogenesis and homeostasis during skin development." Journal of Cell Science 113, no. 17 (September 1, 2000): 3051–62. http://dx.doi.org/10.1242/jcs.113.17.3051.

Full text
Abstract:
Continuous regeneration and homeostasis of the stratified epidermis requires coordinated regulation of cell proliferation, cell differentiation, and cell survival. Integrin-mediated cell adhesion to the extracellular matrix has important roles in regulating each of these processes. Integrins alpha3beta1 and alpha6beta4 are both receptors on epidermal keratinocytes for the basement membrane protein laminin-5, the major ligand for epidermal adhesion in mature skin. Ablation in mice of either alpha3beta1 or alpha6beta4, through null mutation of the gene encoding the alpha3, alpha6, or beta4 integrin subunit, results in epidermal blistering of varying severity. Our previous studies showed that, despite blistering, differentiation and stratification of the epidermis appeared essentially normal in mice that lacked either alpha3beta1 or alpha6beta4. However, these studies did not definitively address the specific developmental importance of each integrin, since they may have overlapping and/or compensatory functions. Given the individual importance of alpha3beta1 or alpha6beta4 in maintaining the dermo-epidermal junction in mature skin, we sought to determine the importance of these integrins for embryonic skin development and epidermal morphogenesis. In the current study, we analyzed skin development in mutant embryos that completely lack both integrins alpha3beta1 and alpha6beta4. Although alpha3beta1/alpha6beta4-deficient embryos displayed epidermal blistering by stage E15.5 of development, they also retained regions of extensive epidermal adhesion to the basement membrane through stage E16.5, indicating alternative adhesion mechanisms. Apoptosis was induced in detached epidermis of alpha3beta1/alpha6beta4-deficient embryos, exemplifying vividly the importance of epithelial attachment to the basement membrane for cell survival. However, apoptotic cells were completely absent from attached epidermis of alpha3beta1/alpha6beta4-deficient embryos, showing that epithelial adhesion that occurred independently of alpha3beta1 and alpha6beta4 also protected cells from apoptosis. Remarkably, in the absence of the known laminin-5 binding integrins (alpha3beta1, alpha6beta4, and alpha6beta1), keratinocytes retained the capacity to proliferate in the epidermis, and epidermal stratification and skin morphogenesis appeared normal prior to blister formation. These findings show that while alpha3beta1 and alpha6beta4 are both required for integrity of the dermo-epidermal junction, neither one is essential for epidermal morphogenesis during skin development.
APA, Harvard, Vancouver, ISO, and other styles
2

Mainiero, F., A. Pepe, M. Yeon, Y. Ren, and F. G. Giancotti. "The intracellular functions of alpha6beta4 integrin are regulated by EGF." Journal of Cell Biology 134, no. 1 (July 1, 1996): 241–53. http://dx.doi.org/10.1083/jcb.134.1.241.

Full text
Abstract:
Upon ligand binding, the alpha6beta4 integrin becomes phosphorylated on tyrosine residues and combines sequentially with the adaptor molecules Shc and Grb2, linking to the ras pathway, and with cytoskeletal elements of hemidesmosomes. Since alpha6beta4 is expressed in a variety of tissues regulated by the EGF receptor (EGFR), we have examined the effect of EGF on the cytoskeletal and signaling functions of alpha6beta4. Experiments of immunoblotting with anti-phosphotyrosine antibodies and immunoprecipitation followed by phosphoamino acid analysis and phosphopeptide mapping showed that activation of the EGFR causes phosphorylation of the beta4 subunit at multiple tyrosine residues, and this event requires ligation of the integrin by laminins or specific antibodies. Immunoprecipitation experiments indicated that stimulation with EGF does not result in association of alpha6beta4 with Shc. In contrast, EGF can partially suppress the recruitment of Shc to ligated alpha6beta4. Immunofluorescent analysis revealed that EGF treatment does not induce increased assembly of hemidesmosomes, but instead causes a deterioration of these adhesive structures. Finally, Boyden chamber assays indicated that exposure to EGF results in upregulation of alpha6beta4-mediated cell migration toward laminins. We conclude that EGF-dependent signals suppress the association of activated alpha6beta4 with both signaling and cytoskeletal molecules, but upregulate alpha6beta4-dependent cell migration. The changes in alpha6beta4 function induced by EGF may play a role during wound healing and tumorigenesis.
APA, Harvard, Vancouver, ISO, and other styles
3

Homan, S. M., A. M. Mercurio, and S. E. LaFlamme. "Endothelial cells assemble two distinct alpha6beta4-containing vimentin-associated structures: roles for ligand binding and the beta4 cytoplasmic tail." Journal of Cell Science 111, no. 18 (September 15, 1998): 2717–28. http://dx.doi.org/10.1242/jcs.111.18.2717.

Full text
Abstract:
The alpha6beta4 laminin binding integrin functions in the assembly of type I hemidesmosomes, which are specialized cell-matrix adhesion sites found in stratified epithelial cells. Although endothelial cells do not express all the components of type I hemidesmosomes, endothelial cells can express the alpha6beta4 integrin. Because endothelial cells lose expression of alpha6beta4 in culture, we expressed recombinant alpha6beta4 in the dermal microvascular endothelial cell line, HMEC-1, to test whether endothelial cells can assemble adhesion structures containing alpha6beta4. Using immunofluorescence microscopy, we found that recombinant alpha6beta4 concentrates specifically in a novel fibrillar structure on the basal surface of endothelial cells in the absence of an exogenous laminin substrate. This localization is regulated by an intracellular mechanism, because the beta4 cytoplasmic domain is sufficient to direct a reporter domain (IL-2R) to the fibrillar structures independently of recombinant alpha6beta4. In addition, this IL-2R-beta4 chimera is sufficient to recruit the intermediate filament-associated protein HD1/plectin to these fibrillar structures and this also occurs in the absence of recombinant alpha6beta4. The fibrillar localization pattern, as well as the recruitment of HD1/plectin, requires the first and second fibronectin type III repeats and the connecting segment of the beta4 tail. In addition, when endothelial cells are provided a laminin 5-rich matrix, recombinant alpha6beta4 redistributes from the fibrillar structure to type I hemidesmosome-like structures. The beta4 cytoplasmic domain can also direct a reporter domain to these type I hemidesmosome-like structures; however, this process is dependent upon the expression of recombinant alpha6beta4 Biochemical analysis indicates that both the fibrillar and the type I hemidesmosome-like structures are associated with the vimentin intermediate filament cytoskeleton. Thus, the results illustrate that endothelial cells have the essential components necessary to assemble at least two distinct alpha6beta4-containing and vimentin-associated structures on their basal surface and that the alpha6beta4 cytoplasmic tail and the availability of specific alph6beta4 ligands regulate receptor localization to these structures.
APA, Harvard, Vancouver, ISO, and other styles
4

Xia, Y., S. G. Gil, and W. G. Carter. "Anchorage mediated by integrin alpha6beta4 to laminin 5 (epiligrin) regulates tyrosine phosphorylation of a membrane-associated 80-kD protein." Journal of Cell Biology 132, no. 4 (February 15, 1996): 727–40. http://dx.doi.org/10.1083/jcb.132.4.727.

Full text
Abstract:
Detachment of basal keratinocytes from basement membrane signals a differentiation cascade. Two integrin receptors alpha6beta4 and alpha3beta1 mediate adhesion to laminin 5 (epiligrin), a major extracellular matrix protein in the basement membrane of epidermis. By establishing a low temperature adhesion system at 4 degrees C, we were able to examine the exclusive role of alpha6beta4 in adhesion of human foreskin keratinocyte (HFK) and the colon carcinoma cell LS123. We identified a novel 80-kD membrane-associated protein (p80) that is tyrosine phosphorylated in response to dissociation of alpha6beta4 from laminin 5. The specificity of p80 phosphorylation for laminin 5 and alpha6beta4 was illustrated by the lack of regulation of p80 phosphorylation on collagen, fibronectin, or poly-L-lysine surfaces. We showed that blocking of alpha3beta1 function using inhibitory mAbs, low temperature, or cytochalasin D diminished tyrosine phosphorylation of focal adhesion kinase but not p80 phosphorylation. Therefore, under our assay conditions, p80 phosphorylation is regulated by alpha6beta4, while motility via alpha3beta1 causes phosphorylation of focal adhesion kinase. Consistent with a linkage between p80 dephosphorylation and alpha6beta4 anchorage to laminin 5, we found that phosphatase inhibitor sodium vanadate, which blocked the p80 dephosphorylation, prevented the alpha6beta4-dependent cell anchorage to laminin 5 at 4degreesC. In contrast, adhesion at 37 degrees C via alpha3beta1 was unaffected. Furthermore, by in vitro kinase assay, we identified a kinase activity for p80 phosphorylation in suspended HFKs but not in attached cells. The kinase activity, alpha6beta4, and its associated adhesion structure stable anchoring contacts were all cofractionated in the Triton-insoluble cell fraction that lacks alpha3beta1. Thus, regulation of p80 phosphorylation, through the activities of p80 kinase and phosphatase, correlates with alpha6beta4-SAC anchorage to laminin 5 at 4 degrees C in epithelial cells of the skin and intestine. Transmembrane signaling through p80 is an early tyrosine phosphorylation event responsive to and possibly required for anchorage to laminin 5 by HFK and LS123 epithelial cells.
APA, Harvard, Vancouver, ISO, and other styles
5

Orian-Rousseau, V., D. Aberdam, P. Rousselle, A. Messent, J. Gavrilovic, G. Meneguzzi, M. Kedinger, and P. Simon-Assmann. "Human colonic cancer cells synthesize and adhere to laminin-5. Their adhesion to laminin-5 involves multiple receptors among which is integrin alpha2beta1." Journal of Cell Science 111, no. 14 (July 30, 1998): 1993–2004. http://dx.doi.org/10.1242/jcs.111.14.1993.

Full text
Abstract:
In the mature gut, laminin-5 is expressed at the basal aspect of the differentiating epithelial cells. In vitro, we show that three more or less differentiated human colonic cancer HT29 cell lines produce and deposit laminin-5; they predominantly synthesize and secrete the 440 kDa form of laminin-5 that comprises the unprocessed 155 kDa gamma2 chain, as determined by immunoprecipitation analysis. In contrast, the highly differentiated colon carcinoma Caco-2 cells produce almost no laminin-5. Using anti-integrin antibodies, we show that adhesion of the two colonic cancer cell lines to laminin-5 is mediated by multiple integrin receptors including those for alpha3beta1, alpha6beta1 and alpha6beta4 integrins like in other cell types. In addition, the implication of integrin alpha2beta1 in this adhesion process is demonstrated for the first time. This has been shown by cell adhesion inhibition experiments, solid phase assays and confocal analysis. Together with previous in situ observations, these data provide a baseline knowledge for the understanding of the regulation of laminin-5 in normal and pathological intestine.
APA, Harvard, Vancouver, ISO, and other styles
6

De Arcangelis, A., M. Mark, J. Kreidberg, L. Sorokin, and E. Georges-Labouesse. "Synergistic activities of alpha3 and alpha6 integrins are required during apical ectodermal ridge formation and organogenesis in the mouse." Development 126, no. 17 (September 1, 1999): 3957–68. http://dx.doi.org/10.1242/dev.126.17.3957.

Full text
Abstract:
Integrins alpha6beta1 and alpha6beta4 are cell surface receptors for laminins. Integrin alpha6-null mice die at birth with severe skin blistering and defects in the cerebral cortex and in the retina. Integrin alpha3beta1 can associate with laminins and other ligands. Integrin alpha3-null mice also die at birth, with kidney and lung defects at late stages of development, and moderate skin blistering. To investigate possible overlapping functions between alpha3 and alpha6 integrins, we analyzed the phenotype of compound alpha3−/−/alpha6−/− mutant embryos. Double homozygous mutant embryos were growth-retarded and displayed several developmental defects not observed in the single mutant animals. First, limb abnormalities characterized by an absence of digit separation and the fusion of preskeletal elements were observed. Further analyses indicated a defect in the apical ectodermal ridge, an essential limb organizing center. In the double mutant, the ridge appeared flattened, and ridge cells did not show a columnar morphology. A strong reduction in ridge cell proliferation and alterations of the basal lamina underlying the ectoderm were observed. These results suggest that alpha3 and alpha6 integrins are required for the organization or compaction of presumptive apical ectodermal ridge cells into a distinct differentiated structure. Additional defects were present: an absence of neural tube closure, bilateral lung hypoplasia, and several abnormalities in the urogenital tract. Finally, an aggravation of brain and eye lamination defects was observed. The presence of novel phenotypes in double mutant embryos demonstrates the synergism between alpha3 and alpha6 integrins and their essential roles in multiple processes during embryogenesis.
APA, Harvard, Vancouver, ISO, and other styles
7

Melker, Anneinieke A., and Arnoud Sonnenberg. "The Role of the Cytoplasmic Domain of alpha6 Integrin in the Assembly and Function of alpha6beta1 and alpha6beta4." European Journal of Biochemistry 241, no. 1 (October 1996): 254–64. http://dx.doi.org/10.1111/j.1432-1033.1996.0254t.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ashton, G. H. S., P. Sorelli, J. E. Mellerio, F. M. Keane, R. A. J. Eady, and J. A. Mcgrath. "alpha6beta4 integrin abnormalities in junctional epidermolysis bullosa with pyloric atresia." British Journal of Dermatology 144, no. 2 (February 2001): 408–14. http://dx.doi.org/10.1046/j.1365-2133.2001.04038.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Desban, N., and J. L. Duband. "Avian neural crest cell migration on laminin: interaction of the alpha1beta1 integrin with distinct laminin-1 domains mediates different adhesive responses." Journal of Cell Science 110, no. 21 (November 1, 1997): 2729–44. http://dx.doi.org/10.1242/jcs.110.21.2729.

Full text
Abstract:
In the present study, to further elucidate the molecular events that control neural crest cell migration, we have analyzed in vitro the adhesive and locomotory response of avian trunk neural crest cells to laminin-1 and searched for the integrin receptors involved in this process. Adhesion of crest cells on laminin-1 was comparable to that found on fibronectin or vitronectin. By contrast, migration was significantly greater on laminin-1 than on the other substrate molecules. Interaction of crest cells with laminin-1 involved two major cell-binding domains situated in different portions of the molecule, namely the E1′ and E8 fragments, which elicited different cellular responses. Cells were poorly spread on the E1′ fragment whereas, on E8, they were extremely flattened and cohesive. Either fragment supported cell locomotion, albeit not as efficiently as laminin-1. Immunoprecipitation and immunocytochemistry analyses revealed that crest cells expressed the alpha1beta1, alpha3beta1, alpha6beta1 and alpha vbeta3 integrins, as well as beta8 integrins, as presumptive laminin-1 receptors, but not alpha6beta4 and alpha2beta1. Immunofluorescence labeling of cultured cells showed that the alpha1, alpha v, beta1 and beta3 subunits were diffuse on the cell surface and in focal contacts. In contrast, alpha3 and beta8 were diffuse, while alpha6 was mostly intracytoplasmic and, secondarily, in focal contacts. Inhibition assays of cell adhesion and migration with function-perturbing antibodies demonstrated that alpha1beta1 played a predominant role in both adhesion and migration on laminin-1 and interacted with either binding sites in the E1′ and E8 fragments. Alpha vbeta3 was also implicated in neural crest cell migration. In contrast, alpha3beta1, alpha6beta1 and the beta8 integrins appeared to play only subsidiary roles in cell adhesion and migration. Finally, the ability of neural crest cells to interact with laminin-1 was found to increase with time in culture, possibly in correlation with changes in alpha3 distribution on the cell surface. In conclusion, our study indicates that (1) the preferential migration of neural crest cells along basal laminae can be accounted for by the ability of laminin-1 to promote migration with great efficiency; (2) interaction with laminin-1 involves two major cell binding domains that are both recognized by the alpha1beta1 integrin; (3) alpha1beta1 integrin can elicit different cellular responses depending on the laminin-1 domains with which it interacts; and (4) changes in the repertoire of integrins expressed by neural crest cells are consistent with the modulations of cell-substratum adhesion occurring throughout migration.
APA, Harvard, Vancouver, ISO, and other styles
10

Goldfinger, L. E., S. B. Hopkinson, G. W. deHart, S. Collawn, J. R. Couchman, and J. C. Jones. "The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin." Journal of Cell Science 112, no. 16 (August 15, 1999): 2615–29. http://dx.doi.org/10.1242/jcs.112.16.2615.

Full text
Abstract:
Previously, we demonstrated that proteolytic processing within the globular domain of the alpha3 subunit of laminin-5 (LN5) converts LN5 from a cell motility-inducing factor to a protein complex that can trigger the formation of hemidesmosomes, certain cell-matrix attachment sites found in epithelial cells. We have prepared a monoclonal antibody (12C4) whose epitope is located toward the carboxy terminus of the globular domain of the alpha3 laminin subunit. This epitope is lost from the alpha3 subunit as a consequence of proteolytic processing. Antibody 12C4 stains throughout the matrix of cells that fail to process the alpha3 laminin subunit, but does not recognize the matrix of confluent cultures of MCF-10A cells, which efficiently process their alpha3 laminin chain. In subconfluent populations of MCF-10A cells, 12C4 only stains matrix deposited at the outer edges of cell colonies. In these cells, integrin alpha3beta1 occasionally colocalizes with the staining generated by the 12C4 antibody but alpha6beta4 integrin does not. In wounded MCF-10A cell cultures, the 12C4 antibody stains the extracellular matrix beneath those cells at the very edge of the cellular sheet that moves to cover the wound site. A similar phenomenon is observed in human skin wounds, since we also detect expression of the unprocessed alpha3 laminin subunit at the leading tip of the sheet of epidermal cells that epithelializes skin wounds in vivo. In addition, using alpha3 laminin subunit and integrin function-inhibiting antibodies, we provide evidence that LN5 and its two integrin receptors (alpha6beta4 and alpha3beta1) appear necessary for wound healing to occur in MCF-10A cell culture wounds. We propose a model for healing of wounded epithelial tissues based on these results.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Integrin alpha6beta4"

1

Sun, Huayan. "Function of the β4 Integrin in Cancer Stem Cells and Tumor Formation in Breast Cancer: A Masters Thesis." eScholarship@UMMS, 2001. http://escholarship.umassmed.edu/gsbs_diss/814.

Full text
Abstract:
The integrin α6β4 (referred to as β4) is expressed in epithelial cells where it functions as a laminin receptor. Integrin β4 is important for the organization and maintenance of epithelial architecture in normal cells. Particularly, β4 is shown to be essential for mammary gland development during embryogenesis. Integrin β4 also plays important roles in tumor formation, invasion and metastasis in breast cancer. However, the mechanism of how integrin β4 mediates breast tumor formation has not been settled. A few studies suggest that integrin β4 is involved in cancer stem cells (CSCs), but the mechanism is not clear. To address this problem, I examined the expression of β4 in breast tumors and its potential role involved in regulating CSCs. My data shows that β4 is expressed heterogeneously in breast cancer, and it is not directly expressed in CSCs but associated with a basal epithelial population. This work suggests that β4 can regulate CSCs in a non-cell-autonomous manner through the interactions between β4+ non-CSC population and β4- CSC population. My data also shows that β4 expression is associated with CD24+CD44+ population in breast tumor. To further study the role of β4 in breast cancer progression, I generated a β4 reporter mouse by inserting a p2A-mCherry cassette before ITGB4 stop codon. This reporter mouse can be crossed with breast tumor models to track β4+ population during tumor progression.
APA, Harvard, Vancouver, ISO, and other styles
2

Sun, Huayan. "Function of the β4 Integrin in Cancer Stem Cells and Tumor Formation in Breast Cancer: A Masters Thesis." eScholarship@UMMS, 2016. https://escholarship.umassmed.edu/gsbs_diss/814.

Full text
Abstract:
The integrin α6β4 (referred to as β4) is expressed in epithelial cells where it functions as a laminin receptor. Integrin β4 is important for the organization and maintenance of epithelial architecture in normal cells. Particularly, β4 is shown to be essential for mammary gland development during embryogenesis. Integrin β4 also plays important roles in tumor formation, invasion and metastasis in breast cancer. However, the mechanism of how integrin β4 mediates breast tumor formation has not been settled. A few studies suggest that integrin β4 is involved in cancer stem cells (CSCs), but the mechanism is not clear. To address this problem, I examined the expression of β4 in breast tumors and its potential role involved in regulating CSCs. My data shows that β4 is expressed heterogeneously in breast cancer, and it is not directly expressed in CSCs but associated with a basal epithelial population. This work suggests that β4 can regulate CSCs in a non-cell-autonomous manner through the interactions between β4+ non-CSC population and β4- CSC population. My data also shows that β4 expression is associated with CD24+CD44+ population in breast tumor. To further study the role of β4 in breast cancer progression, I generated a β4 reporter mouse by inserting a p2A-mCherry cassette before ITGB4 stop codon. This reporter mouse can be crossed with breast tumor models to track β4+ population during tumor progression.
APA, Harvard, Vancouver, ISO, and other styles
3

Gerson, Kristin D. "Analysis of Integrin α6β4 Function in Breast Carcinoma: A Dissertation." eScholarship@UMMS, 2012. https://escholarship.umassmed.edu/gsbs_diss/588.

Full text
Abstract:
The development and survival of multicellular organisms depends upon the ability of cells to move. Embryogenesis, immune surveillance, wound healing, and metastatic disease are all processes that necessitate effective cellular locomotion. Central to the process of cell motility is the family of integrins, transmembrane cell surface receptors that mediate stable adhesions between cells and their extracellular environment. Many human diseases are associated with aberrant integrin function. Carcinoma cells in particular can hijack integrins, harnessing their mechanical and signaling potential to propagate cell invasion and metastatic disease, one example being integrin α6β4. This integrin, often referred to simply as β4, is defined as an adhesion receptor for the laminin family of extracellular matrix proteins. The role of integrin β4 in potentiating carcinoma invasion is well established, during which it serves both a mechanical and signaling function. miRNAs are short non-coding RNAs that regulate gene expression posttranscriptionally, and data describing the role of extracellular stimuli in governing their expression patterns are sparse. This observation coupled to the increasingly significant role of miRNAs in tumorigenesis prompted us to examine their function as downstream effectors of β4, an integrin closely linked to aggressive disease in breast carcinoma. The work presented in this dissertation documents the first example that integrin expression correlates with specific miRNA patterns. Moreover, integrin β4 status in vitro and in vivo is associated with decreased expression of distinct miRNA families in breast cancer, namely miR-25/32/92abc/363/363-3p/367 and miR-99ab/100, with purported roles in cell motility. Another miRNA, miR-29a, is significantly downregulated in response to de novo expression of β4 in a breast carcinoma cell line, and β4-mediated repression of the miRNA is required for invasion. Another major conclusion of this study is that β4 integrin expression and ligation can regulate the expression of SPARC in breast carcinoma cells. These data reveal distinct mechanisms by which β4 promotes SPARC expression, involving both a miR-29a-mediated process and a TOR-dependent translational mechanism. Our observations establish a link between miRNA expression patterns and cell motility downstream of β4 in the context of breast cancer, and uncover a novel effector of β4-mediated invasion.
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Xiaoqing. "Dissection of α6β4 Integrin-Dependent Signaling and Breast Carcinoma Invasion: A Dissertation." eScholarship@UMMS, 2011. https://escholarship.umassmed.edu/gsbs_diss/563.

Full text
Abstract:
Breast cancer is one of the most prevalent cancers in the world. Each year, over 400,000 women die from breast cancer world wide and metastasis is the main cause of their mortality. Tumor cell invasion into the adjacent tissue is the first step in the multistep process of cancer metastasis and it involves multiple protein changes. The α6β4 integrin, a transmembrane heterodimeric laminin receptor is associated with poor prognosis in many tumor types, including breast cancer. Src family kinase (SFK) activity is elevated in many cancers and this activity also correlates with invasive tumor behavior. The α6β4 integrin can stimulate SFK activation and promote cancer invasion, however the mechanism by which it does so is not known. In the current study, I provide novel mechanistic insight into how the α6β4 integrin selectively activates the Src family kinase member Fyn in response to receptor engagement. Specifically, the tyrosine phosphatase SHP2 is recruited to α6β4 and its catalytic activity is stimulated through a specific interaction of its N-terminal SH2 domain with pY1494 in the β4 subunit. Importantly, both catalytic and non-catalytic functions of SHP2 are required for Fyn activation by α6β4. Fyn is recruited to the α6β4/SHP2 complex through an interaction with phospho-Y580 in the C-terminus of SHP2. In addition to activating Fyn, this interaction with Y580-SHP2 localizes Fyn to sites of receptor engagement, which is required for α6β4-dependent invasion. Moreover, the selective activation of Fyn, but not Src, requires the palmitoylation modification of Fyn on its N-terminus. Of clinical relevance, phospho-Y580-SHP2 and phospho-Y418-SFK could be used as potential biomarkers of invasive breast cancer because their expression are elevated in high-grade breast tumors.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Integrin alpha6beta4"

1

Li, xiaopeng, Alexis Brumwell, Walter Lorizio, Janet Chen, Ying Wei, Thiennu Vu, and Hal Chapman. "Integrin Alpha6Beta4 Identifies An Adult Distal Lung Epithelial Cell Population With Progenitor Potential In Vivo." In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a1242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Min, Brock Marrs, Lei Qi, Teresa Knifley, Stuart G. Jarrett, Heidi L. Weiss, Rachel L. Stewart, John A. D'Orazio, and Kathleen L. O'Connor. "Abstract P2-05-08: Integrin alpha6beta4 signaling switches double strand break repair from homologous recombination to non-homologous end joining to alter TNBC cells response to cisplatin." In Abstracts: 2019 San Antonio Breast Cancer Symposium; December 10-14, 2019; San Antonio, Texas. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.sabcs19-p2-05-08.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Integrin alpha6beta4"

1

Yang, Xiuwei. Critical Roles of CD151-alpha6beta1 and CD151-alpha6beta4 Integrin Complexes in Human Ovarian Cancer. Fort Belvoir, VA: Defense Technical Information Center, July 2009. http://dx.doi.org/10.21236/ada517279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

O'Connor, Kathleen L., and Arthur M. Mercurio. Regulation of Breast Carcinoma Chemotaxis by the Integrin Alpha6Beta4. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada398207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Awwad, Rana A. Laminin-10 and Its Receptors in Breast Carcinoma: Cooperation of Alpha6Beta4 and Alpha3Beta1 Integrin Laminin Receptors in Breast Carcinoma. Fort Belvoir, VA: Defense Technical Information Center, June 2003. http://dx.doi.org/10.21236/ada418060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography